Lecture 4. Hash functions Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

What are hash functions?

Definition

A(n unkeyed) hash function is a mapping $H : \mathcal{M} \to \mathcal{H}$, with

- $\mathcal{M} = \bigcup_{\ell < N} \{0, 1\}^{\ell}$: the message space
- $\mathcal{H} = \{0, 1\}^n$, with $N \gg n$: the *digests*

typically
$$N \ge 2^{64}$$

 $n \in \{128, 160, 224, 256, 384, 512\}$

Variants

• extendable-output function (XOF) $\rightarrow \mathcal{H} = \bigcup_{\ell < n} \{0, 1\}^{\ell}$

▶ keyed hash function $H : \mathcal{K} \times \mathcal{M} \to \mathcal{H}$

family of hash functions

A hash function is simply a function: when is it good?

Usefulness of hash functions

Hash functions are an essential tool underlying most of (modern) cryptography!

- Hash-and-sign
- Message authentication codes
- Password hashing (with a grain of salt)
- Hash-based signatures
- Commitment
- Key derivation

...

► As one-way functions or *random oracle*

RSA signatures, (EC)DSA, ... HMAC, ... \rightarrow next lecture!

What are good hash functions?

Efficiency

- A few dozen cycles per byte
- Small memory

Security

...

- First preimage resistance: given t, hard to find m such that H(m) = t
- Second preimage resistance: given *m*, hard to find *m*' such that H(m') = H(m)
- Collision resistance: hard to find $m \neq m'$ such that H(m) = H(m')

Remarks

No definition of *hard*

H is fixed!

- Collision resistance $\Rightarrow 2^{nd}$ preimage resistance
- > 2nd preimage is *in some sense* stronger than 1st preimage resistance

The ideal world: random oracles

Definition

A random oracle is a function $H : \mathcal{M} \to \mathcal{H}$ such that $\forall x \in \mathcal{M}, H(x) \leftarrow \mathcal{H}$

As random as possible

- Used in proof as the random oracle model
- Irrealistic but good hash functions are approximations

Generic attacks

- > 2^{nd} preimage: $O(2^n)$
- Collision: $O(2^{n/2})$

eq. to ideal cipher model whatever this means

exhaustive search idem "birthday attack"

 \rightarrow A hash function is *good* if the generic attack is (almost) the best one

On the birthday attack

Reminder

- If h₁,..., h_q ← H, Pr [∃i ≠ j, h_i = h_j] ≥ q(q-1)/(4·2ⁿ) q ≃ 2^{n/2} ⇒ collision prob. ≃ 1/4
 Draw Ω(2^{n/2}) values of x_i: with good probability, ∃ x_i ≠ x_j s.t. H(x_i) = H(x_j)
- Useful collisions

Goal: Find two messages m_0 and m_1 of opposite meanings s.t $H(m_0) = H(m_1)$ ▶ "I owe 1000€ to Bruno" and "Bruno owes me 1000€"

Method: Produce many variants of m_0 and m_1 until a collision is found

- "I have a 1000€ debt to Bruno", "Bruno is 1000€ in debt to me", ...
- Variant of birthday bound: find a collision between two lists

Space complexity

- To find a collision, need to store $\Omega(2^{n/2})$ values
- Floyd's *tortoise and hare* algorithm:

1. $x_0 \leftarrow \mathcal{M}$

2. do $(x_i, x_{2i}) \leftarrow (H(x_{i-1}), H(H(x_{2(i-1)})))$ until $x_i = x_{2i}$

 \rightarrow Only two values to store, same time complexity

1. Hash functions from compression functions

2. Hash functions from permutations

Compression functions

Definition

A compression function is a mapping $f : \{0,1\}^n \times \{0,1\}^w \to \{0,1\}^n$

• Family of functions from $\{0,1\}^n$ to itself

- Compare to hash functions: fixed-length input
- Compare to block ciphers: not invertible

Goal

Assuming a good f is given, how to construct a good hash function?

- ► Fixed-size \rightarrow Variable-size
- Compare to bock cipher modes of operation

domain extension

The Merkle-Damgård construction (1989)

part of H's specification

Efficiency

• *B* sequential calls to $f \rightarrow OK$

Merkle-Damgård construction: security

Warm-up: first preimage resistance

If f is 1st preimage resistant, then H is 1st preimage resistant too

Proof by contrapositive.

Assume that given t, we can compute
$$m \quad s.t \quad H(m) = t$$

(et $pad(m) = m_1 \| \dots \| m_B \quad and \quad h_0, h_1, \dots, h_B \quad as \quad in \quad He \quad definition$
Then $f(h_{B-1}, m_B) = h_B = t$

Merkle-Damgård construction: security

Warm-up: first preimage resistance

If f is 1st preimage resistant, then H is 1st preimage resistant too

Collision resistance

If f is collision resistant, then H is collision resistant too

Proof by contrapositive. Assume we compute m + m' s.+ H(m) = H(m) -> pad(m) = m, 11 -- 11 mp pad(m') = m' 11 -- 11 m'r, - > we can compute all the hi's and h'. 's Case 1 $|m| \neq |m'| = m_{B} \neq m'_{B'} = f(h_{B-1}, m_{B}) = H(m) = H(m') = f(h'_{B'-1}, m'_{B'}) \rightarrow allising$ $\frac{\text{Case 2}}{\text{Her}} \frac{|\mathbf{m}| = |\mathbf{m}'|}{|\mathbf{h}_{-1}, \mathbf{m}_{b}|} = h_{b} = h_{b}' = f(h_{b-1}, \mathbf{m}_{b}) = h_{b} = h_{b}' = f(h_{b-1}, \mathbf{m}_{b}') - s \text{ collision}.$

Merkle-Damgård construction: 2nd preimage vulnerability Idea of an attack by Kelsey & Schneier (2005)

Goal: Given *m*, find $m' \neq m$ s.t. H(m') = H(m)

Find m_0 such that $f(h_0, m_0) = h_i$ for any h_i $\simeq 2^n/B$

Merkle-Damgård construction: 2nd preimage vulnerability Idea of an attack by Kelsey & Schneier (2005)

Goal: Given *m*, find $m' \neq m$ s.t. H(m') = H(m)

Find m_0 such that $f(h_0, m_0) = h_i$ for any $h_i \simeq 2^n/B$ $m_0 \|m_{i+1}\| \cdots \|m_B$ almost works but m_B contains the wrong length

Merkle-Damgård construction: 2nd preimage vulnerability Idea of an attack by Kelsey & Schneier (2005)

Goal: Given *m*, find $m' \neq m$ s.t. H(m') = H(m)

Find m₀ such that f(h₀, m₀) = h_i for any h_i ≃ 2ⁿ/B
 m₀||m_{i+1}|| ··· ||m_B almost works but m_B contains the wrong length
 Works if we can find a family of m₀'s of variable lengths
 from fixed points h_f = f(h_f, m_f) ≃ 2^{n/2} (in some cases)
 from multicollisions: m¹, ..., m^{2^t} s.t. f(h₀, m¹) = ··· = f(h₀, m^{2^t}) ≃ t · 2^{n/2}

 $\Rightarrow 2^{nd}$ preimage in $\simeq 2^n/B + (t \times) 2^{n/2}$ instead of $O(2^n)$

Merkle-Damgård construction: security summary

How vulnerable for 2nd preimage?

- Kelsey-Schneier attack requires to find collisions in f
- Actually: a 2nd preimage *is* a collision!
 - Reduction to collision resistance of $H \rightarrow$ collision resistance of f
 - birthday security $\simeq 2^{n/2}$

Patch: Chod-MD / Wide-pipe MD (2005)

- Use $f: \{0,1\}^{n+k} \times \{0,1\}^w \to \{0,1\}^{n+k}$
- Only keep the first *n* bits of $f(h_{i-1}, m_i)$ as input to next *f*
- Very strong provable guarantees

Summary

- Same collision resistance for H as for f
- Same 1^{st} preimage resistance for *H* as for *f*
- > 2^{nd} preimage resistance of *H* related to collision resistance of *f*

How to design compression functions?

Matyas-Meyer-Oseas construction

$$f(h_{i-1}, m_i) = E(m_i, h_{i-1}) \oplus h_{i-1}$$
 $f(h_{i-1}, m_i) = E(h_{i-1}, m_i) \oplus m_i$

Security

- Systematic analysis of possible constructions ("PGV constructions")
- Rigorous proofs in the ideal cipher model
 - Not sufficient since actual block ciphers are not ideal!
 - Example: XBOX used a Davies-Meyer based construction with non-ideal cipher

Final words on Merkle-Damgård construction

- Many examples: MD4, MD5, SHA-0, SHA-1, SHA-2, ...
- MD5 failure:
 - 1992: Designed by Rivest
 - 1993: Collision attack on the compression function
 - 2005: Collision attack on the hash function
 - 2007-9: Practical useful collisions

Used up to 2008 (at least), while alternatives were available since (at least) 1996!

Another bad example: Git chose SHA-1 in 2005 while weaknesses were known

Lessons

- Care about attacks! Even theoretical!
- Most (every?) weaknesses can evolve to damaging attacks

Don't design your own crypto!

1. Hash functions from compression functions

2. Hash functions from permutations

Hash function from a permutation

Definition

A permutation of $\{0,1\}^n$ is an invertible mapping $P: \{0,1\}^n \to \{0,1\}^n$.

- No key no security notion such as PRP
- Ex.: for any block cipher, $E(0, \cdot)$ is a permutation
- Possible view: block cipher where key and plaintext are given together
- A permutation is invertible, but its inverse is often non necessary

Construction of a hash function

- ▶ Sponge construction : permutation \rightarrow hash function
- Same general idea (but completely different construction) than Merkle-Damgård

The sponge construction

Sponge security proof sketch

Theorem

If *P* is a random permutation and $\lambda = 1$, an adversary making *q* queries to P^{\pm} has probability $\leq \frac{q^2}{2^{v}} + \frac{q^2}{2^{c}}$ to produce a collision.

Admitted claim. At least one of the three following event occurs:

 E_1 The adv. makes a query to P^{\pm} whose result ends with 0^c

- E_2 The adv. makes 2 queries to P whose results agree on their first v bits
- E_3 The adv. makes 2 queries to P^{\pm} whose results agree on their last *c* bits

Proof of the theorem. $\Pr[\mathcal{A}] \operatorname{produces} a \operatorname{collisim}] \leq \Pr[\mathbb{E}_{A} \sqrt{\mathbb{E}_{2}} \sqrt{\mathbb{E}_{3}}] \leq \Pr[\mathbb{E}_{A}] + \Pr[\mathbb{E}_{2}] +$

Sponge features

Sponge are convenient!

- ▶ If *f* is a random permutation, *H* is indifferentiable from a RO
- ► Flexible:
 - ▶ For a fixed permutation size, values of *r*, *v* and $\lambda \rightarrow$ speed/security trade-off
 - Natively a XOF (variable λ)
- Simplicity: easier to design a (good) permutation

SHA-3 – Keccak

- Hash function using the sponge construction, from a permutation of $\{0, 1\}^{1600}$
- Standardized by NIST, after an academic competition (2008-2012)
- Best current choice for a hash function
- Four main variants: SHA3-224, SHA3-256, SHA3-384 and SHA3-512

If you need a hash function, use SHA-3!

Conclusion

Two main families

- Merkle-Damgård construction from a compression function
- Sponge construction from a random permutation
- Many broken constructions, few good ones...
- ... therefore:

Don't design crypto yourself!

- No generic way to build a hash function
- Every small detail counts!

Use SHA-3 (or maybe SHA-2)

- Don't use MD5!
- Don't use SHA-1!