Lecture 3. Symmetric encryption Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes - IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

Block ciphers are not enough

Block ciphers offer

- One-to-one (deterministic) encryption
- Fixed-size messages

We need

- One-to-many (non-deterministic) encryption
- Variable-size messages

Block ciphers are not enough

Block ciphers offer

- One-to-one (deterministic) encryption
- Fixed-size messages

Symmetric encryption scheme

$\begin{cases} \mathsf{Enc}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \\ \mathsf{Dec}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \end{cases}$

- Enc is a randomized encryption scheme algorithm
- Dec is a (deterministic) decryption scheme algo
- Correctness: for all $k \in \{0,1\}^{\kappa}$, $m \in \{0,1\}^{*}$ and $c \leftarrow \operatorname{Enc}_{k}(m)$, $\operatorname{Dec}_{k}(c) = m$
- Efficiency: for all $k \in \{0,1\}^{\kappa}$, $m \in \{0,1\}^{*}$ and $c \leftarrow \operatorname{Enc}_{k}(m)$, $|c| \simeq |m|$

We need

- One-to-many (non-deterministic) encryption
- Variable-size messages

Block ciphers are not enough

Block ciphers offer

- One-to-one (deterministic) encryption
- Fixed-size messages

Symmetric encryption scheme

We need

- One-to-many (non-deterministic) encryption
- Variable-size messages

$$\begin{cases} \mathsf{Enc} : \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \\ \mathsf{Dec} : \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \end{cases}$$

- Enc is a *randomized* encryption scheme
- Dec is a (deterministic) decryption scheme
- Correctness: for all $k \in \{0,1\}^{\kappa}$, $m \in \{0,1\}^*$ and $c \leftarrow \operatorname{Enc}_k(m)$, $\operatorname{Dec}_k(c) = m$
- Efficiency: for all $k \in \{0,1\}^{\kappa}$, $m \in \{0,1\}^{*}$ and $c \leftarrow \operatorname{Enc}_{k}(m)$, $|c| \simeq |m|$
 - How to build symmetric encryption schemes?
 - What are good encryption schemes?

From block ciphers to symmetric encryption schemes

The tool: modes of operations

> Transforms a block cipher into a *symmetric encryption scheme*

$$E: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n} \rightsquigarrow \begin{cases} \mathsf{Enc}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \\ \mathsf{Dec}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \end{cases}$$

A mode is good if it turns good BCs into good encryption schemes

Another approach: from stream ciphers

- Basic (incomplete) idea:
 - Use one-time pad with pseudo-random bits
 - Produce the pseudo-random bits on the fly
- In terms of security:
 - block cipher + pseudo-random permutation
 - stream cipher + pseudo-random generator

1. Security notions for symmetric encryption schemes

2. From block ciphers to symmetric encryption schemes: modes of operation

Experiment for chosen-plaintext attack

IND-CPA experiment $\operatorname{Exp}_{Enc}^{\operatorname{IND-CPA}}(A)$ for Enc : $\mathcal{K} \times \mathcal{M} \to \mathcal{M}$

Challenger draws $k \leftarrow \mathcal{K}$

Adversary has oracle access to $Enc_k(\cdot)$: on query x_i , gets $c_i \leftarrow Enc_k(x_i)$

Adversary creates two equal-length messages m_0 and m_1 and submits them Challenger draws $b \leftarrow \{0,1\}$ and answers with $c \leftarrow \text{Enc}_k(m_b)$ Adversary tries to guess b and outputs \hat{b}

Remarks

- Oracle access during the whole experiment
- Equal-length messages ~> message length not hidden!
 - Impossible to hide if messages of any length
 - Use padding beforehand if message length is sensitive

Chosen-plaintext attack advantage

IND-CPA advantage of an adversary A $\operatorname{Adv}_{\operatorname{Enc}}^{\operatorname{IND-CPA}}(A) = \left| \operatorname{Pr}\left[\operatorname{Exp}_{\operatorname{Enc}}^{\operatorname{IND-CPA}}(A) = 1 \middle| b = 1 \right] - \operatorname{Pr}\left[\operatorname{Exp}_{\operatorname{Enc}}^{\operatorname{IND-CPA}}(A) = 1 \middle| b = 0 \right] \right|$ • Equal to $|\Pr[\hat{b} = 1|b = 1] - \Pr[\hat{b} = 1|b = 0]|$ and to $|2\Pr[\hat{b} = b] - 1|$ Extremal cases: • Guessing \hat{b} at random \rightarrow advantage 0 $\rightarrow Adv = \int_{cc}^{VD} \left(0, 1 \right) \geq 0$ Resource-unbounded $A \rightsquigarrow$ advantage 1 $\begin{array}{c} \longrightarrow & A_{d_{u}} & \text{ind-cPA} \\ & Finc \\ A_{d_{u}} & \text{ind-cPA} \\ & A_{d_{u}} & \text{ind-cPA} \\ \end{array} \begin{pmatrix} n & n & n \\ +\infty & n \\ +\infty & n \\ \end{array} \end{pmatrix} = 1$ **IND-CPA** advantage $\operatorname{Adv}_{\operatorname{Enc}}^{\operatorname{IND-CPA}}(q,t) = \max_{A_{q,t}} \operatorname{Adv}_{\operatorname{Enc}}^{\operatorname{IND-CPA}}(A_{q,t})$

where $A_{q,t}$ is an alg. that runs in time $\leq t$ and makes $\leq q$ queries to the challenger

Comments on IND-CPA security

- ▶ No formal definition of IND-CPA secure, only a measure (but in asymptotic security)
- ► IND-CPA \implies non-determinism (A can query $Enc_k(m_0)$ and $Enc_k(m_1)$)
- \blacktriangleright IND-CPA \implies the adversary cannot compute any single bit of the message
- ▶ IND-CPA \implies the adversary can compute *very few* information on the message

Stronger security notions

- Indistinguishability under chosen ciphertext attack
 - Access to both an encryption oracle and a decryption oracle
 - 2 variants: non-adaptative (IND-CCA) or adaptative (IND-CCA2)
- Indistinguishability for multiple encryptions
 - Challenger draws $b \leftarrow \{0, 1\}$
 - Adversary submits *pairs* of challenges (m_i^0, m_i^1) and gets $c_i \leftarrow \text{Enc}_k(m_i^b)$
 - Adversary must find b

either CPA or CCA

1. Security notions for symmetric encryption schemes

2. From block ciphers to symmetric encryption schemes: modes of operation

Goal

$$E: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n} \rightsquigarrow \begin{cases} \mathsf{Enc}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \\ \mathsf{Dec}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \end{cases}$$

- *E* is made to encrypt one block of data
- Enc should encrypt any number of blocks

 \rightarrow Use *E* several times to encrypt a message $m \in \{0, 1\}^*$

Desired properties

- Security:
 - $\blacktriangleright \ E \ good \implies Enc \ good$
 - \blacktriangleright Low (S)PRP-advantage \implies low IND-CPA advantage
- Efficiency:
 - Efficient encryption and decryption
 - Ciphertext not too large compared to message

if *E* is efficient

Obvious (bad) idea: Electronic Code Book (ECB)

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

Obvious (bad) idea: Electronic Code Book (ECB)

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

First (real) example of mode of operation: Cipher Block Chaining (CBC)

First (real) example of mode of operation: Cipher Block Chaining (CBC)

- ► IV: *random* initialization vector in $\{0, 1\}^n$
- $\blacktriangleright \text{ Input: } m = m_1 \| \cdots \| m_\ell$

• Output:
$$c = IV ||c_1|| \cdots ||c_\ell|$$

padding if needed size $n(\ell + 1)$

IND-CPA security if E is a good PRP and IV truly random

First (real) example of mode of operation: Cipher Block Chaining (CBC)

Adversary when IV is not uniform

1. One-block query *m*: $r || c \leftarrow r || E_k(m \oplus r)$

r is IV

- 2. *Guesses* the next IV: r'
- 3. Challenges $m_0 = m \oplus r \oplus r'$ and m_1 uniform: $r'' \| c_b \leftarrow r'' \| E_k(m_b \oplus r'')$
- 4. If r' = r'', return b = 0 if $c = c_b$, b = 1 otherwise
- 5. If $r' \neq r''$, failure

Generic CBC collision attack

Observation

- ► For fixed k, E_k is a permutation $\rightarrow E_k(x) = E_k(y) \iff x = y$
- ▶ In CBC, inputs to E_k are of the form $m_i \oplus c_{i-1}$

$$c_0 = IV$$

$$E_k(m_i\oplus c_{i-1})=E_k(m_j'\oplus c_{j-1}')\iff m_i\oplus c_{i-1}=m_j'\oplus c_{j-1}'$$

Consequence

Assume we get two identical ciphertext blocks:

$$c_{i} = c'_{j} \iff E_{k}(m_{i} \oplus c_{i-1}) = E_{k}(m'_{j} \oplus c'_{j-1})$$
$$\iff m_{i} \oplus c_{i-1} = m'_{j} \oplus c'_{j-1}$$
$$\iff c_{i-1} \oplus c'_{j-1} = m_{i} \oplus m'_{j}$$

► $c_{i-1} \oplus c'_{j-1}$ reveals information about m_i and m'_j ⇒ breaks IND-CPA security

no matter how good E!

Probability to get collisions?

Assumption

The distribution of the $(m_i \oplus c_{i-1})$ is approx. uniform

- If c_0 is the IV, it has to be approx. uniform
- ▶ If c_{i-1} is a ciphertext, non (approx.) uniformity would imply an attack

Birthday bound

Draw y_1, \ldots, y_q uniformly from a size-*N* set, with $q \leq \sqrt{2N}$. Then

$$\frac{q(q-1)}{4N} \le 1 - e^{-q(q-1)/2N} \le \Pr\left[\exists i \neq j, y_i = y_j\right] \le \frac{q(q-1)}{2N}$$

Consequence

- Collision found w.h.p. if $q \simeq \sqrt{N}$
- For CBC: Collision w.h.p. after observing $\simeq 2^{n/2}$ ciphertext blocks
- $\blacktriangleright\,$ Note: does not depend on key size $\kappa\,$

Proof of the birthday upper bound

If
$$y_1, \dots, y_q \leftarrow S$$
 with $|S| = N$, then $\Pr[\exists i \neq j, y_i = y_j] \leq \frac{q(q-1)}{2N} = \frac{\binom{q}{2}}{N}$
 $\Pr[\exists i \neq j, y_i = y_j] = \Pr[\bigvee_{i \neq j} y_i = y_j] \leq \sum_{\substack{i \neq j \\ i \neq j}} \Pr[y_i = y_j]$
 $\Pr[y_i = y_j] = \frac{1}{N}$ Since once y_i is chosen, the grob. that y_j is chosen with the same value is $\frac{1}{1 + p \text{ ords}}$. The same value is $\frac{1}{1 + p \text{ ords}} = \frac{1}{N}$.

Proof of the birthday lower bound

If
$$y_1, \ldots, y_q \leftarrow S$$
 with $|S| = N$, then $\Pr[\exists i \neq j, y_i = y_j] \ge 1 - e^{-\frac{q(q-1)}{2N}}$

$$\underbrace{(q(q-1))}_{(q(q-1))} = \Pr[\forall i \neq j, y_i \neq y_j] = \Pr[\forall j \neq y_1 \land y_2 \neq y_1 \land y_2 \neq y_1 \dots \land y_q \notin y_1 \dots y_{p-1}]$$

$$E_i : \forall j_i \notin [y_{1, \dots, y_{i-1}}] = \operatorname{Pr}[\forall i \neq g_1, \dots, y_{q-1}] \quad \text{occure } detween \forall j_{1, \dots, y_{i-1}}]$$

$$e^{\sum i = Pr}[E_2 \land E_3 \land \dots \land E_q] \quad (1 + x \leq e^{x})$$

$$\Pr[E_i] = \operatorname{Pr}[F_i] = \operatorname{Pr}[Y_i] \stackrel{N-i+1}{\longrightarrow} = \operatorname{Pr}(1 - \frac{i-1}{N}) \leq \operatorname{Tr} e^{-\frac{i-1}{N}} = e^{-\frac{q(q-1)}{2N}}$$

The birthday attack against CBC

Adversary A_{BIRTHDAY}

- Sends two messages with $\simeq 2^{n/2}$ blocks each
 - ▶ *m*⁰ with only zeroes
 - ▶ *m*₁ with pairwise distinct blocks
- Gets back $c = \operatorname{Enc}_k(m_b)$
 - ▶ If there are two blocks $c_i = c_j$, return 0 if $c_i \oplus c_j = 0 \cdots 0$, 1 otherwise
 - If not, return 0 or 1 at random

Analysis

- ► Correct answer if there exists $i \neq j$ s.t. $c_i = c_j$, since $c_i \oplus c_{j-1} = m_i \oplus m_j$
- ▶ $\Pr[\exists i \neq j, c_i = c_j] \gtrsim \frac{1}{4} \rightarrow \text{advantage} \gtrsim \frac{1}{2}$
- Time to find collisions: $O(2^{n/2})$

Conclusion

►
$$\operatorname{Adv}_{\operatorname{Enc}-CBC}^{\operatorname{IND}-\operatorname{CPA}}(2^{n/2}, 2^{n/2}) \ge \operatorname{Adv}_{\operatorname{Enc}-CBC}^{\operatorname{IND}-\operatorname{CPA}}(A_{\operatorname{Birthday}}) \gtrsim \frac{1}{2}$$

CBC mode should not be used for too long with the same key!

Second example of mode of operation: Counter (CTR)

Second example of mode of operation: Counter (CTR)

- IV: *random* initialization vector in $\{0, 1\}^n$
- $\blacktriangleright \text{ Input: } m = m_1 \| \cdots \| m_\ell$
- Output: $c = IV ||c_1|| \cdots ||c_\ell|$
- Parallel encryption (fast!)
- Also sensitive to birthday bound
- IND-CPA security from PRF security

size $n(\ell + 1)$ similar to a *stream cipher*

variant of PRP security

IND-CPA security for CTR: sketch of the proof

Skipped during the class

Finally

Modes of operations

- A good mode of operation turns a good block cipher into a good symmetric encryption scheme
- Different mode of operations require different quality for the block cipher
 - Good PRP
 - Good PRF
 - Ideal Block Cipher
- ▶ Proofs of security \rightarrow reductions between problems
- Usually: need more \rightarrow *ad hoc* analysis of the resulting system

Other symmetric encryption schemes

- Other modes of operations
- Stream ciphers

OFB, CFB *Wifi, 5G, ...*

Conclusion

Symmetric encryption, as we saw it

- Two ingredients:
 - a block cipher
 - a mode of operation
- Security notions:
 - PRP advantage
 - IND-CPA advantage
- More advanced security definitions:
 - strong PRP adv., (strong) PRF adv., ideal block cipher
 - IND-CCA, IND-CCA2, multiple encryptions

In practice

- Block cipher: mainly AES, with key size 128 bits
- Modes of operations: e.g. extension of CTR in TLS

Final words: Definitions and proofs are important!

fixed-size, deterministic variable-size, non-deterministic

block cipher symmetric encryption