TD 3 – Symmetric encryption

Exercise 1.

ECB is not IND-CPA secure

CBC ciphertext stealing

B. Grenet

Prove that ECB mode of operation does not yield an IND-CPA secure symmetric encryption scheme, no
matter how good the underlying block cipher is. Write the definitions!

Exercise 2.

Recall that using the CBC mode of operation with a block cipher *E* and key *k*, the message *M* is split into length-*n* blocks $m_1 \| \cdots \| m_\ell$, and encrypted as $C = c_0 \| \cdots \| c_\ell$ where c_0 is a random IV, and $c_i = E_k(m_i \oplus c_{i-1})$ for i > 0. This assumes that m_ℓ has length *n*. Otherwise, one can define $m'_\ell = m_\ell \| 10^{n-r-1}$ and $c_\ell = E_k(m'_\ell \oplus c_{\ell-1})$.

- **1.** Write the decryption algorithm for CBC mode of operation.
- **2.** Let $M = m_1 \| \cdots \| m_{\ell-1} \| m_\ell$ where each block has size *n*, but m_ℓ which has size r < n. Let *C* be the encryption of *M*, where m_ℓ has been padded to length *n*.
 - **i.** What is the bit length *L* of *M*, as a function of *n*, ℓ and *r*?
 - **ii.** What is the bit length of *C*, as a function of *L*, *n* and *r*?

We now present an elegant technique to avoid the padding and reduce the size of *C*. We first modify the padding of m_{ℓ} and define $m'_{\ell} = m_{\ell} || 0^{n-r}$. Let $C = c_0 || \cdots || c_{\ell}$ be the ciphertext obtained as before but with this new padding. Then we define $c'_{\ell-1} = c_{\ell}$ and c'_{ℓ} as the first *r* bits of $c_{\ell-1}$. Finally, we let $C' = c_0 || \cdots || c_{\ell-2} || c'_{\ell-1} || c'_{\ell}$.

- **3.** What is the bit length of C', as a function of L, n and r?
- **4.** Explain how to recover m_{ℓ} and $c_{\ell-1}$ from c'_{ℓ} and the decryption of $c'_{\ell-1}$, and then how to decrypt C'.

Exercise 3.

CTR mode

We consider the encryption scheme (Enc, Dec) obtained from a block cipher E of block size n, using the CTR mode of operation.

1. Write the decryption algorithm.

One characteristic of a good encryption scheme is that the ciphertext should be hard to distinguish from random bits. Formally, we define the following experiment: An adversary sends a message m of ℓ blocks to a challenger; The challenger either compute $c \leftarrow \text{Enc}_k(m)$, or $c \leftarrow \{0,1\}^{n(\ell+1)}$ and sends back c to the adversary; The adversary must tell which of the two happened.

- **2.** Prove that an adversary that sends a 2^n -block message is able to distinguish with very high probability. Compute this probability. *Hint. Use the fact that* E_k *is a permutation.*
- **3.** Use the birthday bound to prove that the adversary already has a good probability of success with a $2^{n/2}$ -block message.
- **4.** Since the problem of the previous questions is that E_k be a permutation, one can define $F_k(x) = E_k(x) \oplus x$, so that F_k is not a permutation, and encrypt *m* as $IV ||m_1 \oplus F_k(IV + 1)|| \cdots ||m_\ell \oplus F_k(IV + \ell)$. Does this solve the problem?