TD 4 – Hash functions: The Kelsey-Schneier attack (2005)

Compression function. Let $f : \{0, 1\}^n \times \{0, 1\}^w \to \{0, 1\}^n$ be a compression function, with $n \le w$, and let IV be some fixed initial value. For a message $\hat{m} = m_1 || \cdots || m_B$ of length $B \times w$, let $h_0 = IV$ and $h_i = f(h_{i-1}, m_i)$ for $i \ge 1$. Then we define F by $F(m_1 || \cdots || m_i) = h_i$ for all i. In particular, $F(m) = h_B$.

Merkle-Damgård construction. For a message $m \in \{0, 1\}^*$, let $pad(m) = m || 10 \cdots 0 || \langle length of m \rangle$ be the padded version of *m* where the number of zeroes is adjusted to have $|pad(m)| = B \times w$ for some *B*. Then we define H(m) = F(pad(m)).

Kelsey & Schneier attack sketch. The idea of the second preimage attack of Kelsey & Schneier (2005) is to sample messages m_0 until $f(h_0, m_0) = h_i$ for some *i*. The expected number of samples before a success is $2^n/B$, assuming that $f(h_0, \cdot)$ behaves like a random function. Then, $\hat{m} = m_0 ||m_{i+1}|| \cdots ||m_B$ satisfies $F(\hat{m}) = H(m)$. Yet, since pad(m) contains the length of *m*, there is no m' such that $\hat{m} = \text{pad}(m')$.

Birthday bound with two lists. Let $y_1, ..., y_q$ and $z_1, ..., z_q$ be uniformly and independently drawn from a size-*N* set. Then for $q \le \sqrt{N}$, $\frac{q^2}{2N} \le \Pr[\exists i, j, y_i = z_j] \le \frac{q^2}{N}$.

Exercise 1. Expandable messages and second preimage attack An expandable message of hash h_{exp} is a set of messages $M_{exp} = \{m^1, m^2, ...\}$ such that $|m^i| = i \times w$ and $F(m^i) = h_{exp}$ for all *i*. Let M_{exp} be an expandable message of hash h_{exp} .

- **1.** What is the cost of finding a one-block message m_0 such that $f(h_{exp}, m_0) = h_i$ for some *i*?
- **2.** Explain how to produce a message m' such that H(m') = H(m), given M_{exp} and m_0 .
- **3.** What is the cost of the attack, ignoring the cost of producing an expandable message? Why is this attack called a *long message second preimage attack*?

Exercise 2.

Expandable message from fixed points

Let f be a compression function built from a block cipher E using Davies-Meyer construction: $f(h,m) = E_m(h) \oplus h$. We want to build an expandable message M_{exp} from a *fixed point for* f, that is from a pair (h_f, m_f) such that $f(h_f, m_f) = h_f$.

- **1.** Let $m_f \in \{0,1\}^n$ be any one-block message, and $h_f = E_{m_f}^{-1}(0)$. Prove that (h_f, m_f) is a fixed point for f.
- **2.** To build an expandable message M_{exp} , we adopt the following strategy: We produce a list of hashes $h = f(h_0, m_0)$ by sampling random blocks $m_0 \in \{0, 1\}^n$; We produce a second list of hashes $h_f = E_{m_f}^{-1}(0)$ by sampling random blocks $m_f \in \{0, 1\}^n$.
 - i. Assume we found m_0 and (h_f, m_f) such that $f(h_0, m_0) = h_f$. Build an expandable message from this.
 - **ii.** Prove that if we sample $2^{n/2}$ blocks m_0 and the same number of blocks m_f , the probability to get a collision is $\geq \frac{1}{2}$. Assume that $E(\cdot, 0)$ and $f(h_0, \cdot)$ behave like random functions.
- 3. Recap the steps of the full attack with this fixed point approach, and estimate its cost.

Exercise 3.

Expandable messages from multicollisions

We are interested in finding *k*-multicollisions for *F*, that is a set of *k* messages $\hat{m}^1, \ldots, \hat{m}^k$ such that $F(\hat{m}^1) = \cdots = F(\hat{m}^k)$. If they all have distinct lengths, this is actually an expandable message.

- 1. i. Prove that for any ℓ_0 , we can find $m_0 \in \{0, 1\}^n$ and $m^0 \in \{0, 1\}^{\ell_0 n}$ such that $f(h_0, m_0) = F(m^0)$, in time $O(2^{n/2})$. We can fix the first $(\ell_0 1)$ blocks of m^0 .
 - ii. Prove that once a collision $h_1 = f(h_0, m_0) = F(m^0)$ is found, we can in the same time find a collision $f(h_1, m_1) = F(m^1)$ where m^1 has ℓ_1 blocks.
 - iii. Let $\ell_i = 1 + 2^i$ for all *i* and assume that we have found collisions $f(h_i, m_i) = F(m^i)$ for i = 0 to t 1, where m^i has ℓ_i blocks. Prove that we can build a 2^t -multicollision for *F*, with messages of size *tn* to $(t + 2^t 1)n$.
- **2.** Recap the full attack with the multicollision and estimate its cost. *What condition must be satisfied by m to be able to find a second preimage?*