# Lecture 7. Public-key encryption Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM<sup>2</sup>AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

### Introduction

# Symmetric (or *private key*) encryption

- Alice and Bob share a common key k
- ▶ Alice wants to send *m* to Bob:
  - 1. Alice computes  $c \leftarrow \operatorname{Enc}_k(m)$
  - 2. Alice sends c to Bob
  - 3. Bob computes  $m' \leftarrow \mathrm{Dec}_k(c)$

and if all goes well: m = m'

# Key exchange

- ► Alice and Bob must agree on a common key *k*.
- Diffie-Hellman protocol based on cyclic groups

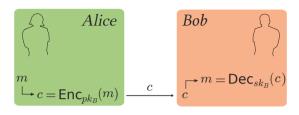
Public-key (a.k.a asymmetric) cryptography: no prior key exchange!

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

# Principle



```
Encryption Alice encrypts m with Bob's public key: c \leftarrow \operatorname{Enc}_{pk_B}(m)
Decryption Bob decrypts c with his private key: m' \leftarrow \operatorname{Dec}_{sk_B}(c)
Correctness if m = m'
Security if an adversary cannot compute m, knowing both c and pk_B
```

# Formalization of public-key encryption

#### **Definition**

A public-key encryption scheme is given by 3 algorithms:

 $Gen_n()$  returns a pair of keys (pk, sk) where n is the security parameter

 $\mathsf{Enc}_{pk}(m)$  returns a ciphertext c for a message  $m \in \mathcal{M}_{pk}$ 

 $Dec_{sk}(c)$  returns a message m or an error

Correctness: for all  $(pk, sk) \leftarrow \text{Gen}_n()$  and all  $c \leftarrow \text{Enc}_{pk}(m)$ ,  $\text{Dec}_{sk}(c) = m$ 

#### Remarks

- ▶ *pk* is the *public key* and *sk* the *private* (or secret) key.
- lacktriangle The public key defines the message space  $\mathcal{M}_{pk}$ 
  - ▶ require a mapping from  $\{0,1\}^*$  to  $\mathcal{M}_{pk}$
  - often obvious
- ► The security parameter *n* sets the keys lengths
- ► Gen is implicit for symetric encryption

often implicit

e.g: return  $k \leftarrow \{0,1\}^n$ 

# **CPA-security**

# Indistinguishability experiment $Exp_{Enc}^{IND-CPA}(A)$

Challenger:  $(pk, sk) \leftarrow Gen()$ 

Adversary: given pk, produces  $m_0, m_1 \in \mathcal{M}_{pk}$  of same size

Challenger:  $b \leftarrow \{0,1\}; c \leftarrow \operatorname{Enc}_{pk}(m_b)$ Adversary: given c, returns a bit b'

# Advantages

Adv $_{\text{Enc}}^{\text{IND-CPA}}(A) = |\Pr[b'=1|b=1] - \Pr[b'=1|b=0]|$ Adv $_{\text{Enc}}^{\text{IND-CPA}}(t) = \max_{A_t} \text{Adv}_{\text{Enc}}^{\text{IND-CPA}}(t)$  where  $A_t$  has running time  $\leq t$ 

#### Remarks

- Extremely similar with IND-CPA for symmetric encryption
  - Lused the same names...
  - No oracle access to  $Enc_{pk}(\cdot)$

The public key is... public!

- $\triangleright$  Enc<sub>nk</sub>(·) must be randomized: Why?
- No perfectly secret public-key encryption

# **CC**A-security

# Indistinguishability experiment $Exp_{Enc}^{IND-CCA}(A)$

Challenger:  $(pk, sk) \leftarrow Gen()$ 

Adversary: has oracle access to  $Dec_{sk}(\cdot)$  during the whole experiment

given pk, produces  $m_0, m_1 \in \mathcal{M}_{pk}$  of same size

Challenger:  $b \leftarrow \{0,1\}; c \leftarrow \operatorname{Enc}_{pk}(m_b)$ 

Adversary: given c, returns a bit b'

not allowed to ask  $Dec_{sk}(c)$ !

### Advantages

- Adv $_{\text{Enc}}^{\text{IND-CCA}}(A) = |\text{Pr}[b'=1|b=1] \text{Pr}[b'=1|b=0]|$ Adv $_{\text{Enc}}^{\text{IND-CCA}}(t) = \max_{A_t} \text{Adv}_{\text{Enc}}^{\text{IND-CCA}}(A_t) \text{ where } A_t \text{ has running time } \leq t$

makes < 9 quies to Secre(.)

### Remarks

- The security notion needed in practice
- ► Implies *non-malleability*:
  - Adversary knows  $c \leftarrow \operatorname{Enc}_{pk}(m)$  but not m
  - Computes c' such that  $Dec_{sk}(c') = f(m)$  for some chosen  $f(\cdot)$

# What about *multiple* encryptions?

### Two (equivalent) questions

- ▶ What happens if we re-use the same public key several times?
- ► Can we encrypt arbritrary long messages?

### Reminder in the symmetric case

- lacktriangle Block ciphers ightarrow fixed-length deterministic encryption
- lacktriangle Modes of operations ightarrow variable-length randomized encryption

# Security for multiple encryption

- The building block is already randomized
- ▶ No modes of operations  $\rightarrow$  only ECB  $\operatorname{Enc}_{pk}(m_1) \| \cdots \| \operatorname{Enc}_{pk}(m_B)$
- ► Formally: IND-CPA ⇒ IND-CPA for multiple encryptions

# Encryption: public-key or symmetric + key exchange?

# Advantages of symmetric encryption + key exchange

- Symmetric encryption usually lighter than public-key encryption
  - Reduced communications
  - Reduced computations

### Advantages of public-key encryption

- ightharpoonup Only one protocol to manage  $\rightarrow$  fewer points of weakness
- Each user has only one private key to keep in the long run

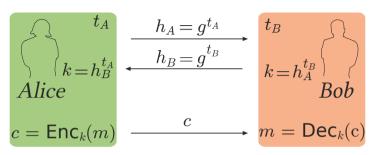
# Hybrid encryption

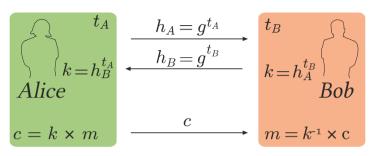
- General idea
  - **E**ncrypt the message m with a symmetric key  $k \rightarrow c$
  - ▶ Encrypt the key k with a public key  $pk \rightarrow c'$
  - ▶ Send c and c' → decryption in the obvious manner
- ► More general framework: we can do *better* than encrypting the key *k* 
  - KEM/DEM Paradigm

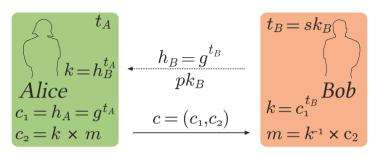
1. Public-key encryption

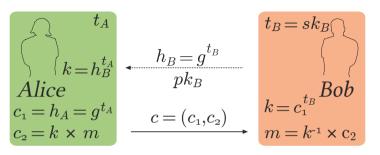
2. ElGamal encryption scheme

3. Hybrid encryption









### Question

Prove that  $\operatorname{Enc}_k(m) = k \times m$  provides a secure encryption scheme

#### Remark

Several senders can all use Bob's public key: security for a single encryption  $\Rightarrow$  security for multiple encryptions

# ElGamal encryption scheme

#### Construction

Public: a cyclic group G of order  $q \simeq 2^n$  with generator g

Gen(): 1. 
$$x \leftarrow \{0, ..., q - 1\}$$
  
2.  $h \leftarrow g^x$ 

3. Return 
$$pk = h$$
 and  $sk = x$ 

Enc<sub>pk</sub>(m): 1. 
$$y \leftarrow \{0, ..., q-1\}$$

2. 
$$c_1 \leftarrow g^y$$
;  $c_2 \leftarrow h^y \cdot m$ 

3. Return 
$$c = (c_1, c_2)$$

$$Dec_{sk}(c_1, c_2)$$
: 1. Return  $\hat{m} = c_2 \cdot c_1^{-x}$ 

#### Correction

 $(\mathcal{M}_{pk} = G)$ 

# Group multiplication for encryption



#### Lemma

Let G be a cyclic group of order q and generator g and  $z \leftarrow \{0,...,q-1\}$  (uniformly):

 $g^z$  is a uniform element of G

for any  $m \in G$ ,  $g^z \cdot m$  is uniform in G

Since G is a grap, there exist 
$$m^{-1}$$
 s.f.  $mm^{-1} = 1$   
So  $g^{t} \cdot m = h$  (=>  $g^{t} = h \cdot m^{-1} + g$  Gold ()  $Pr\left[g^{t} = h \cdot m^{-1}\right] = \frac{1}{9} = Pr\left[g^{t} \cdot m = h\right]$ .

# Security proof

### Theorem

If DDH holds for G, ElGamal encryption scheme is IND-CPA secure. More precisely,

C: Similates the DH protocol 6 ca 90, 13 x1/x2/x3 4 90, 19-13 1. As calle As to get mo, ma 2. A choses b' & fo, if and con Ency (mb)

3. A ushs A' for a bit b' Ex EG(6) (A): 4. A outputs ( b=1 if b'=b' b=0 otherwise.

Ab: Sands Mo, ma C: b'en foil and con Encole (mb) Adv = (A) = [Pr[ 6=116=1] - Pr[6=116=0] A): Outputs L' La Assume A' has advantage a'

### Additional remarks

# Choice of the group *G*

- ightharpoonup The order q must be prime, for DDH
- ► Several choices (subgroup of  $(\mathbb{Z}/p\mathbb{Z})^{\times},...$ )
  - different security levels
  - standardization by NIST and other agencies

| $\log p$ | $\log q$ | security |
|----------|----------|----------|
| 2048     | 224      | 112      |
| 3072     | 256      | 128      |
| 7680     | 384      | 192      |
| 15360    | 512      | 256      |

### Message space *G*?

Solution 1: bijection between G and  $\{0,1\}^{\ell}$ 

for some G

► Solution 2: ElGamal-based KEM + key derivation function

# CCA (in)security

- ▶ If  $(c_1, c_2) \leftarrow \text{Enc}_{pk}(m)$ , then  $\text{Dec}_{sk}(c_1, m' \cdot c_2) = m' \cdot c_2 \cdot c_1^{-sk} = m' \cdot m$ ⇒ ElGamal encryption scheme is *malleable*, hence not CCA secure
- CCA-secure variants exist, mainly using hybrid encryption

1. Public-key encryption

2. ElGamal encryption scheme

3. Hybrid encryption

### Introduction

#### Observation

- ▶ Public-Key encryption scheme designed for small messages
- Block-by-block encryption possible...
- ▶ ... but expensive

large ciphertext expansion

# Use of key exchange

- 1. Agree on a shared key k
- 2. Use symmetric encryption with k

# The idea of hybrid encryption

```
Sender encrypts the message with a key k \to c encrypts the key k with the public key of the receiver encapsulated key Receiver decrypts first the encapsulated key with its secret key \to k decrypts c using k \to m
```

# The KEM/DEM paradigm

#### **Definition**

A Key Encapsulation Mechanism (KEM) is given by three algorithms:

 $Gen_n()$ : produces a pair (pk, sk)

 $Encaps_{pk}()$ : produces a pair (c, k)

 $Decaps_{sk}(c)$ : returns k

# Usage

To send *m* using public-key *pk*:

- 1.  $(c, k) \leftarrow \operatorname{Encaps}_{nk}()$
- 2.  $c' \leftarrow \operatorname{Enc}_k(m)$  (with symmetric encryption)

key encapsulation data encapsulation

### Security notions

- Definitions of IND-CPA / IND-CCA security for KEMs
- ► IND-CPA KEM and symmetric encryption ⇒ IND-CPA public-key encryption
- Ditto for IND-CCA

# Generic construction from public-key encryption scheme

### Definition

Given: Public-key encryption scheme (Enc, Dec)

```
Encaps<sub>pk</sub>(): 1. k \leftarrow \{0,1\}^n
2. c \leftarrow \operatorname{Enc}_{pk}(k)
```

 $\mathsf{Decaps}_{sk}(c)$ : 1.  $k \leftarrow \mathsf{Dec}_{sk}(c)$ 

# Security

- If the symmetric and public-key schemes are IND-CPA secure, the KEM too
- Ditto with IND-CCA security

#### Comments

- ▶ Using ElGamal for instance, must encode *k* in the group *G*
- ► Not the only nor best solution:
  - $\blacktriangleright$  We need: from pk, produce c and k such that k can be recovered from sk and c
  - ▶ We don't need: *c* to be an actual encryption of *k* using *pk*

### DDH-based KEM

#### Construction

Public: a cyclic group G of order q generated by g

- Gen(): 1.  $x \leftarrow \{0, \dots, q-1\}$ 
  - 2.  $h \leftarrow g^x$
  - 3.  $H \leftarrow$  some hash function from G to  $\{0,1\}^{\ell}$
  - 4. return pk = (h, H) and sk = (x, H)
- Encaps<sub>pk</sub>(): 1.  $y \leftarrow \{0, ..., q-1\}$ 
  - 2. return  $c \leftarrow g^y$  and  $k \leftarrow H(h^y)$
- $\mathsf{Decaps}_{sk}(c)$ : 1. return  $k \leftarrow H(c^x)$

#### Correction

$$H(c^{*}) = H(g^{*}) - H(h^{y}) = k$$

### Security (admitted)

- ▶ If DDH holds for *G* and *H* is *regular*, the KEM is IND-CPA secure
- ▶ If CDH holds for *G* and *H* is a random oracle, the KEM is IND-CPA secure

### Conclusion

# Public-key encryption schemes

- Usually heavier than symmetric encryption schemes
- ► Good solution: use hybrid encryption

KEM/DEM paradigm

lacktriangle Key management can be tricky o *public key infrastructures* 

# ElGamal encryption scheme

- Basic idea very close to Diffie-Hellman key exchange protocol
- Requires other tools to make it IND-CCA secure
- Security based on DDH or CDH assumption

# Other protocols

- Variant of the DDH based KEM is standardized as DHIES/ECIES
  - ► IND-CPA or IND-CCA security proofs under suitable assumptions
- ► Cramer & Shoup protocol: IND-CCA security under DDH assumption
- ▶ Other unrelated protocols using completely different assumptions RSA, LWE, ...