
Lecture 1. Introduction

Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

2/19

What is cryptography?

Protecting secret data from adversaries

▶ Communications (email, web, credit card payment, . . .)

▶ Storage (encrypted hard drive, . . .)

▶ Computations (electronic voting, . . .)

▶ . . .

Used with various hardware

▶ High-end CPUs, mobile phones, microcontrollers, dedicated hardware

▶ Varying speed (throughput & latency), code/circuit size, energy consumption, . . .

“Doing crypto”

▶ Designing new primitives, constructions, protocols, . . .

▶ Analysing existing primitives, . . .

▶ Deploying crypto in products incl. implementation

3/19

What is this course about?

▶ Cryptographic constructions

▶ What is a block cipher?

▶ What is a key exchange?

▶ . . .

▶ Some standard attacks

▶ Birthday attack

▶ . . .

▶ Real-life usage

▶ What’s inside TLS?

But not (really) about

▶ Implementation

▶ Usage of existing standard cryptographic softwares, libraries, . . .

4/19

Example of a protocol: TLS

Goals

▶ Confidentiality no adversary can read the data
▶ Authenticity no adversary can impersonate the sender
▶ Integrity no adversary can modify the data

Some ingredients

▶ Key exchange e.g. Diffie-Hellman

▶ public-key (a.k.a. asymmetric) cryptography
▶ Authenticated encryption e.g using AES

▶ symmetric cryptography
▶ Signatures e.g. ECDSA

▶ public-key + symmetric cryptography

5/19

Contents (tentative)

1. Introduction One-time pad
2. Block ciphers AES, DES
3. Symmetric encryption CBC & CTR modes of operation

4. Hash functions SHA-2, SHA-3
5. Messages authentication codes & authenticated encryption CBC-MAC, HMAC, GCM
6. Key exchange Diffie-Hellman
7. Asymmetric encryption & key encapsulation ElGamal
8. Signatures Schnorr, DSA
9. RSA

10. Putting it all together TLS

▶ Definitions and security notions

▶ Proofs of security

▶ Examples

6/19

Historical ciphers

▶ Shift ciphers Caesar (50 BC); rot13
▶ Substitution ciphers Atbash (600-500 BC)
▶ Transposition ciphers Scytale (400 BC)
▶ Polyalphabetic cipher Vigenère (1553); Enigma (1920s)
▶ . . .

▶ None is safe: brute force, frequency analysis (1863), . . .

▶ Some lessons drawn:

▶ You need a large enough key space.

▶ Designing an encryption system is difficult.

6/19

Historical ciphers

▶ Shift ciphers Caesar (50 BC); rot13
▶ Substitution ciphers Atbash (600-500 BC)
▶ Transposition ciphers Scytale (400 BC)
▶ Polyalphabetic cipher Vigenère (1553); Enigma (1920s)
▶ . . .

▶ None is safe: brute force, frequency analysis (1863), . . .

▶ Some lessons drawn:

▶ You need a large enough key space.

▶ Designing an encryption system is difficult.

7/19

1. A first example: the one-time pad

2. Computational security

8/19

The one-time pad

Input: Plaintext m ∈ {0, 1}ℓ (or message)

Secret: Key k ∈ {0, 1}ℓ
Output: Ciphertext c ∈ {0, 1}ℓ

Encryption: Enck(m) =

m ⊕ k

Decryption: Deck(c) =

c ⊕ k

Correctness: Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Pros

▶ Used during the cold war

▶ Used for small plaintexts/secrets

▶ Perfectly secret

Cons & caveats

▶ Key as long as the message

▶ Can be used only once

▶ The key must be uniformly sampled

8/19

The one-time pad

Input: Plaintext m ∈ {0, 1}ℓ (or message)

Secret: Key k ∈ {0, 1}ℓ
Output: Ciphertext c ∈ {0, 1}ℓ

Encryption: Enck(m) = m ⊕ k
Decryption: Deck(c) =

c ⊕ k

Correctness: Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Pros

▶ Used during the cold war

▶ Used for small plaintexts/secrets

▶ Perfectly secret

Cons & caveats

▶ Key as long as the message

▶ Can be used only once

▶ The key must be uniformly sampled

8/19

The one-time pad

Input: Plaintext m ∈ {0, 1}ℓ (or message)

Secret: Key k ∈ {0, 1}ℓ
Output: Ciphertext c ∈ {0, 1}ℓ

Encryption: Enck(m) = m ⊕ k
Decryption: Deck(c) = c ⊕ k

Correctness: Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Pros

▶ Used during the cold war

▶ Used for small plaintexts/secrets

▶ Perfectly secret

Cons & caveats

▶ Key as long as the message

▶ Can be used only once

▶ The key must be uniformly sampled

8/19

The one-time pad

Input: Plaintext m ∈ {0, 1}ℓ (or message)

Secret: Key k ∈ {0, 1}ℓ
Output: Ciphertext c ∈ {0, 1}ℓ

Encryption: Enck(m) = m ⊕ k
Decryption: Deck(c) = c ⊕ k

Correctness: Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Pros

▶ Used during the cold war

▶ Used for small plaintexts/secrets

▶ Perfectly secret

Cons & caveats

▶ Key as long as the message

▶ Can be used only once

▶ The key must be uniformly sampled

8/19

The one-time pad

Input: Plaintext m ∈ {0, 1}ℓ (or message)

Secret: Key k ∈ {0, 1}ℓ
Output: Ciphertext c ∈ {0, 1}ℓ

Encryption: Enck(m) = m ⊕ k
Decryption: Deck(c) = c ⊕ k

Correctness: Deck(Enck(m)) = (m ⊕ k)⊕ k = m

Pros

▶ Used during the cold war

▶ Used for small plaintexts/secrets

▶ Perfectly secret

Cons & caveats

▶ Key as long as the message

▶ Can be used only once

▶ The key must be uniformly sampled

9/19

Perfect secrecy

a.k.a information-theoretic security, a.k.a. unconditional security

No matter what an attacker knows about the message, the ciphertext will not give them

any extra information.

Formalisation

Knowledge: probability distributions over messages / ciphertexts / keys

Message: random variable M over M space of messages
Ciphertext: random variable C over C space of ciphertexts

Definition Shannon (1949)
An encryption scheme (Enc,Dec) is perfectly secret if for every probability distribution for

M, every message m ∈ M and every c ∈ C (s.t. Pr [C = c] > 0),

Pr [M = m|C = c] = Pr [M = m].

10/19

Security proof for the one-time pad

Theorem Shannon (1949)
The one-time pad is perfectly secret.

Idea of the proof

Since the key is uniform in {0, 1}ℓ, C is uniform no matter what (the distribution of) M is

Proof

11/19

Limitations of perfect secrecy

Theorem Shannon (1949)
For a perfectly secret encryption scheme with message space M and key space K,

(i) |K| ≥ |M|
(ii) if |K| = |M|, k must be uniformly sampled from K

Proof of (i)

12/19

Conclusion

▶ One-time pad: perfectly secret but. . .

▶ . . . perfect secrecy impossible with small keys

Relaxation of the security notion

▶ Allow to recover some (very little!) information statistical secrecy
▶ Put a limit on the computational power of an attacker computational security

Other problems

▶ An attacker can modify any message no integrity

▶ c = m ⊕ k =⇒ c ⊕ m′ = (m ⊕ m′)⊕ k

→ Need definitions!

13/19

1. A first example: the one-time pad

2. Computational security

14/19

Principles of modern cryptography

Formal definitions

▶ Example: what does secure encryption mean?

▶ An attacker cannot recover the key

▶ An attacker cannot recover the message from the ciphertext

▶ An attacker cannot retrieve any character of the message from the ciphertext

▶ . . .

▶ (good definition) Whatever information an attacker has about the message, the

ciphertext only provides them with very little additional information

▶ Example: what is an attacker ?

▶ Ciphertext only attack COA

▶ Known plaintext attack KPA

▶ Chosen plaintext attack CPA

▶ Chosen ciphertext attack CCA

Specific assumptions

▶ Computational power of an attacker (complexity theory)

▶ Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

14/19

Principles of modern cryptography

Formal definitions

▶ Example: what does secure encryption mean?

▶ (good definition) Whatever information an attacker has about the message, the

ciphertext only provides them with very little additional information

▶ Example: what is an attacker ?

▶ Ciphertext only attack COA

▶ Known plaintext attack KPA

▶ Chosen plaintext attack CPA

▶ Chosen ciphertext attack CCA

Specific assumptions

▶ Computational power of an attacker (complexity theory)

▶ Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

14/19

Principles of modern cryptography

Formal definitions

▶ Example: what does secure encryption mean?

▶ (good definition) Whatever information an attacker has about the message, the

ciphertext only provides them with very little additional information

▶ Example: what is an attacker ?

▶ Ciphertext only attack COA

▶ Known plaintext attack KPA

▶ Chosen plaintext attack CPA

▶ Chosen ciphertext attack CCA

Specific assumptions

▶ Computational power of an attacker (complexity theory)

▶ Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

14/19

Principles of modern cryptography

Formal definitions

▶ Example: what does secure encryption mean?

▶ (good definition) Whatever information an attacker has about the message, the

ciphertext only provides them with very little additional information

▶ Example: what is an attacker ?

▶ Ciphertext only attack COA

▶ Known plaintext attack KPA

▶ Chosen plaintext attack CPA

▶ Chosen ciphertext attack CCA

Specific assumptions

▶ Computational power of an attacker (complexity theory)

▶ Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

14/19

Principles of modern cryptography

Formal definitions

▶ Example: what does secure encryption mean?

▶ (good definition) Whatever information an attacker has about the message, the

ciphertext only provides them with very little additional information

▶ Example: what is an attacker ?

▶ Ciphertext only attack COA

▶ Known plaintext attack KPA

▶ Chosen plaintext attack CPA

▶ Chosen ciphertext attack CCA

Specific assumptions

▶ Computational power of an attacker (complexity theory)

▶ Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

14/19

Principles of modern cryptography

Formal definitions

▶ Example: what does secure encryption mean?

▶ (good definition) Whatever information an attacker has about the message, the

ciphertext only provides them with very little additional information

▶ Example: what is an attacker ?

▶ Ciphertext only attack COA

▶ Known plaintext attack KPA

▶ Chosen plaintext attack CPA

▶ Chosen ciphertext attack CCA

Specific assumptions

▶ Computational power of an attacker (complexity theory)

▶ Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

15/19

Indistinguishability

Alternative definition for (perfect / statistical) secrecy

Indistinguishability experiment for Enc : Exp
IND

Enc
(A)

Adversary chooses two messages m0, m1 ∈ M
Challenger draws k ↞ K, b ↞ {0, 1} and computes c = Enck(mb)
Adversary receives c, tries to guess b and outputs a bit b̂

Output True if b̂ = b

Indistinguishability advantage and ε-indistinguishability

▶ Advantage of adversary A:

Adv
IND

Enc
(A) = Pr

[
Exp

IND

Enc
(A) = true

]
− 1

2

▶ Enc is ε-indistinguishable if

max
A

Adv
IND

Enc
(A) ≤ ε

15/19

Indistinguishability

Alternative definition for (perfect / statistical) secrecy

Indistinguishability experiment for Enc : Exp
IND

Enc
(A)

Adversary chooses two messages m0, m1 ∈ M
Challenger draws k ↞ K, b ↞ {0, 1} and computes c = Enck(mb)
Adversary receives c, tries to guess b and outputs a bit b̂

Output True if b̂ = b

Indistinguishability advantage and ε-indistinguishability

▶ Advantage of adversary A:

Adv
IND

Enc
(A) = Pr

[
Exp

IND

Enc
(A) = true

]
− 1

2

▶ Enc is ε-indistinguishable if

max
A

Adv
IND

Enc
(A) ≤ ε

16/19

Indistinguishability and secrecy

▶ 0-indistinguishable ⇐⇒ perfectly secret

▶ ε-indistinguishable ⇐⇒ ε-secret not defined here

Shortcomings

▶ Perfect secrecy: requires key length ≥ message length

▶ ε-secrecy: requires key length close to message length (if ε to be small)

Information-theoretic guarantee usually unachievable in practice

Solution

▶ Do not consider any adversary. . .

▶ . . . but computationally bounded adversaries only

▶ Remark: adversary = randomized algorithm

17/19

From information theory to complexity theory

Computational security

▶ Maximal advantage for resource-bounded adversaries: maxA:... Adv
IND

Enc
(A)

▶ Concrete security: chosen in this course
▶ Consider adversaries that perform ≤ t elementary operations
▶ Express the advantage with respect to t

▶ Asymptotic security: complexity theory
▶ Consider (randomized) polynomial-time adversaries (in a security parameter n)

▶ Prove that the advantage is negligible (≪ 1

poly(n))

Provable security

▶ Design a security experiment

▶ choose the adversary’s means (CPA / CCA) & goals (IND / NM)

▶ Bound the advantage of an adversary for this experiment probability of success

18/19

Orders of magnitude

Computational time

▶ t ≃ 2
40

: ∼ 1 day on my laptop

▶ t ≃ 2
60

: possible on a large CPU/GPU cluster done in academia

▶ t ≃ 2
80

: possible with an ASIC cluster Bitcoin mining

▶ t ≃ 2
128

: seems hard enough

Example: perform 2
128

operations within 34 years (≃ 2
30

seconds)

▶ Hypotheses:

▶ Hardware at 2
50

op/s quite fast
▶ Hugely parallelizable not always true
▶ 1000 W per device quite good

▶ Results:

▶ Require ≃ 2
128/(250 · 2

30) = 2
48

machines > 280 · 10
12

▶ Require ≃ 280 000 TW > 1.7 · 10
9

EPR

19/19

Conclusion

One-time pad

▶ First example of encryption scheme

▶ Strong security. . . in a very weak model!

▶ Vastly insufficient in practice

Computational security

▶ Experiment + advantage → security notion

▶ Various security models, depending on the experiment

▶ Fix goals & means

What’s next?

▶ Symmetric and public-key encryption

▶ Authentication and integrity

▶ Each time:

▶ What is the suitable security notion?

▶ How to achieve this security notion?

	A first example: the one-time pad
	Computational security

