Lecture 4. Hash functions

Introduction to cryptology

Bruno Grenet
M1 INFO, MOSIG \& AM
Université Grenoble Alpes - $I M^{2}$ AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

What are hash functions?

Definition

A(n unkeyed) hash function is a mapping $H: \mathcal{M} \rightarrow \mathcal{H}$, with

- $\mathcal{M}=\bigcup_{\ell<N}\{0,1\}^{\ell}$: the message space typically $N \geq 2^{64}$
- $\mathcal{H}=\{0,1\}^{n}$, with $N \gg n$: the digests

$$
n \in\{728,1160,224,256,384,512\}
$$

Variants

- extendable-output function (XOF) $\rightarrow \mathcal{H}=\bigcup_{\ell<n}\{0,1\}^{\ell}$
- keyed hash function $H: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{H}$
family of hash functions

A hash function is simply a function: when is it good?

Usefulness of hash functions

Hash functions are an essential tool underlying most of (modern) cryptography!

- Hash-and-sign
- Message authentication codes
- Password hashing (with a grain of salt)
- Hash-based signatures
- Commitment
- Key derivation
- As one-way functions or random oracle
- ...

RSA signatures, (EC)DSA, ...
HMAC, $\ldots \rightarrow$ next lecture!

What are good hash functions?

Efficiency

- A few dozen cycles per byte
- Small memory
- ...

Security

- First preimage resistance: given t, hard to find m such that $H(m)=t$
- Second preimage resistance: given m, hard to find m^{\prime} such that $H\left(m^{\prime}\right)=H(m)$
- Collision resistance: hard to find $m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$

Remarks

- No definition of hard
- Collision resistance $\Rightarrow 2^{\text {nd }}$ preimage resistance
- $2^{\text {nd }}$ preimage is in some sense stronger than $1^{\text {st }}$ preimage resistance

The ideal world: random oracles

Definition

A random oracle is a function $H: \mathcal{M} \rightarrow \mathcal{H}$ such that $\forall x \in \mathcal{M}, H(x) \longleftarrow \mathcal{H}$

- As random as possible
- Used in proof as the random oracle model
- Irrealistic but good hash functions are approximations
eq. to ideal cipher model whatever this means

Generic attacks

$-1^{\text {st }}$ preimage: $O\left(2^{n}\right)$
$-2^{\text {nd }}$ preimage: $O\left(2^{n}\right)$

- Collision: $O\left(2^{n / 2}\right)$
exhaustive search
idem
"birthday attack"
\rightarrow A hash function is good if the generic attack is (almost) the best one

On the birthday attack

Reminder

- If h_{1}, \ldots, h_{q} H $\mathcal{H}, \operatorname{Pr}\left[\exists i \neq j, h_{i}=h_{j}\right] \geq \frac{q(q-1)}{4 \cdot 2^{n}} \quad q \simeq 2^{n / 2} \Rightarrow$ collision prob. $\simeq \frac{1}{4}$
- Draw $\Omega\left(2^{n / 2}\right)$ values of x_{i} : with good probability, $\exists x_{i} \neq x_{j}$ s.t. $H\left(x_{i}\right)=H\left(x_{j}\right)$

Useful collisions

Goal: Find two messages m_{0} and m_{1} of opposite meanings s.t $H\left(m_{0}\right)=H\left(m_{1}\right)$

- "I owe $1000 €$ to Bruno" and "Bruno owes me $1000 €$ "

Method: Produce many variants of m_{0} and m_{1} until a collision is found - "I have a $1000 €$ debt to Bruno", "Bruno is $1000 €$ in debt to me", ...

- Variant of birthday bound: find a collision between two lists

Space complexity

- To find a collision, need to store $\Omega\left(2^{n / 2}\right)$ values
- Floyd's tortoise and hare algorithm:

1. $x_{0} \nleftarrow \mathcal{M}$
2. do $\left(x_{i}, x_{2 i}\right) \leftarrow\left(H\left(x_{i-1}\right), H\left(H\left(x_{2(i-1)}\right)\right)\right)$ until $x_{i}=x_{2 i}$ \rightarrow Only two values to store, same time complexity

3. Hash functions from compression functions
4. Hash functions from permutations

Compression functions

Definition

A compression function is a mapping $f:\{0,1\}^{n} \times\{0,1\}^{w} \rightarrow\{0,1\}^{n}$

- Family of functions from $\{0,1\}^{n}$ to itself
- Compare to hash functions: fixed-length input
- Compare to block ciphers: not invertible

Goal

Assuming a good f is given, how to construct a good hash function?

- Fixed-size \rightarrow Variable-size
- Compare to bock cipher modes of operation

The Merkle-Damgård construction (1989)

- $I V:$ fixed initial value in $\{0,1\}^{n}$
part of H's specification
- $f:\{0,1\}^{n} \times\{0,1\}^{w} \rightarrow\{0,1\}^{n}$
$\triangleright \operatorname{pad}(m)=m\|10 \cdots 0\|\langle$ length of $m\rangle \rightsquigarrow|\operatorname{pad}(m)|=B \times w$
- $H(m)=f\left(\cdots f\left(f\left(I V, m_{1}\right), m_{2}\right) \ldots, m_{B}\right)$

Efficiency

- B sequential calls to $f \rightarrow$ OK

Merkle-Damgård construction: security
Warm-up: first preimage resistance If f is $1^{\text {st }}$ preimage resistant, then H is $1^{\text {st }}$ preimage resistant too Proof by contrapositive.

Assume that given t, we can compute m s.t $H(m)=t$ let $\operatorname{pad}(m)=m_{1}\|\ldots\| m_{B}$ and $h_{0}, h_{1}, \ldots, h_{B}$ as in the sufinition Then $f\left(h_{B-1}, m_{B}\right)=h_{B}=t$

Merkle-Damgård construction: security
Warm-up: first preimage resistance
If f is $1^{\text {st }}$ preimage resistant, then H is $1^{\text {st }}$ preimage resistant too
Collision resistance
If f is collision resistant, then H is collision resistant too
Proof by contrapositive. Assume we compute $m \neq m^{\prime}$ sit $H(m)=H\left(m^{\prime}\right)$

$$
\rightarrow \operatorname{pad}(m)=m_{1}\|\ldots\|_{B} \quad \operatorname{pad}\left(m^{\prime}\right)=m_{1}^{\prime}\|\ldots\| m_{B^{\prime}}^{\prime}
$$

\rightarrow we can compute all the h_{i}^{\prime} 's and h_{i}^{\prime} 's
Case $1|m| \neq\left|m^{\prime}\right| \Rightarrow m_{B} \neq m_{B^{\prime}}^{\prime} \Rightarrow f\left(h_{B-1}, m_{B}\right)=H(m)=H\left(m^{\prime}\right)=f\left(h_{B^{\prime}-1}^{\prime}, m_{B^{\prime}}^{\prime}\right) \rightarrow$ ollisim
Case $2|m|=\left|\mu^{\prime}\right|$. Let b maximal s.t. $\left(h_{b-1}, m_{b}\right) \neq\left(h_{b-1}^{\prime}, m_{b}^{\prime}\right)$

$$
\text { Then } f\left(h_{b-1}, m_{b}\right)=h_{b}=h_{b}^{\prime}=f\left(h_{b-1}^{\prime}, m_{b}^{\prime}\right) \rightarrow \text { collision. }
$$

Merkle-Damgård construction: $2^{\text {nd }}$ preimage vulnerability

Idea of an attack by Kelsey \& Schneier (2005)

Goal: Given m, find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$

- Find m_{0} such that $f\left(h_{0}, m_{0}\right)=h_{i}$ for any h_{i}

Merkle-Damgård construction: $2^{\text {nd }}$ preimage vulnerability

Idea of an attack by Kelsey \& Schneier (2005)

Goal: Given m, find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$

- Find m_{0} such that $f\left(h_{0}, m_{0}\right)=h_{i}$ for any h_{i} $\simeq 2^{n} / B$
- $m_{0}\left\|m_{i+1}\right\| \cdots \| m_{B}$ almost works but m_{B} contains the wrong length

Merkle-Damgård construction: $2^{\text {nd }}$ preimage vulnerability

Idea of an attack by Kelsey \& Schneier (2005)

IV

Goal: Given m, find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$

- Find m_{0} such that $f\left(h_{0}, m_{0}\right)=h_{i}$ for any h_{i}
- $m_{0}\left\|m_{i+1}\right\| \cdots \| m_{B}$ almost works but m_{B} contains the wrong length
- Works if we can find a family of m_{0} 's of variable lengths
- from fixed points $h_{f}=f\left(h_{f}, m_{f}\right)$ $\simeq 2^{n / 2}$ (in some cases)
- from multicollisions: $m^{1}, \ldots, m^{2^{t}}$ s.t. $f\left(h_{0}, m^{1}\right)=\cdots=f\left(h_{0}, m^{2^{t}}\right)$ $\simeq t \cdot 2^{n / 2}$
$\Rightarrow 2^{\text {nd }}$ preimage in $\simeq 2^{n} / B+(t \times) 2^{n / 2}$ instead of $O\left(2^{n}\right)$

Merkle-Damgård construction: security summary

How vulnerable for $2^{\text {nd }}$ preimage?

- Kelsey-Schneier attack requires to find collisions in f
- Actually: a $2^{\text {nd }}$ preimage is a collision!
- Reduction to collision resistance of $H \rightarrow$ collision resistance of f
- birthday security $\simeq 2^{n / 2}$

Patch: Chod-MD / Wide-pipe MD (2005)

- Use $f:\{0,1\}^{n+k} \times\{0,1\}^{w} \rightarrow\{0,1\}^{n+k}$
- Only keep the first n bits of $f\left(h_{i-1}, m_{i}\right)$ as input to next f
- Very strong provable guarantees

Summary

- Same collision resistance for H as for f
- Same $1^{\text {st }}$ preimage resistance for H as for f
- $2^{\text {nd }}$ preimage resistance of H related to collision resistance of f

How to design compression functions?

$$
f\left(h_{i-1}, m_{i}\right)=E\left(m_{i}, h_{i-1}\right) \oplus h_{i-1}
$$

$$
f\left(h_{i-1}, m_{i}\right)=E\left(h_{i-1}, m_{i}\right) \oplus m_{i}
$$

Security

- Systematic analysis of possible constructions ("PGV constructions")
- Rigorous proofs in the ideal cipher model
- Not sufficient since actual block ciphers are not ideal!
- Example: XBOX used a Davies-Meyer based construction with non-ideal cipher

Final words on Merkle-Damgård construction

- Many examples: MD4, MD5, SHA-0, SHA-1, SHA-2, ...
- MD5 failure:
- 1992: Designed by Rivest
- 1993: Collision attack on the compression function
- 2005: Collision attack on the hash function
- 2007-9: Practical useful collisions

Used up to 2008 (at least), while alternatives were available since (at least) 1996!

- Another bad example: Git chose SHA-1 in 2005 while weaknesses were known

Lessons

- Care about attacks! Even theoretical!
- Most (every?) weaknesses can evolve to damaging attacks

1. Hash functions from compression functions
2. Hash functions from permutations

Hash function from a permutation

Definition

A permutation of $\{0,1\}^{n}$ is an invertible mapping $P:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.

- No key - no security notion such as PRP
- Ex.: for any block cipher, $E(0, \cdot)$ is a permutation
- Possible view: block cipher where key and plaintext are given together
- A permutation is invertible, but its inverse is often non necessary

Construction of a hash function

- Sponge construction : permutation \rightarrow hash function
- Same general idea (but completely different construction) than Merkle-Damgård

The sponge construction

1. $m_{1}\|\cdots\| m_{t} \leftarrow \operatorname{pad}(m)=m \| 10 \cdots 0$
$|\operatorname{pad}(m)|=t \cdot r$
2. $y_{0} \leftarrow 0^{n}$
3. for $i=1$ to $t: \quad y_{i} \leftarrow P\left(y_{i-1} \oplus\left(m_{i} \| 0^{c}\right)\right)$
absorbing phase
4. $z_{1} \leftarrow y_{t}$
5. for $i=2$ to $\lambda: z_{i} \leftarrow P\left(z_{i-1}\right) ; h_{i} \leftarrow$ first v bits of z_{i}
squeezing phase
6. return $H(m)=h_{1}\left\|h_{2}\right\| \cdots \| h_{\lambda}$

Sponge security proof sketch
Theorem
If P is a random permutation and $\lambda=1$, an adversary making q queries to $P^{ \pm}$has probability $\leq \frac{q^{2}}{2^{v}}+\frac{q^{2}}{2^{c}}$ to produce a collision.
Admitted claim. At least one of the three following event occurs:
E_{1} The adv. makes a query to $P^{ \pm}$whose result ends with 0^{c}
E_{2} The adv. makes 2 queries to P whose results agree on their first v bits
E_{3} The adv. makes 2 queries to $P^{ \pm}$whose results agree on their last c bits
Proof of the theorem. $\operatorname{Pr}[A$ produces a collisim $] \leqslant \operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3}\right] \leqslant \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{3}\right]$

$$
\begin{aligned}
& \operatorname{Pr}\left[E_{1}\right] \leqslant \frac{9 / 2^{c}}{} \\
& \operatorname{Pr}\left[E_{2}\right] \leqslant \sum_{i<j} \operatorname{Pr}\left[i^{\text {th }} \text { and } j^{\text {th }} \text { queries agree on their first } v \text { bits }\right] \leqslant\binom{ q}{2} \cdot \frac{2^{n-v}}{2^{n}-1} \leqslant \frac{9(q-1)}{2^{v}} \\
& \operatorname{Pr}\left[E_{3}\right] \leqslant \frac{q(9-1)}{2^{c}} \leq \frac{9^{2}}{2^{c}}
\end{aligned}
$$

Sponge features

Sponge are convenient!

- If f is a random permutation, H is indifferentiable from a RO
- Flexible:
- For a fixed permutation size, values of r, v and $\lambda \rightarrow$ speed/security trade-off
- Natively a XOF (variable λ)
- Simplicity: easier to design a (good) permutation

SHA-3 - Keccak

- Hash function using the sponge construction, from a permutation of $\{0,1\}^{1600}$
- Standardized by NIST, after an academic competition (2008-2012)
- Best current choice for a hash function
- Four main variants: SHA3-224, SHA3-256, SHA3-384 and SHA3-512

If you need a hash function, use SHA-3!

Conclusion

Two main families

- Merkle-Damgård construction from a compression function
- Sponge construction from a random permutation
- Many broken constructions, few good ones...
... therefore:

Don't design crypto yourself!

- No generic way to build a hash function
- Every small detail counts!

Use SHA-3 (or maybe SHA-2)

- Don't use MD5!
- Don't use SHA-1!

