TD 2 – Block ciphers

Exercise 1.

Explain why each of the following statements is wrong.

- **1.** It is never possible to attack an ideal block cipher.
- 2. A block cipher with keys of 512 bits is always secure.
- 3. There will never be any reason, technologically speaking, to use (block cipher) keys larger than 128 bits.
- 4. One should always use (block cipher) keys larger than 128 bits.
- 5. One should always use the latest-published, most recent block cipher.

Exercise 2.

- **1.** Prove that the four following informal security definitions for a block cipher *E* are encompassed by the (S)PRP security notion. For each of them, assume you are given an efficient algorithm to break the security and build a adversary that has a large (S)PRP advantage.
 - **i.** Given c = E(k, m), computing m without knowing k is hard.
 - **ii.** Given *m*, computing c = E(k, m) without knowing *k* is hard.
 - **iii.** Given oracle access to E_k , it is hard to find k.
 - iv. Given oracle access to E_k^{\pm} , it is hard to find k.
- **2.** In the PRP experiment, assume that the challenger chooses $b \leftarrow \{0, 1\}$ uniformly at random. Prove that for any adversary *A*, $\operatorname{Adv}_{E}^{\operatorname{PRP}}(A) = |2\operatorname{Pr}[\hat{b} = b] 1|$, where \hat{b} is the bit returned by the adversary.

Exercise 3.

Meet-in-the-middle and PRP advantage

The meet-in-the-middle attack on double encryption allows an adversary to find the key from a pair (message, ciphertext), in time $O(2^{\kappa})$ where κ is the length of each key. We translate this attack on a *lower* bound on the PRP advantage of double encryption.

Let $E: \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ be a block cipher, where $\mathcal{K} = \{0, 1\}^{\kappa}$ and $\mathcal{M} = \{0, 1\}^{n}$. Let $EE_{2}: \mathcal{K}^{2} \times \mathcal{M} \to \mathcal{M}$ defined by $EE_2(k_1||k_2,m) = E(k_2, E(k_1,m)).$

- **1.** Translate the meet-in-the-middle attack as an adversary A_{MITM} for the PRP experiment $\text{Exp}_{EE_{2}}^{\text{PRP}}$.
- **2.** Give the number of queries to the oracle and the running time of A_{MITM} . **3.** Give a lower bound on $\text{Adv}_{EE_2}^{\text{PRP}}(A_{\text{MITM}})$, and deduce a lower bound on $\text{Adv}_{EE_2}^{\text{PRP}}(q, t)$ for values q and t to be determined.

Time-memory trade-off. Consider the following variant of the meet-in-the-middle attack: Fix a length $\ell \leq \kappa$; For all ℓ -bit strings $s \in \{0, 1\}^{\ell}$, the adversary first computes (and stores) all the $y_{k_1} = E(k_1, m)$ for keys k_1 that begins with s and then test for each $k_2 \in \{0, 1\}^{\kappa}$ whether $E^{-1}(k_2, c)$ belongs to the y_{k_1} 's; It stops if it finds a match, otherwise continues with the next prefix.

- i. Analyze the time and space complexity of this attack. 4.
 - **ii.** Describe the attack in the two extremal cases $\ell = 0$ and $\ell = \kappa$.

Exercise 4.

Format-preserving encryption

Consider a set \mathcal{M} of message, distinct from $\{0,1\}^n$: say $\{0,1\}^{\leq n}$ or the set of prime numbers $\leq 2^{128}$, etc. A *format-preserving* block cipher is a block cipher for such an arbitrary set *M*.

Assume that $\mathcal{M} \subset \{0,1\}^n$ for some n, and that we know an efficient algorithm that, given $m \in \{0,1\}^n$ determine whether $m \in \mathcal{M}$. The *cycle walking* algorithms convert a block cipher $E : \{0, 1\}^{\kappa} \times \{0, 1\}^{n} \rightarrow \{0, 1\}^{n}$ to a format-preserving block cipher $E': \{0,1\}^{\kappa} \times \mathcal{M} \to \mathcal{M}$. To encrypt $m \in \mathcal{M}$ using E' with a key k, compute m' = E(k, m); If $m' \in \mathcal{M}$, return c = m'; Otherwise iterate with m'' = E(k, m'), etc.

- **1.** Give the decryption algorithm E'^{-1} : $\{0, 1\}^{\kappa} \times \mathcal{M} \to \mathcal{M}$.
- **2.** Why is the existence of an efficient algorithm to test the appartenance to \mathcal{M} not sufficient for E' to be efficient?
- **3.** (*) Prove that the expected number of calls to E in the random oracle model is $(2^n + 1)/(|\mathcal{M}| + 1)$. *Hint.* Prove (or admit) the following: given a size-t subset U of a size-N set S, the expected number of elements we need to sample (without replacement) from S to get an element of U is (N + 1)/(t + 1).

B. Grenet

False or false

From the slides