TD 1 – Introduction

Exercise 1.

One-time pad

- **1.** Let *X*, *R* be two independent random variables over {0, 1}, with Pr[X = 0] = p for some *p*, and $Pr[R = 0] = \frac{1}{2}$. Compute the following quantities, using the law of total probability and Bayes' formula.
 - i. $\Pr[X \oplus R = 0]$
 - ii. $\Pr[X \oplus R = 1]$
 - **iii.** $\Pr[X = 0 | X \oplus R = 0]$
 - **iv.** $\Pr[X = 0 | X \oplus R = 1]$
- **2.** We now assume that $\Pr[R = 0] = q$ for some arbitrary *q*. Recompute $\Pr[X = 0|X \oplus R = 0]$.
- **3.** Let now *X*, *R* be independent random variables over $\{0, 1\}^n$, and assume *R* to be uniformly distributed in $\{0, 1\}^n$.
 - **i.** For arbitrary $y, z \in \{0, 1\}^n$, compute $\Pr[X \oplus R = y]$ and $\Pr[X = z | X \oplus R = y]$.
 - **ii.** Explain why knowing $X \oplus R$ does not reveal any information about *X*.
 - iii. Let *Y* be another random variable over $\{0,1\}^n$. Explain why knowing $(X||Y) \oplus (R||R)$ does reveal information about X||Y, where || denotes string concatenation.

Exercise 2.

Let us consider the space $\mathcal{M} = \{0, 1\}^{\leq \ell}$ of binary string of length $\leq \ell$.

- We consider the following encryption scheme: the key is uniformly sampled from K = {0,1}^ℓ and we define Enc_k(m) = k_{[0,|m|} ⊕ m where k_[0,t] is made of the first t bits of k.
 - **i.** Write the decryption algorithm.
 - **ii.** Prove that this scheme is not perfectly secret. First give an intuitive explanation, and then a proof using the indistinguishability experiment: describe an adversary whose advantage is nonzero.
- **2.** Propose a perfectly secret encryption scheme for *M*. *Provide the encryption and decryption algorithms, and prove that it is perfectly secret (using the result on the one-time-pad).*

Exercise 3.

ε -indistinguishability and key lengths

One-time pad for variable length messages

1. Consider the one-time pad for length- ℓ messages, but using a key sampled uniformly from a set \mathcal{K} of size $(1-\varepsilon)2^{\ell}$, for $0 < \varepsilon \leq \frac{1}{2}$. Prove that this scheme is ε -indistinguishable. *Indication. Prove actually the stronger claim that the scheme is* $(\varepsilon/2(1-\varepsilon))$ -indistinguishable.

We shall prove that if an encryption scheme (Enc, Dec) is ε -indistinguishable, then $|\mathcal{K}| \ge (1-2\varepsilon)|\mathcal{M}|$.

- 2. By contrapositive, we assume $|\mathcal{K}| < (1-2\varepsilon)|\mathcal{M}|$ and define an adversary *A* for the experiment $\text{Exp}_{\text{Enc}}^{\text{IND}}$. To produce m_0 and m_1 , it draws them independently and uniformly from \mathcal{M} . Once it receives *c*, it checks whether there exists $k \in \mathcal{K}$ such that $\text{Dec}_k(c) = m_0$. It returns 0 if this is the case, and 1 otherwise.
 - **i.** If b = 0, what is the probability that A returns 0?
 - ii. Assume now that b = 1. Bound the probability that there exists k such that $\text{Dec}_k(c) = m_0$. Deduce a bound on the probability that A returns 0 in that case.
 - **iii.** Prove that *A* has advantage $\geq \varepsilon$.

Exercise 4.

Secrecy and indistinguishability

Let (Enc, Dec) be a encryption scheme. Let M, K, C be random variables describing the message, the key and the ciphertext respectively. They satisfy $C = Enc_K(M)$. We assume without loss of generality that for every $m \in \mathcal{M}$ and $c \in C$, Pr[M = m] > 0 and Pr[C = c] > 0, that is \mathcal{M} and C do not contain any impossible message or ciphertext.

Recall that the scheme is perfectly secure if for any $m \in M$ and $c \in C$, $\Pr[M = m | C = c] = \Pr[M = m]$. This is equivalent to saying that the two random variables M and C are independent.

- **1.** We will prove that perfect secrecy is equivalent to *perfect indistinguishability*: the distribution of $Enc_K(m)$ (when *K* is random) does not depend on *m*.
 - i. Prove that for any $m \in \mathcal{M}$ such that $\Pr[M = m] > 0$ and any $c \in \mathcal{C}$, $\Pr[C = c || M = m] = \Pr[\operatorname{Enc}_{\mathcal{K}}(m) = c]$.
 - ii. Deduce that the scheme is perfectly secret if and only if for every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, $\Pr[\mathsf{Enc}_K(m) = c] = \Pr[\mathcal{C} = c]$.
 - iii. Prove that the scheme is perfectly secret if and only if for every $m, m' \in \mathcal{M}$, and $c \in C$, $\Pr[\mathsf{Enc}_K(m) = c] = \Pr[\mathsf{Enc}_K(m') = c]$.
- **2.** We will now prove that perfect secrecy is equivalent to perfect *adversarial indistinguishability*, as defined in the course.
 - i. Assume that the scheme is perfectly secret, and consider a *deterministic* adversary *A*: we can partition $C = C_0 \sqcup C_1$ such that *A* outputs 0 if $c \in C_0$ and 1 if $c \in C_1$. Prove that the advantage of *A* in $\mathsf{Exp}_{\mathsf{Enc}}^{\mathsf{IND}}$ is exactly 0.
 - **ii.** Prove that the results holds with a randomized adversary. *Change the viewpoint: A randomized adversary is a random choice amongst several possible deterministic adversaries.*
 - iii. We want to prove the converse. For, we assume that the scheme is not perfectly secret and construct an adversary that has a nonzero advantage. Let m_0 , $m_1 \in \mathcal{M}$ and $c^* \in \mathcal{C}$ such that $\Pr[c^* = \operatorname{Enc}_K(m_0)] > \Pr[c^* = \operatorname{Enc}_K(m_1)]$. Consider the following adversary: It provides m_0 and m_1 , and when it receives c, it outputs 0 if $c = c^*$ and a uniform bit if $c \neq c^*$. Prove that its advantage is nonzero.

Exercise 5.

Probability reminders

- A (discrete) probability space is a pair (Ω, p) made of a finite or countable sample space (a.k.a. universe) Ω and a probability mass function $p: \Omega \to [0, 1]$ which associates to each outcome $\omega \in \Omega$ a probability $p(\omega)$, such that $\sum_{\omega \in \Omega} p(\omega) = 1$.
- An *event* is a subset of Ω . The probability of a event *E* is $\Pr[E] = \sum_{\omega \in \Omega} p(\omega)$. We use $E \wedge F$ to denote the event $E \cap F$, $E \vee F$ to denote $E \cup F$, and $\neg E$ to denote $\Omega \setminus E = \{\omega \in \Omega : \omega \notin E\}$.
- − Given two events E, F ⊂ Ω, the conditional probability of E given F is Pr[E|F] = Pr[E ∧ F]/Pr[F](provided Pr[F] ≠ 0). The intuitive meaning is the probability of the event E within the restricted universe F: In particular, Pr[E] = Pr[E|Ω] for all E.
- Two events *E* and *F* are *independent* if Pr[E|F] = Pr[E], or equivalently if Pr[F|E] = Pr[F], or equivalently if $Pr[E \land F] = Pr[E]Pr[F]$.
- A (discrete) *random variable* is a function $X : \Omega \to S$. Each $x \in S$ defines and *event* $[X = x] = \{\omega \in \Omega : X(\omega) = x\}$, and similarly for $[X \ge x], [X < x], ...$
- The (conditional) *expectation* of a random variable $X : \Omega \to S$ is $\mathbb{E}[X|E] = \sum_{x \in S} x \Pr[X = x|E]$. Expectation is linear: $\mathbb{E}[X + Y|E] = \mathbb{E}[X|E] + \mathbb{E}[Y|E]$. The *standard* expectation is $\mathbb{E}[X] = \mathbb{E}[X|\Omega]$.

Prove the following (almost obvious but very useful!) results.

- **1.** For two events *E* and *F*,
 - i. $\Pr[\neg E] = 1 \Pr[E]$, and

ii.
$$\Pr[E \lor F] = \Pr[E] + \Pr[F] - \Pr[E \land F] \le \Pr[E] + \Pr[F].$$
 (Union bound)

2. For two events *E* and *F*,

$$\Pr[E|F]\Pr[F] = \Pr[F|E]\Pr[E] = \Pr[E \land F].$$
 (Bayes' formula)

- **3.** Let F_1, \ldots, F_n be a partition of Ω , that is $\bigcup_i F_i = \Omega$ and $F_i \cap F_j = \emptyset$ if $i \neq j$. Then,
 - **i.** for any event *E*, $\Pr[E] = \sum_{i=1}^{n} \Pr[E|F_i] \Pr[F_i] = \sum_{i=1}^{n} \Pr[E \wedge F_i]$, and (Law of total probability) **ii.** for any random variable *X*, $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|F_i] \Pr[F_i]$. (Law of total expectation)

i. For any function variable
$$X$$
, $\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{E}[X]^{r_i}$ [Fi $[r_i]$. (Law of total expectation

4. Let $X : \Omega \to \mathbb{N}$ be a random variable with nonnegative integer values. Then $\mathbb{E}[X] = \sum_{i \ge 1} \Pr[X \ge i]$.