Lecture 9. RSA public-key encryption and signatures Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes - IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

R. Rivest, A. Shamir & L. Adleman (1978)

- Basics of RSA encryption scheme
- Signature using the encryption scheme in *reverse mode*

Pros

- First proposal of a public-key encryption scheme
- Use of computational difficulty as security

Cons

- > As presented, the encryption scheme is completely unsafe!
- The signature is not a good idea!

Remark

Already known to GHCQ (UK) in 1973, declassified only in 1997 Clifford Cocks

Contents of this lecture

1. The maths of RSA: the trapdoor permutation

- ▶ $\mathbb{Z}/N\mathbb{Z}$ where $N = p \times q$
- Designing a trapdoor permutation
- $\rightarrow \pm$ the content of the original paper

2. RSA encryption scheme

What should be added to obtain a proper encryption scheme?

3. RSA signatures

How to obtain a proper signature scheme?

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures

Representation and ring operations

General context

 $N = p \times q$ where p, q are prime numbers; computations *modulo* N

Representation and modular operations

- ▶ $\mathbb{Z}/N\mathbb{Z} = \{0, 1, ..., N-1\}$ with *modular* addition, subtraction and multiplication:
 - 1. Perform the operation in the integers
 - 2. Reduce the result *modulo* N
- Modular reduction: Euclidean division
 - ▶ Given $a \in \mathbb{Z}$, there exists a unique (q, r) s.t. $a = q \cdot N + r$ with $0 \le r < N$
 - $(q, r) \leftarrow QUOREM(a, N)$ in time $O(\log^2 N)$
- \rightarrow Operations in time $O(\log^2 N)$

Example: $\mathbb{Z}/35\mathbb{Z}$

$$21 + 17 = 38 = 3$$
 $-12 = 23$
 $5 \times 10 = 50 = 15$

or $O(\log N \log \log N)$

or $O(\log N \log \log N)$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: $a, b \in \mathbb{Z}, a > b > 0$ **Output:** g, u, $v \in \mathbb{Z}$ s.t. g = au + bvand $g = \gcd(a, b)$ 1. $(r_0, u_0, v_0) \leftarrow (a, 1, 0)$ 2. $(r_1, u_1, v_1) \leftarrow (b, 0, 1)$ 3. $i \leftarrow 2$ 4. While $r_{i-1} \neq 0$: 5. $(q_i, r_i) \leftarrow \text{QuoRem}(r_{i-2}, r_{i-1})$ 6. $(u_i, v_i) \leftarrow (u_{i-2} - q_i u_{i-1}, v_{i-2} - q_i v_{i-1})$ 7. $i \leftarrow i + 1$ 8. Return $(r_{i-2}, u_{i-2}, v_{i-2})$

$$x GCD(21, 15)$$

$$i \quad (i \quad U_i \quad J: \quad q_i)$$

$$21 = 1 \times 21 + 0 \times 15 \text{ g}$$

$$1 \quad 15 = 0 \times 21 + 1 \times 15 \text{ g}$$

$$2 \quad 6 = 1 \times 21 + -1 \times 15 \text{ g}$$

$$3 \quad 3 = -2 \times 21 + 3 \times 15 \text{ g}$$

$$4 \quad 0 = 5 \times 21 + -7 \times 15 \text{ g}$$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: $a, b \in \mathbb{Z}, a > b > 0$ **Output:** g, u, $v \in \mathbb{Z}$ s.t. g = au + bvand $g = \gcd(a, b)$ 1. $(r_0, u_0, v_0) \leftarrow (a, 1, 0)$ 2. $(r_1, u_1, v_1) \leftarrow (b, 0, 1)$ 3. $i \leftarrow 2$ 4. While $r_{i-1} \neq 0$: 5. $(q_i, r_i) \leftarrow \text{QuoRem}(r_{i-2}, r_{i-1})$ 6. $(u_i, v_i) \leftarrow (u_{i-2} - q_i u_{i-1}, v_{i-2} - q_i v_{i-1})$ 7. $i \leftarrow i + 1$ 8. Return $(r_{i-2}, u_{i-2}, v_{i-2})$

Correction

For all i, $gcd(a, b) = gcd(r_i, r_{i+1})$ For all i, $r_i = a \cdot u_i + b \cdot v_i$

$$\begin{aligned} & (i = (i-2 - q_i)(i-1) \\ &= (au_{i-2} + bv_{i-2}) - q_i(au_{i-1} + bv_{i-2}) \\ &= a(u_{i-2} - q_i u_{i-1}) + b(v_{i-2} - q_i v_{i-1}) \\ &= au_i + bv_i \end{aligned}$$

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: $a, b \in \mathbb{Z}, a > b > 0$ **Output:** g, u, $v \in \mathbb{Z}$ s.t. g = au + bvand $g = \gcd(a, b)$ 1. $(r_0, u_0, v_0) \leftarrow (a, 1, 0)$ 2. $(r_1, u_1, v_1) \leftarrow (b, 0, 1)$ 3. $i \leftarrow 2$ 4. While $r_{i-1} \neq 0$: 5. $(q_i, r_i) \leftarrow \text{QuoRem}(r_{i-2}, r_{i-1})$ 6. $(u_i, v_i) \leftarrow (u_{i-2} - q_i u_{i-1}, v_{i-2} - q_i v_{i-1})$ 7. $i \leftarrow i + 1$ 8. Return $(r_{i-2}, u_{i-2}, v_{i-2})$

Correction

- ► For all i, $gcd(a, b) = gcd(r_i, r_{i+1})$
- For all $i, r_i = a \cdot u_i + b \cdot v_i$

Consequence

 $gcd(a, b) = 1 \iff$ there exists $u, v \in \mathbb{Z}$ s.t. $1 = a \cdot u + b \cdot v$

Complexity

The bit complexity of the extended Euclidean Algorithm is $O(\log(a) \log(b))$

Inversion and division in $\mathbb{Z}/N\mathbb{Z}$

Definition

 $a \in \mathbb{Z}/N\mathbb{Z}$ is invertible if there exists $b \in \mathbb{Z}/N\mathbb{Z}$ s.t. $a \times b = 1$ modular \times

- a^{-1} or $\frac{1}{a}$ exists
- ▶ one can divide by a in Z/NZ

Theorem

 $a \in \mathbb{Z}/N\mathbb{Z}$ is invertible modulo N iff gcd(a, N) = 1

Algorithms

Inverse: Use the extended Euclidean Algorithm Running time: $O(\log^2 N)$ Division: Use multiplication and inverse Same running time

 $g_{id}(g_{iN}) = 1 \iff \exists u_{i}s \text{ st. } a_{id}N \text{ s=1}$ $(=> \exists u_{i}s, a \cdot a = A - oN$ $(=> \exists u, a \cdot a \mod N = 1$ (=> a is invulble mod Nor $O(\log N \log^{2} \log N)$

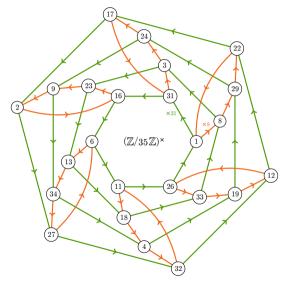
Invertible elements of $\mathbb{Z}/N\mathbb{Z}$

Definition

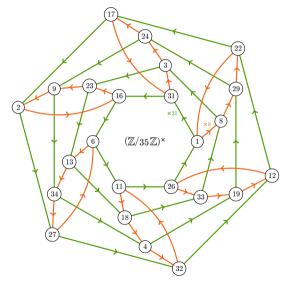
- ► The multiplicative group $\mathbb{Z}/N\mathbb{Z}^{\times}$ is the set of invertible elements of $\mathbb{Z}/N\mathbb{Z}$
- lts number of elements is denoted $\varphi(N)$

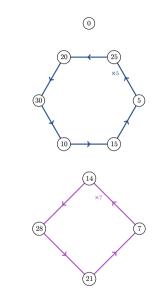
Proposition
If
$$N = p \times q$$
 with primes $p \neq q$, $\varphi(N) = (p-1)(q-1)$
 $A \in \mathbb{Z}/N\mathbb{Z}^{\times} \implies \gcd(a, N)=1 \implies \gcd(a, pq)=1 \iff \begin{cases} p \neq a \\ q \neq a \end{cases}$
 $\operatorname{Tulliples} = dp : \bigcirc p , 2q , 3p , \cdots , (q-1)p \implies q \mod liples$
 $q : \bigcirc q , 2q , \cdots , (q-1)q \implies p \mod liples$
 $p+q-1$
 $\Longrightarrow \qquad Q(N) = N - (p+q-1) = (p-1)(q-1)$

The multiplicative group is **not** cyclic!



The multiplicative group is **not** cyclic!





The "RSA theorem"

Theorem

Let $N = p \times q$ with primes $p \neq q$. Then for all $a \in \mathbb{Z}/N\mathbb{Z}$, $a^{1+\varphi(N)} = a$.

1. Format little theorem : for any
$$a \in \{x, \dots, p-1\}, a^{p-1} \mod p = 1$$

(All mod p) $\frac{p-1}{11}$ $(a \cdot x) = \begin{cases} a^{p-1} \frac{p-1}{11} \\ \frac{p-1}{11} \\ \frac{p-1}{11} \end{cases}$ $= a^{p-1} = 1$
 $\begin{cases} a \times \mod p : A \le x \le p-1 \end{cases}$ $= \begin{cases} y : A \le y \le p-1 \end{cases}$
2. $a^{A+Q(N)} \mod p = a^{A+(p-1)(q-1)} \mod p = a$ (the same mod q)
 $= p \text{ and } q$ divide $(a^{A+Q(N)} - a) = p$ N divides $a^{A+Q(N)} - a = p$ a mod $N = a$

The RSA trapdoor permutation

The original (unsafe!) RSA encryption scheme

Definition as an encryption scheme

Public key: (N, e) where $N = p \times q$ with primes $p \neq q$ and $gcd(e, \varphi(N)) = 1$ Private key: (N, d) where $d \times e \mod \varphi(N) = 1$ Encryption: Given $m \in \mathbb{Z}/N\mathbb{Z}$, compute $c = m^e \mod N$ Decryption: Given $c \in \mathbb{Z}/N\mathbb{Z}$, compute $m = c^d \mod N$

Correction

$$C^{d} \mod N = m^{ed} \mod N$$
 and $\exists k : t. e.d = 1 + k (PM)$
(mod N) $m^{ed} = m^{1 + k (P(N))} = m^{1 + (k-1) (P(N))} = m^{1 + (k-1) (P(N))} = m = m^{1 + (k-1) (P(N))} = m^{1 + (k-1) (P$

The algorithms and complexities

Key generation

- 1. Generate two random primes $p \neq q$
 - Sample random (odd) integers
 - Test their primality

2. Compute
$$N = p \times q$$
 and $\varphi(N) = (p-1) \times (q-1)$

- 3. Generate *e*, *d* such that $e \times d \mod \varphi(N) = 1$
 - Sample random integers e
 - Apply $xGCD(e, \varphi(N))$ to test invertibility and get d

Encryption and decryption

• Modular exponentiation in $\mathbb{Z}/N\mathbb{Z}$

$$\blacktriangleright \text{ Binary powering, using } a^n = \begin{cases} a^{\lfloor n/2 \rfloor} \cdot a^{\lfloor n/2 \rfloor} & \text{for even } n \\ a \cdot a^{\lfloor n/2 \rfloor} \cdot a^{\lfloor n/2 \rfloor} & \text{for odd } n \end{cases}$$

• Complexity; $O(\log^3 N)$

 $O(\log^3 N)$ $O(\log N) \text{ samples}$ $O(\log^2 N)$ $O(\log^2 N)$ $O(\log^3 N)$ $1 + O(1/\sqrt{N}) \text{ samples}$ $O(\log^2 N)$

Attacks on the trapdoor

Possible goals

Key recovery: Given (N, e), compute d s.t. $d \times e \mod \varphi(N) = 1$ Plaintext recovery: Given (N, e) and c, compute m s.t. $m^e \mod N = c$

Computational problems

Modular *e*-th root: Given *N*, *c*, *e*, compute *m* s.t. $m^e \mod N = c$ Computation of φ : Given $N = p \times q$ (for unknown *p*, *q*), compute $\varphi(N) = (p-1)(q-1)$ Factorization: Given $N = p \times q$, compute *p* and *q* = N - (p+q) + |

Reductions between problems

- Computation of $\varphi \implies$ Key recovery \implies plaintext recovery
- Computation of $\varphi \iff$ Factorization of N: (=: if one knows pq) one can compute

=>: Consider
$$(X - p)(X - q) = x^2 - (p+q)x + pq = x^2 - (N - U(N) + 1)x + N$$

Ly Compute the roots of the polynomial

Integer factorization

▶ ...

Complexity of integer factorization

- Brute force algorithm: $O(\sqrt{N}) = O(2^{\frac{\log N}{2}})$
- General Number Field Sieve: $2^{O(\log^{\frac{1}{3}} N \log^{\frac{2}{3}} \log N)}$ Lenstra, Lenstra (1993) and others...
- Quantum algorithm: $O(\log^3 N) = O(2^{3 \log \log N})$ Shor (1994)

(Remark: no known NP-hardness result \rightarrow could be polynomial in log *N*)

Current record: 829-bit (250-digit) integer factorization

- Boudot, Gaudry, Guillevic, Heninger, Thomé, Zimmermann (Feb. 2020)
- Software: CADO-NFS
- Hardware: (mainly) academic clusters
- Approx. 2,700 core-years in a few months

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures

The original RSA scheme is unsafe!

Deterministic encryption

- > Two ciphertexts are equal iff the corresponding messages are equal
- The scheme cannot be IND-CPA/CCA secure

Examples of other difficulties

Small exponent: If *e* and *m* are small: $m^e \mod N = m^e \inf \mathbb{Z} \to \sqrt[e]{c}$ in \mathbb{Z} Related messages: Given the ciphertexts of *m* and $m + \delta$ with small $\delta \to m$ Multiple receivers: Given the ciphertexts of *m* with several distinct keys $\to m$

The original RSA encryption scheme is severely flawed and should never be used!

Solution: use (random) padding

The padded RSA encryption scheme: overview

Construction

Parameters: *n*: number of bits of *N*; ℓ : length of the messages

$$Gen_{n}(): 1. p, q \leftarrow two random primes s.t. p \times q has bit-length n$$

$$2. N \leftarrow p \times q, \varphi(N) \leftarrow (p-1) \times (q-1)$$

$$3. e \leftarrow random integer invertible modulo \varphi(N), d \leftarrow e^{-1} \mod \varphi(N)$$

$$4. return pk = (N, d), sk = (N, e)$$

$$Enc_{pk}(m): 1. r \leftarrow \{0, 1\}^{n-\ell} \qquad m \in \{0, 1\}^{\ell}$$

$$2. if \hat{m} = r || m \in \mathbb{Z}/N\mathbb{Z}, return c = \hat{m}^{e} \mod N$$

$$3. otherwise, restart with a new r$$

$$Dec_{sk}(c): 1. \hat{m} \leftarrow c^{d} \mod N$$

$$2. Return m = p_{[0, \ell]} \prod_{n=\ell, n \in I}^{n} p_{n-\ell, n}$$

Correction

As for the original RSA

Security of padded RSA

The security depends on $n - \ell$

number of padding bits

Small values of $n - \ell$

- ▶ $2^{n-\ell}$ possible paddings
- Sufficient to break $2^{n-\ell}$ original RSA instances

 \rightarrow Not secure!

Very large value of $n - \ell$: $\ell = 1$

- ▶ If computing *e*-th root in $\mathbb{Z}/N\mathbb{Z}$ is hard, IND-CPA secure encryption scheme
- Very inefficient secure encryption scheme, one bit at a time
- Slightly better if used as a KEM still useless!

Medium values of $n - \ell$

Open problem!

Padded RSA in practice

RSA PKCS1

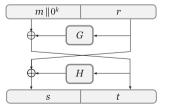
- Standardized by RSA laboratories
- Padding: $m \to 0 \ge 0 0 \|0 \ge 0 \|r\| \|0 \ge 0 \|m\|$ where r is random
- Attack using failure of the unpadding procedure

Bleichenbacher (1998)

- Used against SSL 3.0
- Workaround: in case of failure, return a random value
- Prevent IND-CCA security

RSA Optimal Asymmetric Encryption Padding (OAEP) Bellare, Rogaway (1994)

- ▶ Padding: $m \rightarrow s || t$ where
 - ► G, H: hash functions
 - r: random bits
- Standardized as PKCS1 v2
- IND-CCA secure under two assumptions
 - RSA trapdoor is one-way
 - G and H are random oracles



1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures

Original (broken...) version

Construction

Gen_n(): 1. p, q \leftarrow two random primes s.t. $p \times q$ has bit-length n 2. $N \leftarrow p \times q, \varphi(N) \leftarrow (p-1) \times (q-1)$ 3. $e \leftarrow random$ integer invertible modulo $\varphi(N), d \leftarrow e^{-1} \mod \varphi(N)$ 4. return pk = (N, d), sk = (N, e)Sign_{sk}(m): 1. return $m^d \mod N$ $m \in \mathbb{Z}/N\mathbb{Z}$ Vrfy_{*pk*}(*m*, σ): 1. test whether $m = \sigma^e \mod N$ Correction As for the original RSA encryption scheme Attacks existential forgeries

- 1. The adversary chooses σ and computes $m = \sigma^e \mod N$
- 2. The adversary sees (m_1, σ_1) and (m_2, σ_2) and computes $m = m_1 \cdot m_2$ and $\sigma = \sigma_1 \cdot \sigma_2$

RSA FDH (Full Domain Hash)

Construction

Gen_n(): 1. Compute
$$pk = (N, d)$$
, $sk = (N, e)$ as previously
2. Choose a hash function $H : \{0, 1\}^* \to \mathbb{Z}/N\mathbb{Z}$

Sign_{sk}(m): 1. return H(m)^d mod N

 $m \in \{0,1\}^*$

 $Vrfy_{pk}(m, \sigma)$: 1. test whether $H(m) = \sigma^e \mod N$

What should *H* satisfy to avoid attacks?

1.
$$\sigma \to h = \sigma^e \to H(m) = h$$

2. $m_1, m_2 \to H(m) = H(m_1) \cdot H(m_2) \mod N$

3. If
$$H(m_1) = H(m_2), \sigma_1 = \sigma_2$$

4. The image of *H* should be the full $\mathbb{Z}/N\mathbb{Z}$

Bad and good news

- We *do not know* how to build a satisfying *H*
- Security proof if RSA trapdoor is one-way and H is a random oracle

first preimage resistance "non-multiplicative" collision resistance full domain

Proof sketch of RSA FDH

(Informal) theorem

If *e*-th roots in $\mathbb{Z}/N\mathbb{Z}$ are hard to compute and *H* is random, RSA FDH is secure

Skipped during the lecture

Conclusion

RSA is a one-way trapdoor function

- ▶ One direction is easy to compute: $(m, e) \rightarrow m^e \mod N$
- ▶ The other direction is (hopefully!) hard to compute: $(c, e) \rightarrow \sqrt[q]{c} \mod N$
- But there is a trapdoor: given $d = e^{-1} \mod \varphi(N)$, easy to compute $m = c^d \mod N$

Use of RSA trapdoor function

- No direct use!
- $\blacktriangleright \ \ \mathsf{Public-key\ encryption\ scheme} \to \mathsf{RSA\ OAEP}$
- ▶ Digital signatures \rightarrow RSA FDH

Security

No formal proof that RSA is one-way

assumption

- Related but not equivalent to the difficulty of integer factorization
- Typical key sizes: N with \geq 2048 bits
- Many other pitfalls: implementation, randomness quality, dependent keys, ...