Introduction to cryptology (U. Grenoble-Alpes) B. Grenet

TD 1 - Introduction

Exercise 1. One-time pad

1. Let X, R be two independent random variables over {0, 1}, with Pr[X = 0] = p for some p, and Pr[R =0] =
%. Compute the following quantities, using the law of total probability and Bayes’ formula.

i. Pr(X®R=0]
ii. Pr[X®eR=1]
iii. Pr[X =0|X ®R =0]
iv. Pr[X =0|X ®R=1]

N

We now assume that Pr[R = 0] = q for some arbitrary q. Recompute Pr[X = 0|X @R =0].
3. Let now X, R be independent random variables over {0, 1}", and assume R to be uniformly distributed in
{o,1}".

i. For arbitrary y, z € {0,1}", compute Pr([X @R=y]and Pr(X =z|[X ®R=y].
ii. Explain why knowing X @ R does not reveal any information about X.
iii. Let Y be another random variable over {0,1}". Explain why knowing (X||Y) @ (R||R) does reveal
information about X||Y, where || denotes string concatenation.

Exercise 2. One-time pad for variable length messages
Let us consider the space M = {0, 1}=¢ of binary string of length < ¢.

1. We consider the following encryption scheme: the key is uniformly sampled from K = {0,1}‘ and we
define Ency(m) = ko j; ® m where ki . is made of the first ¢ bits of k.

i. Write the decryption algorithm.
ii. Prove that this scheme is not perfectly secret. First give an intuitive explanation, and then a proof using
the indistinguishability experiment: describe an adversary whose advantage is nonzero.

2. Propose a perfectly secret encryption scheme for M. Provide the encryption and decryption algorithms, and
prove that it is perfectly secret (using the result on the one-time-pad).

Exercise 3. e-indistinguishability and key lengths

1. Consider the one-time pad for length-{ messages, but using a key sampled uniformly from a set K of
size (1—¢€)2¢, for 0 < & < 1. Prove that this scheme is e-indistinguishable. Indication. Prove actually the
stronger claim that the scheme is (¢/2(1 — ¢))-indistinguishable.

We shall prove that if an encryption scheme (Enc, Dec) is e-indistinguishable, then |K| > (1 —2¢) |M]|.

2. By contrapositive, we assume |K| < (1 —2¢) | M| and define an adversary A for the experiment Exp'E'\:E. To
produce m, and m;, it draws them independently and uniformly from M. Once it receives c, it checks

whether there exists k € K such that Dec;(c) = my. It returns O if this is the case, and 1 otherwise.

i. If b =0, what is the probability that A returns 0?
ii. Assume now that b = 1. Bound the probability that there exists k such that Dec;(c) = m,. Deduce a
bound on the probability that A returns 0 in that case.
iii. Prove that A has advantage > ¢.

Exercise 4. Secrecy and indistinguishability
Let (Enc, Dec) be a encryption scheme. Let M, K, C be random variables describing the message, the key
and the ciphertext respectively. They satisfy C = Encg(M). We assume without loss of generality that for every
meMandcel, Pr[M=m]>0andPr[C =c]> 0, that is M and C do not contain any impossible message
or ciphertext.

Recall that the scheme is perfectly secure if for any m € M and ¢ € C, Pr[M = m|C = c¢] =Pr[M = m]. This is
equivalent to saying that the two random variables M and C are independent.



1. We will prove that perfect secrecy is equivalent to perfect indistinguishability: the distribution of Encg(m)
(when K is random) does not depend on m.

i. Prove that forany m € M suchthatPr[M = m] > Oandanyc € C,Pr[C =c||[M = m] = Pr[Encg(m) =c].
ii. Deduce that the scheme is perfectly secret if and only if for everym € M and ¢ € C, Pr[Encg(m) =c] =
Pr[C =c].
iii. Prove that the scheme is perfectly secret if and only if for every m, m’ € M, and ¢ € C, Pr[Encg(m) =c] =
Pr[Encg(m’) =c].

2. We will now prove that perfect secrecy is equivalent to perfect adversarial indistinguishability, as defined
in the course.

i. Assume that the scheme is perfectly secret, and consider a deterministic adversary A: we can partition
C =Cy U C, such that A outputs 0 if ¢ € Cy and 1 if ¢ € C;. Prove that the advantage of A in Exp'ENn[c) is
exactly 0.

ii. Prove that the results holds with a randomized adversary. Change the viewpoint: A randomized
adversary is a random choice amongst several possible deterministic adversaries.

iii. We want to prove the converse. For, we assume that the scheme is not perfectly secret and construct an
adversary that has a nonzero advantage. Let m,, m; € M and ¢* € C such that Pr[c* = Encg(m,)] >
Prc* = Encg(m;)]. Consider the following adversary: It provides m, and m;, and when it receives
¢, it outputs O if ¢ = ¢* and a uniform bit if ¢ # c*. Prove that its advantage is nonzero.

Exercise 5. Probability reminders

— A (discrete) probability space is a pair (€, p) made of a finite or countable sample space (a.k.a. universe)
Q and a probability mass function p : 2 — [0, 1] which associates to each outcome w € £ a probability
p(w), such that >, p(w) =1.

— An event is a subset of Q. The probability of a event E is Pr[E] =Y _, p(w). We use E A F to denote
the event ENF, EV F to denote EUF, and —E to denote Q\E={w €Q: w ¢ E}.

— Given two events E, F C , the conditional probability of E given F is Pr(E|F] = Pr[E AF]/Pr[F]
(provided Pr[F] # 0). The intuitive meaning is the probability of the event E within the restricted universe
F: In particular, Pr[E] = Pr[E|Q2] for all E.

— Two events E and F are independent if Pr[E|F] = Pr[E], or equivalently if Pr[F|E] = Pr[F], or equiva-
lently if Pr{E AF]=Pr[E]Pr[F].

— A (discrete) random variable is a function X : Q — S. Each x € S defines and event [X = x]={w € Q:
X(w) = x}, and similarly for [X > x], [X < x], ...

— The (conditional) expectation of a random variable X : @ — S is E[X|E] = Y| _ x Pr[X = x|E]. Expecta-
tion is linear: E[X + Y|E] = E[X|E]+ E[Y|E]. The standard expectation is E[X ] = E[X|Q].

Prove the following (almost obvious but very useful!) results.
1. For two events E and F,

i. Pr[mE]=1-—Pr[E], and
ii. Pr[EVF]=Pr[E]+Pr[F]—Pr[EAF]<Pr[E]+Pr[F]. (Union bound)

2. For two events E and F,
Pr[E|F]Pr[F]=Pr[F|E]Pr[E]=Pr[EAF]. (Bayes’ formula)

3. Let Fy, ..., F, be a partition of Q, thatis | J, F; =Q and F; NF; =@ if i # j. Then,

n n
i. for any event E, Pr[E] = ZPr[ElFi]Pr[Fi] = ZPr[E AF;], and (Law of total probability)
i=1 i=1
n
ii. for any random variable X, E[X] = Z E[X|F;]1Pr[F;]. (Law of total expectation)

i=1

4. Let X : Q — N be a random variable with nonnegative integer values. Then E[X ] = 2121 Pr[X >1i].
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