
Introduction to cryptology (U. Grenoble-Alpes) B. Grenet

TD 1 – Introduction

Exercise 1. One-time pad

1. Let X , R be two independent random variables over {0, 1}, with Pr [X = 0] = p for some p, and Pr [R= 0] =
1
2 . Compute the following quantities, using the law of total probability and Bayes’ formula.

i. Pr [X ⊕ R= 0]
ii. Pr [X ⊕ R= 1]

iii. Pr [X = 0|X ⊕ R= 0]
iv. Pr [X = 0|X ⊕ R= 1]

2. We now assume that Pr [R= 0] = q for some arbitrary q. Recompute Pr [X = 0|X ⊕ R= 0].
3. Let now X , R be independent random variables over {0, 1}n, and assume R to be uniformly distributed in
{0, 1}n.

i. For arbitrary y , z ∈ {0, 1}n, compute Pr [X ⊕ R= y] and Pr [X = z|X ⊕ R= y].
ii. Explain why knowing X ⊕ R does not reveal any information about X .

iii. Let Y be another random variable over {0,1}n. Explain why knowing (X∥Y ) ⊕ (R∥R) does reveal
information about X∥Y , where ∥ denotes string concatenation.

Exercise 2. One-time pad for variable length messages
Let us consider the space M= {0,1}≤ℓ of binary string of length ≤ ℓ.

1. We consider the following encryption scheme: the key is uniformly sampled from K = {0,1}ℓ and we
define Enck(m) = k[0,|m|[ ⊕m where k[0,t[ is made of the first t bits of k.

i. Write the decryption algorithm.
ii. Prove that this scheme is not perfectly secret. First give an intuitive explanation, and then a proof using

the indistinguishability experiment: describe an adversary whose advantage is nonzero.

2. Propose a perfectly secret encryption scheme for M. Provide the encryption and decryption algorithms, and
prove that it is perfectly secret (using the result on the one-time-pad).

Exercise 3. ϵ-indistinguishability and key lengths

1. Consider the one-time pad for length-ℓ messages, but using a key sampled uniformly from a set K of
size (1− ϵ)2ℓ, for 0< ϵ ≤ 1

2 . Prove that this scheme is ϵ-indistinguishable. Indication. Prove actually the
stronger claim that the scheme is (ϵ/2(1− ϵ))-indistinguishable.

We shall prove that if an encryption scheme (Enc,Dec) is ϵ-indistinguishable, then |K| ≥ (1− 2ϵ) |M|.

2. By contrapositive, we assume |K|< (1−2ϵ) |M| and define an adversary A for the experiment ExpIND
Enc . To

produce m0 and m1, it draws them independently and uniformly from M. Once it receives c, it checks
whether there exists k ∈ K such that Deck(c) = m0. It returns 0 if this is the case, and 1 otherwise.

i. If b = 0, what is the probability that A returns 0?
ii. Assume now that b = 1. Bound the probability that there exists k such that Deck(c) = m0. Deduce a

bound on the probability that A returns 0 in that case.
iii. Prove that A has advantage ≥ ϵ.

Exercise 4. Secrecy and indistinguishability
Let (Enc,Dec) be a encryption scheme. Let M , K, C be random variables describing the message, the key
and the ciphertext respectively. They satisfy C = EncK(M). We assume without loss of generality that for every
m ∈M and c ∈ C, Pr [M = m]> 0 and Pr [C = c]> 0, that is M and C do not contain any impossible message
or ciphertext.
Recall that the scheme is perfectly secure if for any m ∈M and c ∈ C, Pr [M = m|C = c] = Pr [M = m]. This is
equivalent to saying that the two random variables M and C are independent.
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1. We will prove that perfect secrecy is equivalent to perfect indistinguishability: the distribution of EncK(m)
(when K is random) does not depend on m.

i. Prove that for any m ∈M such that Pr [M = m]> 0 and any c ∈ C, Pr [C = c||M = m] = Pr [EncK(m) = c].
ii. Deduce that the scheme is perfectly secret if and only if for every m ∈M and c ∈ C, Pr [EncK(m) = c] =

Pr [C = c].
iii. Prove that the scheme is perfectly secret if and only if for every m, m′ ∈M, and c ∈ C , Pr [EncK(m) = c] =

Pr [EncK(m′) = c].

2. We will now prove that perfect secrecy is equivalent to perfect adversarial indistinguishability, as defined
in the course.

i. Assume that the scheme is perfectly secret, and consider a deterministic adversary A: we can partition
C = C0 ⊔ C1 such that A outputs 0 if c ∈ C0 and 1 if c ∈ C1. Prove that the advantage of A in ExpIND

Enc is
exactly 0.

ii. Prove that the results holds with a randomized adversary. Change the viewpoint: A randomized
adversary is a random choice amongst several possible deterministic adversaries.

iii. We want to prove the converse. For, we assume that the scheme is not perfectly secret and construct an
adversary that has a nonzero advantage. Let m0, m1 ∈M and c⋆ ∈ C such that Pr [c⋆ = EncK(m0)]>
Pr [c⋆ = EncK(m1)]. Consider the following adversary: It provides m0 and m1, and when it receives
c, it outputs 0 if c = c⋆ and a uniform bit if c ̸= c⋆. Prove that its advantage is nonzero.

Exercise 5. Probability reminders

— A (discrete) probability space is a pair (Ω, p) made of a finite or countable sample space (a.k.a. universe)
Ω and a probability mass function p : Ω→ [0,1] which associates to each outcome ω ∈ Ω a probability
p(ω), such that

∑

ω∈Ω p(ω) = 1.
— An event is a subset of Ω. The probability of a event E is Pr [E] =

∑

ω∈Ω p(ω). We use E ∧ F to denote
the event E ∩ F , E ∨ F to denote E ∪ F , and ¬E to denote Ω \ E = {ω ∈ Ω :ω /∈ E}.

— Given two events E, F ⊂ Ω, the conditional probability of E given F is Pr [E|F] = Pr [E ∧ F]/Pr [F]
(provided Pr [F] ̸= 0). The intuitive meaning is the probability of the event E within the restricted universe
F : In particular, Pr [E] = Pr [E|Ω] for all E.

— Two events E and F are independent if Pr [E|F] = Pr [E], or equivalently if Pr [F |E] = Pr [F], or equiva-
lently if Pr [E ∧ F] = Pr [E]Pr [F].

— A (discrete) random variable is a function X : Ω→ S. Each x ∈ S defines and event [X = x] = {ω ∈ Ω :
X (ω) = x}, and similarly for [X ≥ x], [X < x], . . .

— The (conditional) expectation of a random variable X : Ω→ S is E[X |E] =
∑

x∈S x Pr [X = x |E]. Expecta-
tion is linear: E[X + Y |E] = E[X |E] +E[Y |E]. The standard expectation is E[X ] = E[X |Ω].

Prove the following (almost obvious but very useful!) results.

1. For two events E and F ,

i. Pr [¬E] = 1− Pr [E], and
ii. Pr [E ∨ F] = Pr [E] + Pr [F]− Pr [E ∧ F]≤ Pr [E] + Pr [F]. (Union bound)

2. For two events E and F ,

Pr [E|F]Pr [F] = Pr [F |E]Pr [E] = Pr [E ∧ F]. (Bayes’ formula)

3. Let F1, . . ., Fn be a partition of Ω, that is
⋃

i Fi = Ω and Fi ∩ F j = ; if i ̸= j. Then,

i. for any event E, Pr [E] =
n
∑

i=1

Pr [E|Fi]Pr [Fi] =
n
∑

i=1

Pr [E ∧ Fi], and (Law of total probability)

ii. for any random variable X , E[X ] =
n
∑

i=1

E[X |Fi]Pr [Fi]. (Law of total expectation)

4. Let X : Ω→ N be a random variable with nonnegative integer values. Then E[X ] =
∑

i≥1 Pr [X ≥ i].
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