TD 3 - Symmetric encryption

Exercise 1.

ECB is not IND-CPA secure

- Prove that ECB mode of operation does not yield an IND-CPA secure symmetric encryption scheme, no matter how good the underlying block cipher is. Write the definitions!

Exercise 2.

CBC ciphertext stealing
Recall that using the CBC mode of operation with a block cipher E and key k, the message M is split into length- n blocks $m_{1}\|\cdots\| m_{\ell}$, and encrypted as $C=c_{0}\|\cdots\| c_{\ell}$ where c_{0} is a random IV, and $c_{i}=E_{k}\left(m_{i} \oplus c_{i-1}\right)$ for $i>0$. This assumes that m_{ℓ} has length n. Otherwise, one can define $m_{\ell}^{\prime}=m_{\ell} \| 10^{n-r-1}$ and $c_{\ell}=E_{k}\left(m_{\ell}^{\prime} \oplus c_{\ell-1}\right)$.

1. Write the decryption algorithm for CBC mode of operation.
2. Let $M=m_{1}\|\cdots\| m_{\ell-1} \| m_{\ell}$ where each block has size n, but m_{ℓ} which has size $r<n$. Let C be the encryption of M, where m_{ℓ} has been padded to length n.
i. What is the bit length L of M, as a function of n, ℓ and r ?
ii. What is the bit length of C, as a function of L, n and r ?

We now present an elegant technique to avoid the padding and reduce the size of C. We first modify the padding of m_{ℓ} and define $m_{\ell}^{\prime}=m_{\ell} \| 0^{n-r}$. Let $C=c_{0}\|\cdots\| c_{\ell}$ be the ciphertext obtained as before but with this new padding. Then we define $c_{\ell-1}^{\prime}=c_{\ell}$ and c_{ℓ}^{\prime} as the first r bits of $c_{\ell-1}$. Finally, we let $C^{\prime}=c_{0}\|\cdots\| c_{\ell-2}\left\|c_{\ell-1}^{\prime}\right\| c_{\ell}^{\prime}$.
3. What is the bit length of C^{\prime}, as a function of L, n and r ?
4. Explain how to recover m_{ℓ} and $c_{\ell-1}$ from c_{ℓ}^{\prime} and the decryption of $c_{\ell-1}^{\prime}$, and then how to decrypt C^{\prime}.

Exercise 3.

CTR mode
We consider the encryption scheme (Enc, Dec) obtained from a block cipher E of block size n, using the CTR mode of operation.

1. Write the decryption algorithm.

One characteristic of a good encryption scheme is that the ciphertext should be hard to distinguish from random bits. Formally, we define the following experiment: An adversary sends a message m of ℓ blocks to a challenger; The challenger either compute $c \leftarrow \operatorname{Enc}_{k}(m)$, or $c \leftarrow\{0,1\}^{n(\ell+1)}$ and sends back c to the adversary; The adversary must tell which of the two happened.
2. Prove that an adversary that sends a 2^{n}-block message is able to distinguish with very high probability. Compute this probability. Hint. Use the fact that E_{k} is a permutation.
3. Use the birthday bound to prove that the adversary already has a good probability of success with a $2^{n / 2}$-block message.
4. Since the the problem of the previous questions is that E_{k} be a permutation, one can define $F_{k}(x)=$ $E_{k}(x) \oplus x$, so that F_{k} is not a permutation, and encrypt m as $I V\left\|m_{1} \oplus F_{k}(I V+1)\right\| \cdots \| m_{\ell} \oplus F_{k}(I V+\ell)$. Does this solve the problem?

