
Lecture 5. Message authentication codes and authenticated
encryption

Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

2/26

Introduction
Crypto. is not only about encryption!
▶ Get access to a building, car, . . .
▶ Electronic signature for contracts, softwares, . . .
▶ Detect message tampering
▶ Detect “identity theft”
▶ . . .
⇒ require digital signatures and/or message authentication codes (MACs)

Very important rule
Over a symmetric channel with potentially active adversaries
▶ It may be OK to only authenticate
▶ It is never OK to only encrypt

Need both?
▶ Authenticated encryption!

3/26

1. MACs and their security

2. Designing MACs

3. Authenticated encryption

4/26

Message authentication codes
Definition
A message authentication code (MAC) is a mapping Mac : K ×M→ T with
▶ K = {0, 1}κ: key space e.g. κ = 128
▶ M =

⋃
ℓ<N{0, 1}ℓ: message space e.g. N = 264

▶ T = {0, 1}n: tag space e.g. n = 256
A MAC comes with a verification algorithm Vrfy : K ×M× T → {0, 1}
▶ Vrfyk(m, t) = 1 if the tag is valid, that is if t ← Mack(m)

Variant
A nonce-based MAC is a mapping Mac : K ×N ×M→ T with
▶ N = {0, 1}s : nonce space e.g. s = 64
▶ Vrfy : K ×N ×M→ T

The nonce is either deterministic or random, but publicly known and single-use

Semantic
The tag authenticates the (sender of the) message

5/26

MACs security

Informally, a MAC is secure if an adversay cannot compute valid tags without the key

Three notions
Let Mack(·) be a MAC with unknown key.
▶ Universal forgery: given m, hard to find t s.t. Vrfyk(m, t) = 1
▶ Existential forgery: hard to build a pair (m, t) s.t. Vrfyk(m, t) = 1
▶ VIL-PRF security: hard to distinguish Mack(·) from a random function f :M→ T

(VIL-PRF stands for variable input-length pseudorandom function)

Remarks
▶ The three notions can be defined using suitable experiment and advantage
▶ VIL-PRF sec.⇒ Existential forgery sec.⇒ Universal forgery sec.

6/26

Example of formal definition

EUF-CMA: Existential UnForgeability under Chosen Message Attack

Experiment ExpEUF−CMA
Mac (A)

Challenger draws k ↞ K
Adversary queries messages mi and gets valid tags ti ← Mack(mi), 1 ≤ i ≤ q
Adversary outputs a candidate pair (m, t) where m /∈ {m1, . . . ,mq}

Advantage
▶ Advantage of A: AdvEUF−CMA

Mac (A) = Pr [Vrfyk(m, t) = 1]
▶ Advantage function:

AdvEUF−CMA
Mac (q, t) = max

Aq,t
AdvEUF−CMA

Mac (Aq,t)

where Aq,t denotes an algorithm making ≤ q queries with running time ≤ t

7/26

The replay attack
The attack
▶ An adversary observes a valid tag t for a message m
▶ The adversary can replay (m, t) → m is still authenticated by t !

Workaround
▶ MACs are not designed to protect against this kind of attack

▶ Still satisfies EUF-CMA security (or stronger notions)
▶ Solutions depend on the application. Examples:

▶ Add a timestamp to the message: t ← Mack(m∥T) where T is the current time
▶ Add a message counter: t ← Mack(m∥cpt)

8/26

Timing attack for universal forgery
Assumptions
▶ Vrfyk(m, t) computes t ′ ← Mack(m) and checks whether t = t ′

▶ The test t = t ′ stops as soon as t[i] ̸= t ′[i] strncmp

Algorithm
Goal: Given a message m and blackbox access to Vrfyk(·, ·), output a valid tag t for m

1. For i = 1 to n:
2. For j = 0 to 255:
3. Call Vrfyk(m, t ′) with t ′ = t1∥ · · · ∥ti−1∥⟨j⟩2∥0∥ · · · ∥0
4. ti ← ⟨j⟩2 where j maximized the running time
5. Return t = t1∥ · · · ∥tn

Remarks
▶ Used against updates verification of Xbox 360
▶ Workaround: time-independent string comparison “constant time”

9/26

1. MACs and their security

2. Designing MACs

3. Authenticated encryption

10/26

MACs from block ciphers (theory)
Case of fixed-length messages
Given E : K ×M→M, build
▶ Mack(m): compute t ← Ek(m) and return t
▶ Vrfyk(m, t): check whether t = Ek(m)

Variable-length messages
▶ Don’t do t1 ← Mack(m1), . . . , tℓ ← Mack(mℓ)! cf. ECB
▶ Pad the blocks with extra information

▶ Block number no reordering
▶ Total message length ℓ no shortening
▶ Random identifier r no recombination
⇒ ti ← Mack(r∥ℓ∥i∥mi)

Properties
▶ If E is a good PRF, Mac has good security properties
▶ Not efficient for variable-length messages: small, thereby numerous, blocks

11/26

MACs from block ciphers (practice): ex. of CBC-MAC

t
Properties
▶ Security proofs in the PRF model
▶ Only requires a block cipher
▶ Not very efficient

12/26

MACs from hash functions (theory)
Hash-and-MAC
▶ Given:

▶ A secure Mac for fixed-length messages (with Vrfy)
▶ A good hash function H

▶ Build:
▶ Mac′k(m) = Mack(H(m))
▶ Vrfy′

k(m, t) = Vrfyk(H(m), t)
▶ Security: OK if Mac is secure and H is collision resistant

Direct constructions
▶ Given a hash function H, several possibilities:

▶ PrefixMack(m) = H(k∥m) length-extension attack
▶ SuffixMack(m) = H(m∥k) collision attack
▶ SandwichMack1∥k2(m) = H(k1∥m∥k2) other problems

▶ Yet, one good solution is a variant of SandwichMac

13/26

Length-extension attack on PrefixMac

PrefixMack(m) = H(k∥m)
Assumptions and remark
▶ H is a Merkle-Damgård hash function

▶ f is the compression function
▶ pad(m) is the extra bits added to m
▶ H(m) = F (IV ,m∥ pad(m)) where F (IV , x) = f (· · · f (IV , x1), . . . , xB)

▶ pad(m) only depends on the length of m → padℓ = pad(m) for |m| = ℓ

The attack
▶ Request a tag t ← Mack(m) for m ∈ {0, 1}n

▶ t = H(k∥m) = F (IV , k∥m∥ pad2n)
▶ Compute t ′ ← h(t, pad3n)

▶ t ′ = F (IV , k∥m∥ pad2n ∥ pad3n) = H(k∥m∥ pad2n) = Mack(m∥ pad2n)
▶ Output (m∥ pad2n, t

′)

This attack is a

14/26

MACs from hash functions (practice): ex. of HMAC
(k‖0c) m1 mℓ‖pad

f f … f

t

IV

f fIV

opad

ipad …

t0
t0‖pad(k‖0c)

▶ HMack(m) = H
(
(k∥0c)⊕ opad

∥∥∥ H
(
(k∥0c)⊕ ipad

∥∥ m
))

▶ H is a Merkle-Damgård construction
▶ opad = (0x36)b/8 = 00110110 00110110 ... 00110110
▶ ipad = (0x5C)b/8 = 01011100 01011100 ... 01011100

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

15/26

HMAC properties – comparison with CBC-MAC
HMAC properties
▶ Secure up to the birthday bound of H
▶ Only black-box calls to H

▶ Easy implementation
▶ With white-box access: NMAC slightly more efficient

▶ Widespread use e.g. in TLS

Block cipher vs. Hash-based MACs
▶ Block cipher: usually smallish block size → limited generic security
▶ Hash functions: faster to process large data

⇒ Hash-based constructions more used than block-cipher-based
▶ But one can do even better!

▶ Polynomial MACs e.g. VMAC
▶ Dedicated constructions PelicanMAC

16/26

Intermission: Polynomials
Basic definitions
▶ Ring K[x] of polynomials over K: f = f0 + f1x + · · ·+ fdxd with fi ∈ K

▶ d : degree of f (assuming fd ̸= 0)
▶ Identify polynomials↔ vectors

▶ Finite field K: finite set with (+,−,×,÷) operations
▶ Prime fields: Fp = Z/pZ = integers modulo a prime p
▶ Extension fields: Fpn = Fp[x]/φ(x) = polynomials modulo an irreducible polynomial
▶ Binary fields: F2n = “carry-less integers”

Evaluation: polynomials as functions
▶ f (·) : k 7→ f0 + f1k + · · ·+ fdkd

▶ Horner scheme: evaluation in d additions and d multiplications by k
i. r ← fd

ii. for i from d − 1 to 0: r ← r × k + fi
▶ Degree mantra: a nonzero degree-d cannot vanish at more than d points

▶ Prk↞K[f (k) = 0] ≤ d
#K

17/26

MACs from polynomials: polynomial hash functions
Definition
The polynomial hash functions Hk (for k ∈ K) are (keyed) hash functions defined by
Hk(m) = k ×m(k), where m = m0∥ · · · ∥mn−1 ∈ Kn and m(k) = m0 + · · ·+mn−1kn−1

Properties and remarks
▶ Multiplication by k is needed for m0 to “mix” with the key
▶ Hk is linear: Hk(a+ b) = Hk(a) + Hk(b)
▶ For any a ̸= b, Prk↞K[Hk(a) = Hk(b)] = Prk↞K[k(a(k)− b(k)) = 0] ≤ n

#K
▶ Hk is a universal hash function, but not a cryptographic hash function

Choice of K
▶ K must be large enough for collision prob. to be low

▶ Ex.: #K ≃ 2128 and n = 32⇝ Pr [Hk(a) = Hk(b)] ≃ 1/296 optimal
▶ Possible choices:

▶ Prime field⇝ efficient floating-point arith. F2130−5 in Poly1305
▶ Binary field⇝ dedicated instr. (pclmulqdq) F2128 in GMAC
▶ Combination of different fields VMAC

18/26

MACs from polynomials: ex. of GMAC

t

k'

r

r

Hk
m

GMack(k′,m) = ⟨r,Hk(m) + E(k′, r)⟩

▶ Hk(m) = m(k) with m ∈ F2128 [x]
▶ r is a random nonce
▶ E is a block cipher
▶ + is addition in F2128

19/26

1. MACs and their security

2. Designing MACs

3. Authenticated encryption

20/26

What do we want to achieve?

We can encrypt and authenticate messages: can we do both?

Why is there a question?
▶ Encrypt-and-authenticate:

▶ m 7→ (c, t) where c = EnckE (m) and t = MackM(m)
▶ Danger: t may reveal information on m

▶ Authenticate-then-encrypt:
▶ m 7→ c where c = EnckE (m∥t) and t = MackM(t)
▶ Danger: the decryption can fail for two reasons (bad padding or invalid tag)

⇝ bad padding attack
▶ Encrypt-then-authenticate:

▶ m 7→ (c, t) where c = EnckE (m) and t = MackM(c)
▶ Danger: seems OK. . .

Need for a security definition that cover both encryption and authentication

21/26

Authenticated Encryption with Associated Data (AEAD)
Settings
▶ A plaintext is sent encrypted
▶ Some associated data is sent unencrypted
▶ Both are authenticated

→ Example: IP packets (associated data = headers)

Definition
An AEAD scheme is a pair of mappings
▶ Enc : K ×M×D ×N → C
▶ Dec : K × C × D ×N →M∪ {⊥}

where
▶ Enc encrypts m ∈M with k ∈ K and ν ∈ N (nonce), and authenticates it together

with d ∈ D (associated data)
▶ Dec decrypts and verifies: returns m if authentication is successful, ⊥ otherwise
▶ Deck(Enck(m, d, ν), d, ν) = m for all k, m, d and ν

22/26

Security notions
CPA security
Similar to CPA-security for encryption schemes, with two caveats:
▶ requests to the challenger include associated data and a nonce
▶ each nonce should be used only once

Ciphertext integrity – INT-CTXT
Challenger draws k ↞ K
Adversary requests several ci = Enck(mi, di, νi) (without knowing k)
Adversary tries to guess (c, d, ν) /∈ {(ci, di, νi)} s.t. Deck(c, d, ν) ̸= ⊥

→ INT-CTXT advantage = probability of success of the adversary

AEAD security

An AEAD scheme is secure if it is both IND-CPA and INT-CTXT secure

23/26

Building AEAD schemes (theory)
Encrypt-then-authenticate
▶ Given (nonce-based) encryption scheme (Enc, Dec) and MAC (Mac, Vrfy)
▶ We build an AEAD scheme (E,D) where

E((kE , kM),m, d, ν):
1. c ← Enc(kE ,m, ν)
2. t ← Mac(kM, (c, d), ν)
3. Output (c, t)

D((kE , kM), (c, t), d, ν):
1. If Vrfy(kM, (c, d), t, ν):
2. Return Dec(kE , c, d, ν)
3. Else: return ⊥

Security
The AEAD scheme (E,D) is secure if both the encryption scheme and the MAC are secure

24/26

Building AEAD schemes (practice): ex. of GCM
Galois Counter Mode (GCM)
▶ Standardized by NIST (2007)
▶ Based on GMAC and AES (used in CTR mode for encryption and in GMAC)

Encryption - authentication

Inputs: key k, message m, associated data d , nonce ν (E is the block cipher)
1. km ← Ek(0128) // Key for GMAC
2. x ← (ν∥0311) + 1 // Initial counter value for CTR
3. c ← encryption of m using E in CTR mode with initial counter value x
4. (c′, d ′)← pad c and d with zeroes, to length multiple of 128
5. h← Hkm(d

′∥c′∥length(d)∥length(c)) // Hk(m) = m(k)
6. t ← h⊕ Ek(x)
7. Output (c, t)

25/26

About GCM
Properties
▶ Very fast and parallelizable
▶ Security:

▶ Proven secure if E is a good PRP
▶ Proven secure when E is AES

→ Only one assumption for both IND-CPA and INT-CTXT security

Use
▶ SSH
▶ TLS 1.2 & 1.3
▶ OpenVPN 2.4+
▶ . . .

26/26

Conclusion
Authentication is essential!
▶ Authentication without encryption may be useful
▶ Encryption without authentication is (almost) never useful

But encryption is most of the time needed too!
▶ Combination of both can lead to nasty surprises. . .
▶ Modern view: do both at the same time → AEAD

Good authenticated encryption is hard
▶ Theoretical definitions are complicated, though intuitive
▶ Still an active area of research https://competitions.cr.yp.to/caesar.html

A non-exhaustive list of MACs
AMAC, BMAC, CMAC, DMAC, EMAC, FMAC, GMAC, HMAC, IMAC, JMAC, KMAC,
LMAC, MMAC, NMAC, OMAC, PMAC, QMAC, RMAC, SMAC, TMAC, UMAC, VMAC,
WMAC, XMAC, YMAC, ZMAC, PelicanMAC, SandwichMAC

https://competitions.cr.yp.to/caesar.html

	MACs and their security
	Designing MACs
	Authenticated encryption

