Lecture 2. Block ciphers Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes - IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

Block ciphers: what do we want to achieve?

Goal: Symmetric Encryption

- Encryption: from a plaintext and a key \rightarrow ciphertexts
- Decryption: from a ciphertext and the key \rightarrow plaintext
- Security: a ciphertext alone should not give much information

Objects

- Plaintext: any message $\in \{0, 1\}^*$.
- ▶ Ciphertext: string $\in \{0,1\}^*$, not much larger than the message
- ▶ Key: string $\in \{0,1\}^*$ not too large, not too small

Block cipher

- Plaintext / ciphertext: fixed-length
- One-to-one mapping for each key \rightarrow deterministic!

Block ciphers are (mainly) a tool to build higher-level schemes

non-determinism

1. Definitions and security

2. Construction of block ciphers

3. Another (generic) attack: Meet in the middle

Block cipher: definition

Definition

A block cipher is a mapping $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ such that for all $k \in \mathcal{K}$, $E(k, \cdot)$ is one-to-one, with

- $\mathcal{K} = \{0, 1\}^{\kappa}$: the key space
- $\mathcal{M} = \{0, 1\}^n$: the message space

 $\kappa \in \{ \mathbf{54}, \mathbf{30}, \mathbf{96}, \mathbf{112}, \mathbf{128}, \mathbf{192}, \mathbf{256} \}$ $n \in \{ \mathbf{64}, \mathbf{128}, \mathbf{256} \}$

 \rightarrow a block cipher is a family of permutations, indexed by the keys

Notation

- We write interchangeably $E_k(m)$ or E(k, m)
- For a fixed k, we write E_k or $E(k, \cdot) : \mathcal{M} \to \mathcal{M}$

What are good block ciphers?

Efficiency

- Fast: e.g. *few cycles per byte* on modern CPUs
- Compact: small code / small circuit size
- Easy to implement \rightarrow avoid side-channel attacks, etc.

Security

▶ ...

- Given c = E(k, m), hard to find m without knowing k
- Given m, hard to compute c without knowing k
- Given *oracle access* to $E(k, \cdot)$, *hard* to find k
- Given *oracle access* to $E^{\pm}(k, \cdot)$, *hard* to find k

 E^{\pm} : both *E* and E^{-1}

What are good block ciphers?

Efficiency

- Fast: e.g. *few cycles per byte* on modern CPUs
- Compact: small code / small circuit size
- Easy to implement \rightarrow avoid side-channel attacks, etc.

Security

▶ ...

- Given c = E(k, m), hard to find m without knowing k
- ▶ Given *m*, *hard* to compute *c* without knowing *k*
- Given *oracle access* to $E(k, \cdot)$, *hard* to find k
- Given *oracle access* to $E^{\pm}(k, \cdot)$, *hard* to find *k*

 E^{\pm} : both *E* and E^{-1}

 \rightarrow Not enough! Ex.: given *E*, define $E'(k, m_L || m_R) = m_L || E(k, m_R)$

Need a *more general* security definition, that encompasses all of the above (and other)

In an ideal world

Definition

- Let Perm_n the set of all the $(2^n)!$ permutations of $\mathcal{M} = \{0, 1\}^n$
- ► $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ is an ideal block cipher if for all $k \in \mathcal{K}$, $E_k \leftarrow \text{Perm}_n$.

All keys provide perfectly random and independent permutations

Non-realistic world:

$$(2^n)^{2^{n-1}} < (2^n)! < (2^n)^{2^n}$$

• Key size $\simeq \log(2^n!) \simeq n \cdot 2^n$ bits

$$n = 32 \Rightarrow 2^{37}$$
-bit keys!

Why ideal?

Fix a key *k* and a subset $S \subset M$ of messages

Assume an adversary knows:

► E(k', m) for all $k' \in \mathcal{K} \setminus k$ and $m \in \mathcal{M}$

•
$$E(k, m)$$
 for all $m \in \mathcal{M} \setminus S$

Perfect secrecy: The adversary has no information about E(k, m) for m in S

(Strong) PRP security: informal presentation

Informally, a block cipher is secure if its behavior is close enough to the ideal world

Experiment

- ► Challenger gives the Adversary access to an *oracle* O
 - The adversary can query $\mathcal{O}(m)$ for any $m \in \mathcal{M}$
 - \mathcal{O} is either a random permutation, or a block cipher E_k with $k \leftarrow \mathcal{K}$
- > The adversary must distinguish between the two worlds
- Strong version: access to \mathcal{O}^{\pm}

Why does it encompass previous tentative definitions?

- If *m* can be found from c = E(k, m) without *k*
 - Take any c and compute the corresponding m
 - Query the oracle on *m* and compare the result with *c*
- Other definitions: exercise!

(Strong) PRP experiment

PRP experiment for a block cipher *E*: $Exp_E^{PRP}(A)$

Challenger chooses a bit $b \in \{0, 1\}$ Challenger defines an oracle \mathcal{O} :

▶ if b = 0:
$$\mathcal{O} \leftarrow \operatorname{Perm}_n$$
▶ if b = 1: $\mathcal{O} \leftarrow E_k$ where k ← K
Adversary submits queries m_i and gets c_i = $\mathcal{O}(m_i)$
Adversary outputs a bit \hat{b}

Strong PRP experiment for $E: Exp_E^{SPRP}(A)$

Adversary also submits queries c_j and gets $m_j = O^{-1}(c_j)$

Remark

▶ The adversary *knows* $E \rightarrow can compute E(k', m)$, given k' and m

(Strong) PRP advantage

PRP advantage of A $\operatorname{Adv}_{E}^{\operatorname{PRP}}(A) = \left| \operatorname{Pr} \left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A) = 1 : \mathcal{O} = E_{k}, k \leftarrow \mathcal{K} \right] - \operatorname{Pr} \left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A) = 1 : \mathcal{O} \leftarrow \operatorname{Perm}_{n} \right] \right|$

PRP advantage of A is closely related to Pr [success of A] exercise

(Strong) PRP advantage

 $\frac{\mathsf{PRP advantage of } A}{\mathsf{Adv}_{E}^{\mathsf{PRP}}(A)} = \left| \mathsf{Pr}\left[\mathsf{Exp}_{E}^{\mathsf{PRP}}(A) = 1 : \mathcal{O} = E_{k}, k \leftarrow \mathcal{K} \right] - \mathsf{Pr}\left[\mathsf{Exp}_{E}^{\mathsf{PRP}}(A) = 1 : \mathcal{O} \leftarrow \mathsf{Perm}_{n} \right] \right|$

PRP advantage of A is closely related to Pr [success of A] exercise

PRP advantage of the block cipher E

$$\operatorname{Adv}_{E}^{\operatorname{PRP}}(q,t) = \max_{A_{q,t}} \operatorname{Adv}_{E}^{\operatorname{PRP}}(A_{q,t})$$

where $A_{q,t}$ denotes an algorithm that runs in time $\leq t$ and makes $\leq q$ queries to \mathcal{O}

- ▶ The PRP advantage provides a *measure* on the quality of a PRP, hence a block cipher
- The PRP advantage does not define when it is good
- Strong PRP advantage: replace Exp^{PRP}_E by Exp^{SPRP}_E

The generic attack

Generic adversary A_{GEN} :

Input: Oracle access to either $\mathcal{O} \leftarrow \operatorname{Perm}_n$ or $\mathcal{O} = E_k$ with $k \leftarrow \mathcal{K}$

1.
$$m_1, \ldots, m_q \leftarrow \mathcal{M}$$

2. $k_1, \ldots, k_{t/q} \leftarrow \mathcal{K}$
3. $C_i \leftarrow [E(k_i, m_1), \ldots, E(k_i, m_q)] \text{ for } 1 \le i \le t/q$
4. $C \leftarrow [\mathcal{O}(m_1), \ldots, \mathcal{O}(m_q)]$

computations oracle queries

5. Return 1 if there exists *i* s.t. $C = C_i$, 0 otherwise

Complexity analysis

- Number of queries: q
- Running time: O(t)

Probability analysis for the generic attack

Random permutation world

$$\Pr\left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A_{\operatorname{GEN}}) = 1: \mathcal{O} \leftarrow \operatorname{Perm}_{n}\right] = \Pr\left[\exists k_{i}, \forall m_{j}, \mathcal{O}(m_{j}) = E(k_{i}, m_{j})\right] \leq t/q \cdot 2^{(n-2)q}$$

$$\operatorname{Proof.} \quad \operatorname{Proof.} \quad \operatorname{Pr}\left[A_{\operatorname{GEN}} \text{ returns } (\Box) = \operatorname{Pr}\left[\exists z, C_{i} = C\right] = \operatorname{Pr}\left[\exists z, W_{j} \in C(m_{j})\right]$$

(E) Fix
$$k_i \rightarrow this$$
 fixes every $E_{k_i}(u_i)$
L) for a fixed c, what is the prob. that $O(m_i) = c$?
 $\rightarrow for m_1$, any abit staring is equiprobable $n > \frac{1}{2n}$
 $m_2 \rightarrow O(m_2) \neq O(m_1) \rightarrow \frac{1}{2n}$
 $m_1^2 : O(m_2) \notin \{\Theta(m_1), \dots, \Theta(m_{j-1})\} \rightarrow \frac{1}{2n} - j + 1$
 $\Rightarrow P_r[C_i = C] = \prod_{i=0}^{n-1} \sum_{2n-j}^{n-1} = > P_r[\exists k_i, C_i = C] \leq \frac{1}{2} \sum_{j=2^n-j_{11/21}}^{n}$

Probability analysis for the generic attack

Random permutation world

$$\Pr\left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A_{\operatorname{GEN}})=1:\mathcal{O} \leftarrow \operatorname{Perm}_{n}\right] = \Pr\left[\exists k_{i}, \forall m_{j}, \mathcal{O}(m_{j})=E(k_{i}, m_{j})\right] \leq t/q \cdot 2^{(n-2)q}$$

Block cipher world $\Pr\left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A_{\operatorname{GEN}})=1:\mathcal{O}=E_{k}, k \leftarrow \mathcal{K}\right] \geq \Pr\left[\exists k_{i}, k=k_{i}\right]=t(q \cdot 2^{\kappa})$ Proof. ? [ACEN returns 1] = Pr Aic; = C] > Pr[] k; k=k;] ignoring the area where C=C: though ktk; $\Pr[\exists k; ; k \sim k;] = \frac{\# \{k; \}}{\# \{poss; ble k\}} = \frac{t/q}{2^{K}}$

Probability analysis for the generic attack

Random permutation world

 $\Pr\left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A_{\operatorname{GEN}})=1:\mathcal{O} \twoheadleftarrow \operatorname{Perm}_{n}\right]=\Pr\left[\exists k_{i},\forall m_{j},\mathcal{O}(m_{j})=E(k_{i},m_{j})\right]\leq t/q\cdot 2^{(n-2)q}$

Block cipher world $\Pr\left[\operatorname{Exp}_{E}^{\operatorname{PRP}}(A_{\operatorname{GEN}}) = 1 : \mathcal{O} = E_{k}, k \leftarrow \mathcal{K}\right] \geq \Pr\left[\exists k_{i}, k = k_{i}\right] = t/q \cdot 2^{\kappa}$

Conclusion

$$\mathsf{Adv}^{\mathsf{PRP}}_E(q,t) \geq \mathsf{Adv}^{\mathsf{PRP}}_E(A_{ ext{gen}}) \geq rac{t}{q\cdot 2^\kappa} - rac{t}{q\cdot 2^{(n-2)q}} \simeq rac{t}{q\cdot 2^\kappa}$$

So, what are good PRPs or block ciphers?

In this course, no formal definition of a good PRP

Informal (equivalent) definitions

- The advantage is the same as for an ideal block cipher
- The generic attack is almost the best possible

$$\blacktriangleright \operatorname{Adv}_E^{\operatorname{PRP}}(q,t) \simeq t/q \cdot 2^{\kappa}$$

Remarks

A good PRP is useless is κ is small brute force attack
 κ ≃ 40 on a laptop, κ ≃ 60 on a CPU/GPU cluster, κ ≃ 80 on an ASIC cluster
 In asymptotic security, good ≃ Adv_F^{PRP}(poly(n), poly(n)) ≪ 1/poly(n)

Some final remarks

Block cipher: $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ s.t. for all $k \in \mathcal{K}$, E_k is a permutation • functional definition what does it do?

Pseudo-random permutation: $\sigma : \mathcal{M} \to \mathcal{M}$ indistinguishable from a random permutation security definition how does it behave?

Models of security to use a block cipher E in a more general construction Random oracle model: Consider E as a random permutation

- Shows resistance against generic attacks
- Not sufficient!

(S)PRP model: Consider E as a good (S)PRP

- Stronger guarantee
- Still need to be careful

1. Definitions and security

2. Construction of block ciphers

3. Another (generic) attack: Meet in the middle

Generalities

How to build a block cipher?

- Several families of construction
 - Substitution-permutation network (SPN)
 - Feistel network
- (Non exhaustive) security goals: prevent the known attacks
 - Brute force
 - Linear cryptanalysis
 - Differential cryptanalysis

Some known block cipher(s families)

- Lucifer / DES:
 - 56-bit key; 64-bit block length
 - Variants (3-DES & DES-X) with larger key length
- Rijndael / AES
 - > 128, 192 or 256-bit key; 128-bit block length
 - Current standard
- Others: Blowfish, Twofish, Camellia, TEA, …

Data Encryption Standard broken using brute force quite slow Advanced Encryption Standard

e.g. AES *e.g.* DES

Example : AES

- ▶ NIST Competition (1997-2000)
- Winner: Rijndael, due to V. Rijmen & J. Daemen
- ▶ 128-bit block length; Key length 128, 192 or 256 (3 versions)
- Substitution-Permutation Network

Some algebraic considerations

Bit strings, bytes and finite field

- ▶ Input: 128-bit string \rightarrow 16-byte string
- ▶ One byte \simeq element of \mathbb{F}_{2^8}
- $\blacktriangleright \ \mathbb{F}_{2^8} \simeq \mathbb{F}_2[x]/\langle x^8 + x^4 + x^3 + x + 1 \rangle$

finite field with 2⁸ elements Degree-7 polynomials

SubBytes

- ▶ Inverse in \mathbb{F}_{2^8} (with $0 \mapsto 0$)
- Composed with an invertible affine transformation

MixColumns

- Column \rightarrow vector in $\mathbb{F}_{2^8}^4$
- Matrix multiplication by an MDS circulant matrix

coding theory

ightarrow Algebraic considerations to avoid known attacks

1. Definitions and security

2. Construction of block ciphers

3. Another (generic) attack: Meet in the middle

The context

Increase key length

Given a block cipher with (small) key length κ Build a block cipher with larger key length $\lambda = 2\kappa$ or 3κ , etc. Rationale: a block cipher can be *very good* except its key length

The simple idea

- Double encryption: $EE_2(k_1||k_2, m) = E(k_2, E(k_1, m))$
- Triple encryption:
 - $EEE_3(k_1||k_2||k_3, m) = E(k_3, E(k_2, E(k_1, m)))$
 - $EEE_2(k_1||k_2, m) = E(k_1, E(k_2, E(k_1, m)))$
 - $EDE_3(k_1||k_2||k_3, m) = E(k_3, E^{-1}(k_2, E(k_1, m)))$
 - $EDE_2(k_1||k_2, m) = E(k_1, E^{-1}(k_2, E(k_1, m)))$

Are these constructions safe?

- For instance, 3-DES *is* safe
- Exhaustive search: $O(2^{2\kappa})$ or $O(2^{3\kappa})$

e.g. DES

3-DES

Attack on double encryption

$$EE_2(k_1||k_2, m) = E(k_2, E(k_1, m))$$
, with $k_1, k_2 \in \{0, 1\}^{\kappa}$.

Meet-in-the-middle

Input: (m, c) where $c = EE_2(k_1^* || k_2^*, m)$ for *unknown* k_1^*, k_2^* *Output:* a (small) set of keys that contains $k_1^* || k_2^*$

1. Compute each
$$y_{k_1} = E(k_1, m)$$
 for $k_1 \in \{0, 1\}^{\kappa}$

2. Compute each $z_{k_2} = E^{-1}(k_2, c)$ for $k_2 \in \{0, 1\}^{\kappa}$

3. For each match
$$y_{k_1} = z_{k_2}$$
, add $k_1 || k_2$ to the set of keys
 $\blacktriangleright EE_2(k_1 || k_2, m) = E(k_2, E(k_1, m)) = E(k_2, y_{k_1}) = E(k_2, z_{k_2}) = a$

Analysis

- ▶ Time: twice $O(2^{\kappa})$ calls to E^{\pm} + the matches \rightarrow roughly $O(2^{\kappa})$
- ▶ Space: two lists of 2^{κ} ciphertexts and keys $\rightarrow O((n + \kappa) \cdot 2^{\kappa})$

 \rightarrow Same time as brute force attack with key length 2 $^{\kappa}!$

Conclusion

Definitions and security

Block cipher: $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ such that each $E(k, \cdot)$ is a permutation

Pseudo-random permutation: $\sigma : \mathcal{M} \to \mathcal{M}$ indistinguishable from a random permutation

using the (S)PRP experiment and advantage

Ideal block cipher: each $E(k, \cdot)$ is a random permutation

In practice

- AES / Rijndael:
 - Most used block cipher nowadays, standardized by the NIST, replacement of DES
 - Block size n = 128 bits; Key size $\kappa = 128$, 196 or 256 bits
- Some other (less used) possibilities:
 - PRESENT: n = 64, $\kappa = 80$ or 128
 - SHACAL-2: $n = 256, \kappa = 512$

lightweight large parameters

Next lecture

...

Symmetric encryption: from fixed-length to variable-length encryption