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Introduction

Up to now: Symmetric cryptography

▶ Symmetric encryption confidentiality
▶ Message authentication codes authenticity/integrity

→ Both require parties to share a common secret

How do two parties agree on a common secret?

Bad solution

▶ Any pair of parties agree on a common key

▶ If N parties, it requires N2
keys!

▶ To share a key, the parties must meet
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One possible solution: key distribution centers (KDCs)

Idea

▶ Each party shares a (secret) key with the KDC

▶ If Alice wants to talk to Bob:

▶ Alice gets an encrypted session key k: Encka(k)
▶ Bob gets the same encrypted temporary key: Enckb(k)
▶ Alice and Bob decrypt k and use it to communicate

Advantages

▶ Each party retains (in the long run) only one key

▶ Each party only needs to meet the KDC, once

Disadvantages

▶ The KDC is the central security point:

▶ If it is attacked, all security falls

▶ If it fails, no communication is possible

▶ Does not work in open system like Internet
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Public-key cryptography

Key-exchange protocols

▶ Two parties discuss publicly

▶ At the end, both parties know a same secret k
▶ External observers do not learn the secret, even after reading all exchanged messages

Public-key encryption and signatures

▶ Direct protocols to ensure confidentiality, authenticity and/or integrity

▶ Based on a pair (public key, private key) → no common secret

In this course

▶ This lecture: Key-exchange protocols

▶ Lecture 7: Public-key encryption

▶ Lecture 8: Signatures public-key equivalent to MACs
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1. Key exchange protocols

2. Cyclic groups and discrete logarithm

3. Diffie-Hellman protocol
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The goal of a key exchange

Allow two parties to agree on a key, remotely

Objective

▶ Alice and Bob exchange messages

▶ At the end of the exchange, they both know the same key k
▶ An attacker who sees all the messages has no information about k

Is this possible?

▶ The attacker sees as much as Alice and Bob ‽

▶ No information → computational security
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New Directions in Cryptography
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New Directions in Cryptography 
Invited Paper 

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE 

Abstract-Two kinds of contemporary developments in cryp- 
tography are examined. Widening applications of teleprocessing 
have given rise to a need for new types of cryptographic systems, 
which minimize the need for secure key distribution channels and 
supply the equivalent of a written signature. This paper suggests 
ways to solve these currently open problems. It also discusses how 
the theories of communication and computation are beginning to 
provide the tools to solve cryptographic problems of long stand- 
ing. 

I. INTRODUCTION 

W E STAND TODAY on the brink of a revolution in 
cryptography. The development of cheap digital 

hardware has freed it from the design limitations of me- 
chanical computing and brought the cost of high grade 
cryptographic devices down to where they can be used in 
such commercial applications as remote cash dispensers 
and computer terminals. In turn, such applications create 
a need for new types of cryptographic systems which 
minimize the necessity of secure key distribution channels 
and supply the equivalent of a written signature. At the 
same time, theoretical developments in information theory 
and computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science. 

The development of computer controlled communica- 
tion networks pron$ses effortless and inexpensive contact 
between people or computers on opposite sides of the 
world, replacing most mail and many excursions with 
telecommunications. For many applications these contacts 
must be made secure against both eavesdropping.and the 
injection of illegitimate messages. At present, however, the 
solution of security problems lags well behind other areas 
of communications technology. Contemporary cryp- 
tography is unable to meet the requirements, in that its use 
would impose such severe inconveniences on the system 
users, as to eliminate many of the benefits of teleprocess- 
ing. 
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Workshop;Lenox , MA, June 23-25, 1975 and the IEEE International 
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1976. 
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Universitv. Stanford. CA. and the St,anford Artificial IntelliPence Lab- 
oratory, g&ford, CIk 94.505. 
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M. E. Hellman is with the Department of Electrical Engineering, 
Stanford University, Stanford, CA 94305. 

The best known cryptographic problem is that of pri- 
vacy: preventing the unauthorized extraction of informa- 
tion from communications over an insecure channel. In 
order to use cryptography to insure privacy, however, it is 
currently necessary for the communicating parties to share 
a key which is known to no one else. This is done by send- 
ing the key in advance over some secure channel such as 
private courier or registered mail. A private conversation 
between two people with no prior acquaintance-is a com- 
mon occurrence in business, however, and it is unrealistic 
to expect initial business contacts to be postponed long 
enough for keys to be transmitted by some physical means. 
The cost and delay imposed by this key distribution 
problem is a major barrier to the transfer of business 
communications to large teleprocessing networks. 

Section III proposes two approaches to transmitting 
keying information over public (i.e., insecure) channels 
without compromising the security of the system. In a 
public key cryptosystem enciphering and deciphering are 
governed by distinct keys, E and D, such that computing 
D from E is computationally infeasible (e.g., requiring 
lOloo instructions). The enciphering key E can thus be 
publicly disclosed without compromising the deciphering 
key D. Each user of the network can, therefore, place his 
enciphering key in a public directory. This enables any user 
of the system to send a message to any other user enci- 
phered in such a way that only the intended receiver is able 
to decipher it. As such, a public key cryptosystem is a 
multiple access cipher. A private conversation can there- 
fore be held between any two individuals regardless of 
whether they have ever communicated before. Each one 
sends messages to the other enciphered in the receiver’s 
public enciphering key and deciphers the messages he re- 
ceives using his own secret deciphering key. 

We propose some techniques for developing public key 
cryptosystems, but the problem is still largely open. 

Public key distribution systems offer a different ap- 
proach to eliminating the need for a secure key distribution 
channel. In such a system, two users who wish to exchange 
a key communicate back and forth until they arrive at a 
key in common. A third party eavesdropping on this ex- 
change must find it computationally infeasible to compute 
the key from the information overheard, A possible solu- 
tion to the public key distribution problem is given in 
Section III, and Merkle [l] has a partial solution of a dif- 
ferent form. 

A second problem, amenable to cryptographic solution, 
which stands in the way of replacing contemporary busi- 

. 
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Definition of a protocol

Alice Bob

m1
a0

k k

m2

a2 m3

mt

at

b1

b3

bt–1

…

Key exchange protocol

▶ Public : messages m1, . . . , mt ; key space K
▶ Private : the ai known only to Alice, the bi only to Bob

▶ Correct protocol if Alice and Bob compute the same key k ∈ K

Vocabulary

▶ m1, . . . , mt : the transcript

Freely inspired by: J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021.
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Security of a protocol

Secure key exchange protocol: given m1, . . . , mt , it is difficult to compute k

Key exchange indistinguishability experiment Exp
IND−EAV

KE
(A)

Challenger simulates the protocol → transcript m1, . . . , mt and key k ∈ K
draws b ↞ {0, 1} and returns k̂ = k if b = 1 and k̂ ↞ K otherwise

Adversary sees the transcript and k̂, and returns a bit b′

Advantages

▶ Adv
IND−EAV

KE
(A) = |Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]|

▶ Adv
IND−EAV

KE
(t) = maxAt Adv

IND−EAV(At) where At denotes an algorithm with

running time ≤ t
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Eavesdropper security and man-in-the-middle attack

Indistinguishability in the presence of an eavesdropper

▶ Security definition assumes a secure channel between Alice and Bob

▶ The adversary is only passive

Man-in-the-middle attack

▶ Charlie intercepts messages between Alice and Bob

▶ He impersonates both Alice and Bob

▶ He creates a common secret with Alice, and another one with Bob

▶ Alice and Bob incorrectly think they share a common secret

Key exchange is not enough

Combine with authentication signatures

▶ Authenticated key exchange
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A glimpse of Diffie-Hellman protocol

Protocol sketch

Public: a number g
Alice chooses a random a, computes ga and sends ga to Bob

Bob chooses a random b, computes gb and sends gb to Alice

Alice computes k = (gb)a = gab

Bob computes k = (ga)b = gab

Outstanding issues

▶ How to choose g?

▶ If it is an integer, ga, gb and gab are huge integers

▶ Why is this scheme secure?
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1. Key exchange protocols

2. Cyclic groups and discrete logarithm

3. Diffie-Hellman protocol
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The multiplicative group of Z/pZ

Z Z/17

×2

( )×

1

9

13

15

16

8

2

4

▶ 2 has order 8

▶ 4 has order 4

▶ 3 has order 16 → generator

Theorem
For every p, (Z/pZ)× is a cyclic group: there

exists a generator g ∈ (Z/pZ)× such that

(Z/pZ)× = {gn : n ∈ Z}
= {gn : 0 ≤ n < p− 1}

Remark

The generator is not unique

(ex.: 3, 5, 6, 7, 10, 11, 12, 14)



13/28

The multiplicative group of Z/pZ

Z Z/17( )×

1

9

13

15

16

8

2

4

×2

×4

4

▶ 2 has order 8

▶ 4 has order 4

▶ 3 has order 16 → generator

Theorem
For every p, (Z/pZ)× is a cyclic group: there

exists a generator g ∈ (Z/pZ)× such that

(Z/pZ)× = {gn : n ∈ Z}
= {gn : 0 ≤ n < p− 1}

Remark

The generator is not unique

(ex.: 3, 5, 6, 7, 10, 11, 12, 14)



13/28

The multiplicative group of Z/pZ

Z Z/17( )×

1

9

13

15

16

8

2

4

×2

×4

×3

4

3

5

11

14

7

12

6

10

▶ 2 has order 8

▶ 4 has order 4

▶ 3 has order 16 → generator

Theorem
For every p, (Z/pZ)× is a cyclic group: there

exists a generator g ∈ (Z/pZ)× such that

(Z/pZ)× = {gn : n ∈ Z}
= {gn : 0 ≤ n < p− 1}

Remark

The generator is not unique

(ex.: 3, 5, 6, 7, 10, 11, 12, 14)



13/28

The multiplicative group of Z/pZ

Z Z/17( )×

1

9

13

15

16

8

2

4

×2

×4

×3

4

3

5

11

14

7

12

6

10

▶ 2 has order 8

▶ 4 has order 4

▶ 3 has order 16 → generator

Theorem
For every p, (Z/pZ)× is a cyclic group: there

exists a generator g ∈ (Z/pZ)× such that

(Z/pZ)× = {gn : n ∈ Z}
= {gn : 0 ≤ n < p− 1}

Remark

The generator is not unique

(ex.: 3, 5, 6, 7, 10, 11, 12, 14)



14/28

Cyclic groups

Definition

A multiplicative cyclic group with generator g is a set G such that G = {gn : n ∈ Z}

Remarks

▶ The generator is not unique

▶ If G is finite with generator g, G = {gt : 0 ≤ t < n} n = |G|: order
▶ if m = nq + r , gm = gnq+r = (gn)q · gr = gr
▶ ⇒ for all x ∈ G, there exists a unique t ∈ {0, . . . , n− 1} s.t. x = gt

▶ Each element x ∈ G defines a subgroup Gx = {x t : t ∈ Z} ⊂ G
▶ if x has order s, Gx contains s elements

▶ if x has order s, x r has order s/gcd(s, r)
▶ gt has order n/gcd(t, n)

More general definitions

▶ Cyclic group (G, ⋆) with any binary operation ⋆
▶ Additive cyclic group with generator g: G = {n · g : n ∈ Z}
▶ Note (G,×), (G,+) or (G, ⋆) to specify the type of cyclic group

▶ General (non-cyclic) groups cf. Lecture 9
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Examples and counterexamples

Infinite

Finite

Additive Multiplicative
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Graphical representation
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Discrete logarithm problem

Definitions

Given a cyclic group G with generator g,

▶ the discrete logarithm of x in base g is the unique 0 ≤ t < |G| such that x = gt

▶ the discrete logarithm problem is, given x , to compute t

The naive algorithm

▶ Compute g0
, g1

, g2
, . . . until we get gt = x

▶ Complexity O(t) = O(|G|) operations in G

Easy case: (Z/nZ,+)

▶ Generators: 1 or any g such that gcd(g, n) = 1

▶ Discrete logarithm of x : t s.t. x = t · g mod n
▶ Case g = 1: nothing to do!

▶ General case:

1. Compute u, v s.t. u · g + v · n = 1 Extended Euclidean Algorithm

2. Return t = u · x mod n t · g = u · x · g = x mod n
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Baby step-giant step: A picture is worth a thousand words

(Shanks, 1971)
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Baby step-giant step: the algorithm

(Shanks, 1971)

Input: a cyclic group G of order n, with generator g, and x ∈ g
Output: the discrete logarithm t of x in base g

1. m← ⌈
√
n⌉

2. B← [1, g, g2, . . . , gm−1] Baby steps
3. (h, y, j)← (gm, x, 0)
4. while y /∈ B: (y, j)← (y · h, j + 1) Giant steps: y = x · gm·j

5. i ← index such that y = gi Collision found: x · gm·j = gi

6. return (i −m · j) mod n

Analysis

Correction: by Euclidean division, there exist i, j < m such that t = i −mj
Complexity: Baby steps & giant steps: O(

√
n)

Collision search: O(
√
n) (naive), O(log n) (dichotomy), O(1) (hash tables)

⇒ O(
√
n) (same in space)
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DLP hardness

Theorem (baby-step giant-step)

In any cyclic group G, the discrete logarithm problem can be computed in time O(
√
|G|)

▶ Easily parallelizable

▶ Variants with better space complexity: Pollard’s ρ or kangaroos (a.k.a. λ) algorithms

▶ Pohlig-Hellman (1978): O(
√
p) largest prime divisor of |G|

Choice of G
▶ (Z/nZ)× or |G| small: easy DLP!

▶ (Z/pZ×,×): usually hard, though not maximally hard ≪
√
n

▶ record: p of 795 bits, 3100 core-year Boudot et al., 2019

▶ Points of an elliptic curve over a finite field: maximally hard O(
√
n)

▶ record: group of 114 bits, 13 days on GPU Zieniewicz & Pons, 2020

Additional remarks

▶ One should use prime order groups

▶ Algorithm polynomial in log n on a quantum computer Shor, 1997
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1. Key exchange protocols

2. Cyclic groups and discrete logarithm

3. Diffie-Hellman protocol
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The protocol

Alice Bob

tA 

tB

gtA 

gtB

gtB tA k=( ) gtA tB k=( )

Diffie-Hellman protocol

Input : Group G of order n and generator g ∈ G

Alice draws tA ↞ {0, ..., n− 1}, computes hA = gtA and sends hA to Bob

Bob draws tB ↞ {0, ..., n− 1}, computes hB = gtB and sends hB to Alice

Alice computes kA = htAB
Bob computes kB = htBA .

Correctness

The protocol is correct: kA = (gtB)tA = gtAtB = (gtA)tB = kB
Freely inspired from: J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021.
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Use in practice

Where do the secret lives?

▶ Shared secret k ∈ G, while usually one needs it in {0, 1}∗
▶ Key derivation function KDF : G → {0, 1}∗ ≃ hash function

Man-in-the-middle attack

▶ Requires an authentication between Alice and Bob

▶ Out-of-scope of this lecture → c.f. signatures Lecture 8

Cost of the protocol

▶ Requires two exponentiations in G
▶ O(log |G|) operations in G binary powering

▶ O(log2 p log log p) bit-operations for Z/pZ



24/28

Binary powering

gt =

{
g⌊t/2⌋ · g⌊t/2⌋

if t is even

g · g⌊t/2⌋ · g⌊t/2⌋
if t is odd

Input: g ∈ G, t ∈ Z≥0

Output: gt

1. h← 1

2. while t ̸= 0:

3. if t is odd: h← h · g
4. g ← g · g
5. t ← ⌊t/2⌋
6. return h

Complexity

▶ O(t) multiplications in G

Correctness

▶ Invariant: h · gt = gtinit
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The Computational Diffie-Hellman (CDH) hypothesis

Experiment Exp
CDH

G (A)
Challenger simulates the DH protocol → transcript g, x1, x2 ∈ G
Adversary is given the transcript and outputs y ∈ G

Success of the adversary if y = gt1t2 where x1 = gt1 and x2 = gt2

Advantages

▶ Adv
CDH

G (A) = Pr [success(A)]
▶ Adv

CDH

G (t) = maxAt Pr [success(At)] where At is an algorithm that runs in time ≤ t

CDH hypothesis: Adv
CDH

G (t) is negligible for reasonable t in particular≪
√
|G|

Remarks

▶ CDH for G⇒ the discrete log. is hard in G cf contrapositive
▶ gt1t2 = (gt1)t2 = (gt2)t1 ̸= gt1gt2
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The decisional Diffie-Hellman (DDH) hypothesis

Experiment Exp
DDH

G (A)
Challenger simulates the DH protocol → (x1, x2, k)← (gt1 , gt2 , gt1t2)

draws b ↞ {0, 1} and sets k̂ ← k if b = 1, k̂ ↞ G if b = 0

Adversary is given the transcript (g, x1, x2) and ŷ , and outputs b′

Advantages

▶ Adv
DDH

G (A) = |Pr [b′ = 1|b = 1]− Pr [b′ = 0|b = 1]|
▶ Adv

DDH

G (t) = maxAt Adv
DDH

G (At) where At runs in time ≤ t

CDH hypothesis: Adv
CDH

G (t) is negligible for reasonable t in particular≪
√
|G|

Relation with other hypotheses

DDH for G⇒ CDH for G⇒ hardness
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Security of the Diffie-Hellman protocol

Theorem
If the DDH hypothesis holds for G, then the Diffie-Hellman protocol with group G is

IND-EAV secure

Proof. Adv
IND−EAV

DH(G) (t) = Adv
DDH

G (t) by definition!
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Conclusion

50 shades of Diffie-Hellman

▶ The DH protocol is essentially the only key exchange protocol

▶ But many choices of cyclic group G : (Z/pZ)×, elliptic curve, isogenies, . . .

▶ Key derivation function to go from G to {0, 1}∗

Security of the protocol

▶ Three hypotheses: DLP hardness, CDH, DDH

▶ DDH ⇐⇒ IND-EAV security

▶ DDH⇒ CDH⇒ DLP hardness

Inherent vulnerability: man-in-the-middle
▶ Charlie stands between Alice and Bob, and intercepts, modifies, etc. all messages

between Alice and Bob

▶ Requires authentication between Alice and Bob signatures
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