Lecture 6. Key exchange

Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG \& AM
Université Grenoble Alpes - $I M^{2}$ AG
https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

Introduction

Up to now: Symmetric cryptography

- Symmetric encryption
confidentiality
- Message authentication codes authenticity/integrity
\rightarrow Both require parties to share a common secret

How do two parties agree on a common secret?

Bad solution

- Any pair of parties agree on a common key
- If N parties, it requires N^{2} keys!
- To share a key, the parties must meet

One possible solution: key distribution centers (KDCs)

Idea

- Each party shares a (secret) key with the KDC
- If Alice wants to talk to Bob:
- Alice gets an encrypted session key k : $\operatorname{Enc}_{k_{a}}(k)$
- Bob gets the same encrypted temporary key: $\operatorname{Enc}_{k_{b}}(k)$
- Alice and Bob decrypt k and use it to communicate

Advantages

- Each party retains (in the long run) only one key
- Each party only needs to meet the KDC, once

Disadvantages

- The KDC is the central security point:
- If it is attacked, all security falls
- If it fails, no communication is possible
- Does not work in open system like Internet

Public-key cryptography

Key-exchange protocols

- Two parties discuss publicly
- At the end, both parties know a same secret k
- External observers do not learn the secret, even after reading all exchanged messages

Public-key encryption and signatures

- Direct protocols to ensure confidentiality, authenticity and/or integrity
- Based on a pair (public key, private key) \rightarrow no common secret

In this course

- This lecture: Key-exchange protocols
- Lecture 7: Public-key encryption
- Lecture 8: Signatures

1. Key exchange protocols
2. Cyclic groups and discrete logarithm
3. Diffie-Hellman protocol

The goal of a key exchange

Allow two parties to agree on a key, remotely

Objective

- Alice and Bob exchange messages
- At the end of the exchange, they both know the same key k
- An attacker who sees all the messages has no information about k

Is this possible?

- The attacker sees as much as Alice and Bob ?
- No information \rightarrow computational security

New Directions in Cryptography

New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Abstract

Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

I. INTRODUCTION

WE STAND TODAY on the brink of a revolution in cryptography. The development of cheap digital hardware has freed it from the design limitations of me-

The best known cryptographic problem is that of privacy: preventing the unauthorized extraction of information from communications over an insecure channel. In order to use cryptography to insure privacy, however, it is currently necessary for the communicating parties to share a key which is known to no one else. This is done by sending the key in advance over some secure channel such as private courier or registered mail. A private conversation between two people with no prior acquaintance is a common occurrence in business, however, and it is unrealistic to expect initial business contacts to be postponed long enough for keys to be transmitted by some physical means. The cost and delay imposed by this key distribution problem is a major barrier to the transfer of business communications to large teleprocessing networks.

Definition of a protocol

Key exchange protocol

- Public: messages m_{1}, \ldots, m_{t}; key space \mathcal{K}
- Private : the a_{i} known only to Alice, the b_{i} only to Bob
- Correct protocol if Alice and Bob compute the same key $k \in \mathcal{K}$

Vocabulary

- m_{1}, \ldots, m_{t} : the transcript

Security of a protocol

Secure key exchange protocol: given m_{1}, \ldots, m_{t}, it is difficult to compute k

Key exchange indistinguishability experiment $\operatorname{Exp}_{\mathrm{KE}}^{\mathrm{IND}-\operatorname{EAV}}(A)$
Challenger simulates the protocol \rightarrow transcript m_{1}, \ldots, m_{t} and key $k \in \mathcal{K}$ draws $b \nleftarrow\{0,1\}$ and returns $\hat{k}=k$ if $b=1$ and $\hat{k} \longleftarrow \mathcal{K}$ otherwise Adversary sees the transcript and \hat{k}, and returns a bit b^{\prime}

Advantages

- $\operatorname{Adv}_{\mathrm{KE}}^{\mathrm{IND}-\operatorname{EAV}}(A)=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right|$
$\rightarrow \operatorname{Adv}_{\mathrm{KE}}^{1 N \mathrm{EAV}}(t)=\max _{A_{t}} \operatorname{Adv}{ }^{\text {IND-EAV }}\left(A_{t}\right)$ where A_{t} denotes an algorithm with running time $\leq t$

Eavesdropper security and man-in-the-middle attack

Indistinguishability in the presence of an eavesdropper

- Security definition assumes a sectire channel between Alice and Bob
- The adversary is only passive authenticaled

Man-in-the-middle attack

- Charlie intercepts messages between Alice and Bob
- He impersonates both Alice and Bob
- He creates a common secret with Alice, and another one with Bob
- Alice and Bob incorrectly think they share a common secret

Key exchange is not enough
Combine with authentication

- Authenticated key exchange

A glimpse of Diffie-Hellman protocol

Protocol sketch

Public: a numberg
Alice chooses a random a, computes g^{a} and sends g^{a} to Bob
Bob chooses a random b, computes g^{b} and sends g^{b} to Alice
Alice computes $k=\left(g^{b}\right)^{a}=g^{a b}$
Bob computes $k=\left(g^{a}\right)^{b}=g^{a b}$

Outstanding issues

- How to choose g?
- If it is an integer, g^{a}, g^{b} and $g^{a b}$ are huge integers
- Why is this scheme secure?

1. Key exchange protocols
2. Cyclic groups and discrete logarithm
3. Diffie-Hellman protocol

The multiplicative group of $\mathbb{Z} / p \mathbb{Z}$

- 2 has order 8

The multiplicative group of $\mathbb{Z} / p \mathbb{Z}$

- 2 has order 8
- 4 has order 4

The multiplicative group of $\mathbb{Z} / p \mathbb{Z}$

- 2 has order 8
- 4 has order 4
- 3 has order $16 \rightarrow$ generator

The multiplicative group of $\mathbb{Z} / p \mathbb{Z}$

- 2 has order 8
- 4 has order 4
- 3 has order $16 \rightarrow$ generator

Theorem

For every $p,(\mathbb{Z} / p \mathbb{Z})^{\times}$is a cyclic group: there exists a generator $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$such that

$$
\begin{aligned}
(\mathbb{Z} / p \mathbb{Z})^{\times} & =\left\{g^{n}: n \in \mathbb{Z}\right\} \\
& =\left\{g^{n}: 0 \leq n<p-1\right\}
\end{aligned}
$$

Remark

The generator is not unique (ex.: 3, 5, 6, 7, 10, 11, 12, 14)

Cyclic groups

Definition

A multiplicative cyclic group with generator g is a set G such that $G=\left\{g^{n}: n \in \mathbb{Z}\right\}$

Remarks

- The generator is not unique
- If G is finite with generator $g, G=\left\{g^{t}: 0 \leq t<n\right\}$

$$
n=|G|: \text { order }
$$

- if $m=n q+r, g^{m}=g^{n q+r}=\left(g^{n}\right)^{q} \cdot g^{r}=g^{r}$
$\triangleright \Rightarrow$ for all $x \in G$, there exists a unique $t \in\{0, \ldots, n-1\}$ s.t. $x=g^{t}$
- Each element $x \in G$ defines a subgroup $G_{x}=\left\{x^{t}: t \in \mathbb{Z}\right\} \subset G$
- if x has order s, G_{x} contains s elements
- if x has order s, x^{r} has order $s / \operatorname{GCD}(s, r)$
- g^{t} has order $n / \operatorname{GcD}(t, n)$

More general definitions

- Cyclic group (G, \star) with any binary operation \star
- Additive cyclic group with generator $g: G=\{n \cdot g: n \in \mathbb{Z}\}$
- Note $(G, \times),(G,+)$ or (G, \star) to specify the type of cyclic group
- General (non-cyclic) groups

Examples and counterexamples

$$
\begin{aligned}
& \text { Additive } \\
& \text { Multiplicative } \\
& \text { Infinite } \quad(\mathbb{Z},+) \text { gen. } 1 \quad\left\{2^{n}: n \subset \mathbb{Z}, x\right) \operatorname{gen} 2 \\
& \text { Finite } \quad(\mathbb{T} / n \mathbb{T},+) \text { gen. } 1 . \\
& \text { or any k set. ged }(k, n)=1 \quad(\{-1,1\}, x) \text { with gen. }-1.1
\end{aligned}
$$

Graphical representation

Discrete logarithm problem

Definitions

Given a cyclic group G with generator g,

- the discrete logarithm of x in base g is the unique $0 \leq t<|G|$ such that $x=g^{t}$
- the discrete logarithm problem is, given x, to compute t

The naive algorithm

- Compute $g^{0}, g^{1}, g^{2}, \ldots$ until we get $g^{t}=x$
- Complexity $O(t)=O(|G|)$ operations in G

Easy case: $(\mathbb{Z} / n \mathbb{Z},+)$

- Generators: 1 or any g such that $\operatorname{GCD}(g, n)=1$
- Discrete logarithm of $x: t$ st. $x=t \cdot g \bmod n$
- Case $g=1$: nothing to do!
- General case:

1. Compute u, v s.t. $u \cdot g+v \cdot n=1$
2. Return $t=u \cdot x \bmod n$

$$
\begin{aligned}
& \text { Inert size: } \theta\left(\log ^{n} n\right) \\
& \text { Complexity: } \theta\left(\log ^{2} n\right)
\end{aligned}
$$

Extended Euclidean Algorithm
$t \cdot g=u \cdot x \cdot g=x \bmod n$

Baby step-giant step: A picture is worth a thousand words
(Shanks, 1971)

Baby step-giant step: the algorithm

(Shanks, 1971)

Input: a cyclic group G of order n, with generator g, and $x \in f$
Output: the discrete logarithm t of x in base g

1. $m \leftarrow\lceil\sqrt{n}\rceil$
2. $B \leftarrow\left[1, g, g^{2}, \ldots, g^{m-1}\right]$

Baby steps
3. $(h, y, j) \leftarrow\left(g^{m}, x, 0\right)$
4. while $y \notin B:(y, j) \leftarrow(y \cdot h, j+1)$

Giant steps: $y=x \cdot g^{m \cdot j}$
5. $i \leftarrow$ index such that $y=g^{i}$

Collision found: $x \cdot g^{m \cdot j}=g^{i}$
6. return $(i-m \cdot j) \bmod n$

Analysis

Correction: by Euclidean division, there exist $i, j<m$ such that $t=i-m j \bmod n$
Complexity: Baby steps \& giant steps: $O(\sqrt{n})$ Collision search: $O(\sqrt{n})$ (naive), $O(\log n)$ (dichotomy), $O(1)$ (hash tables) $\Rightarrow O(\sqrt{n})$ (same in space)

DLP hardness

Theorem (baby-step giant-step)

In any cyclic group G, the discrete logarithm problem can be computed in time $O(\sqrt{|G|})$

- Easily parallelizable
- Variants with better space complexity: Pollard's ρ or kangaroos (a.k.a. λ) algorithms
- Pohlig-Hellman (1978): $O(\sqrt{p}) \quad$ largest prime divisor of $|G|$

Choice of G

- $(\mathbb{Z} / n \mathbb{Z}$ or $|G|$ small: easy DLP!
- $\left(\mathbb{Z} / p \mathbb{Z}^{\times}, \times\right)$: usually hard, though not maximally hard - record: p of 795 bits, 3100 core-year

$$
\ll \sqrt{n}
$$

- Points of an elliptic curve over a finite field: maximally hard
- record: group of 114 bits, 13 days on GPU

Boudot et al., 2019
$O(\sqrt{n})$
Zieniewicz \& Pons, 2020

Additional remarks

- One should use prime order groups
- Algorithm polynomial in $\log n$ on a quantum computer

1. Key exchange protocols
2. Cyclic groups and discrete logarithm
3. Diffie-Hellman protocol

The protocol

Diffie-Hellman protocol
Input: Group G of order n and generator $g \in G$
Alice draws $t_{A} \nleftarrow\{0, \ldots, n-1\}$, computes $h_{A}=g^{t_{A}}$ and sends h_{A} to Bob
Bob draws $t_{B} \nleftarrow\{0, \ldots, n-1\}$, computes $h_{B}=g^{t_{B}}$ and sends h_{B} to Alice
Alice computes $k_{A}=h_{B}^{t_{A}}$
Bob computes $k_{B}=h_{A}^{t_{B}}$.

Correctness

The protocol is correct: $k_{A}=\left(g^{t_{B}}\right)^{t_{A}}=g^{t_{A} t_{B}}=\left(g^{t_{A}}\right)^{t_{B}}=k_{B}$

Use in practice

Where do the secret lives?

- Shared secret $k \in G$, while usually one needs it in $\{0,1\}^{*}$
- Key derivation function KDF : $G \rightarrow\{0,1\}^{*}$
\simeq hash function

Man-in-the-middle attack

- Requires an authentication between Alice and Bob
- Out-of-scope of this lecture \rightarrow c.f. signatures

Cost of the protocol

- Requires two exponentiations in G
- $O(\log |G|)$ operations in G
- $O\left(\log ^{2} p \log \log p\right)$ bit-operations for $\mathbb{Z} / p \mathbb{Z}$

Binary powering

$$
g^{t}= \begin{cases}g^{\lfloor t / 2\rfloor} \cdot g^{\lfloor t / 2\rfloor} & \text { if } t \text { is even } \\ g \cdot g^{\lfloor t / 2\rfloor} \cdot g^{\lfloor t / 2\rfloor} & \text { if } t \text { is odd }\end{cases}
$$

Input: $g \in G, t \in \mathbb{Z}_{\geq 0}$
Output: g^{t}

1. $h \leftarrow 1$
2. while $t \neq 0$:
3. if t is odd: $h \leftarrow h \cdot g$
4. $g \leftarrow g \cdot g$
5. $\quad t \leftarrow\lfloor t / 2\rfloor$
6. return h

Complexity

- $Q(\mathbb{K}$) multiplications in G $\theta\left(\log _{\text {gS }} t\right)$
- Invariant: $h \cdot g^{t}=g^{t_{\text {tint }}}$

The Computational Diffie-Hellman (CDH) hypothesis

Experiment $\operatorname{Exp}_{G}^{\mathrm{CDH}}(A)$

Challenger simulates the DH protocol \rightarrow transcript $g, x_{1}, x_{2} \in G$
Adversary is given the transcript and outputs $y \in G$
Success of the adversary if $y=g^{t_{1} t_{2}}$ where $x_{1}=g^{t_{1}}$ and $x_{2}=g^{t_{2}}$

Advantages

- $\operatorname{Adv}_{G}^{\mathrm{CDH}}(A)=\operatorname{Pr}[\operatorname{success}(A)]$
$-\operatorname{Adv}_{G}^{\mathrm{CDH}}(t)=\max _{A_{t}} \operatorname{Pr}\left[\operatorname{success}\left(A_{t}\right)\right]$ where A_{t} is an algorithm that runs in time $\leq t$
CDH hypothesis: $\operatorname{Adv}_{G}^{C D H}(t)$ is negligible for reasonable $t \quad$ in particular $\ll \sqrt{|G|}$

Remarks

- CDH for $G \Rightarrow$ the discrete log. is hard in G
cf contrapositive
- $g^{t_{1} t_{2}}=\left(g^{t_{1}}\right)^{t_{2}}=\left(g^{t_{2}}\right)^{t_{1}} \neq g^{t_{1}} g^{t_{2}}$

The decisional Diffie-Hellman (DDH) hypothesis

Experiment $\operatorname{Exp}_{G}^{\text {DDH }}(A)$

Challenger simulates the DH protocol $\rightarrow\left(x_{1}, x_{2}, k\right) \leftarrow\left(g^{t_{1}}, g^{t_{2}}, g^{t_{1} t_{2}}\right)$
draws $b \leftarrow\{0,1\}$ and sets $\hat{k} \leftarrow k$ if $b=1, \hat{k} \nleftarrow G$ if $b=0$
Adversary is given the transcript $\left(g, x_{1}, x_{2}\right)$ and $\widehat{\mathbb{R}}$ and outputs b^{\prime}

Advantages

- $\operatorname{Adv}_{G}^{\mathrm{DDH}}(A)=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=0 \mid b=1\right]\right|$
- $\operatorname{Adv}_{G}^{\mathrm{DDH}}(t)=\max _{A_{t}} \operatorname{Adv}_{G}^{\mathrm{DDH}}\left(A_{t}\right)$ where A_{t} runs in time $\leq t$

CDH hypothesis: $\operatorname{Adv}_{G}^{\mathrm{CDH}}(t)$ is negligible for reasonable t in particular $\ll \sqrt{|G|}$

Relation with other hypotheses
DDH for $G \Rightarrow \mathrm{CDH}$ for $G \Rightarrow$ hardness of DLP

Security of the Diffie-Hellman protocol

Theorem

If the DDH hypothesis holds for G, then the Diffie-Hellman protocol with group G is IND-EAV secure

Proof. $\operatorname{Adv}_{\mathrm{DH}(G)}^{\mathrm{IND}-E A V}(t)=\operatorname{Adv}_{G}^{\mathrm{DDH}}(t)$ by definition!

Conclusion

50 shades of Diffie-Hellman

- The DH protocol is essentially the only key exchange protocol
- But many choices of cyclic group $G:(\mathbb{Z} / p \mathbb{Z})^{\times}$, elliptic curve, isogenies, ...
- Key derivation function to go from G to $\{0,1\}^{*}$

Security of the protocol

- Three hypotheses: DLP hardness, CDH, DDH
- DDH \Longleftrightarrow IND-EAV security
- DDH $\Rightarrow \mathrm{CDH} \Rightarrow$ DLP hardness

Inherent vulnerability: man-in-the-middle

- Charlie stands between Alice and Bob, and intercepts, modifies, etc. all messages between Alice and Bob
- Requires authentication between Alice and Bob

