Lecture 1. Introduction Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes - IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

What is cryptography?

Protecting secret data from adversaries

- Communications (email, web, credit card payment, ...)
- Storage (encrypted hard drive, ...)
- Computations (electronic voting, ...)

Used with various hardware

- ▶ High-end CPUs, mobile phones, microcontrollers, dedicated hardware
- Varying speed (throughput & latency), code/circuit size, energy consumption, ...

"Doing crypto"

▶ ...

- Designing new primitives, constructions, protocols, ...
- Analysing existing primitives, ...
- Deploying crypto in products

incl. implementation

What is this course about?

- Cryptographic constructions
 What is a block cipher?
 - What is a key exchange?
 - ▶ ...
- Some standard attacks
 - Birthday attack
 - ▶ ...
- Real-life usage
 - What's inside TLS?

But not (really) about

- Implementation
- Usage of existing standard cryptographic softwares, libraries, ...

Example of a protocol: TLS

Goals

- Confidentiality
- Authenticity
- Integrity

Some ingredients

- Key exchange
 - b public-key (a.k.a. **a**symmetric) cryptography
- Authenticated encryption
 - symmetric cryptography
- Signatures
 - public-key + symmetric cryptography

no adversary can read the data no adversary can impersonate the sender no adversary can modify the data

e.g. Diffie-Hellman

e.g using AES

e.g. ECDSA

Contents (tentative)

1.	Introduction		One-time pad
2.	Block ciphers		AES, DES
3.	Symmetric encryption	CBC &	CTR modes of operation
4.	Hash functions		SHA-2, SHA-3
5.	Messages authentication	on codes & authenticated encryption	CBC-MAC, HMAC, GCM
6.	Key exchange		Diffie-Hellman
7.	Asymmetric encryption	n & key encapsulation	ElGamal
8.	Signatures		Schnorr, DSA
9.	RSA		
10.	Putting it all together		TLS
	Definitions and securit	y notions	

- Proofs of security
- ► Examples

Historical ciphers

▶ ...

- Shift ciphers
- Substitution ciphers
- Transposition ciphers
- Polyalphabetic cipher

Caesar (50 BC); rot 13 Atbash (600-500 BC) Scytale (400 BC) Vigenère (1553); Enigma (1920s)

Historical ciphers

▶ ...

- Shift ciphers
- Substitution ciphers
- Transposition ciphers
- Polyalphabetic cipher

Caesar (50 BC); rot 13 Atbash (600-500 BC) Scytale (400 BC) Vigenère (1553); Enigma (1920s)

- None is safe: brute force, frequency analysis (1863), ...
- Some lessons drawn:
 - You need a large enough key space.
 - Designing an encryption system is *difficult*.

1. A first example: the one-time pad

2. Computational security

```
Input: Plaintext m \in \{0,1\}^{\ell} (or message)
Secret: Key k \in \{0,1\}^{\ell}
Output: Ciphertext c \in \{0,1\}^{\ell}
```

Encryption: $Enc_k(m) =$ Decryption: $Dec_k(c) =$

Input: Plaintext $m \in \{0,1\}^{\ell}$ (or message) Secret: Key $k \in \{0,1\}^{\ell}$ Output: Ciphertext $c \in \{0,1\}^{\ell}$

Encryption: $Enc_k(m) = m \oplus k$ Decryption: $Dec_k(c) =$

Input: Plaintext $m \in \{0,1\}^{\ell}$ (or message) Secret: Key $k \in \{0,1\}^{\ell}$ Output: Ciphertext $c \in \{0,1\}^{\ell}$

Encryption: $\operatorname{Enc}_k(m) = m \oplus k$ Decryption: $\operatorname{Dec}_k(c) = c \oplus k$

Input: Plaintext $m \in \{0,1\}^{\ell}$ (or message) Secret: Key $k \in \{0,1\}^{\ell}$ Output: Ciphertext $c \in \{0,1\}^{\ell}$

Encryption: $\operatorname{Enc}_k(m) = m \oplus k$ Decryption: $\operatorname{Dec}_k(c) = c \oplus k$

Correctness: $Dec_k(Enc_k(m)) = (m \oplus k) \oplus k = m$

Input: Plaintext $m \in \{0,1\}^{\ell}$ (or message) Secret: Key $k \in \{0,1\}^{\ell}$ Output: Ciphertext $c \in \{0,1\}^{\ell}$

Encryption: $\operatorname{Enc}_k(m) = m \oplus k$ Decryption: $\operatorname{Dec}_k(c) = c \oplus k$

Correctness: $\text{Dec}_k(\text{Enc}_k(m)) = (m \oplus k) \oplus k = m$

Pros

- Used during the cold war
- Used for small plaintexts/secrets
- Perfectly secret

Cons & caveats

- Key as long as the message
- Can be used only once
- The key must be uniformly sampled

Perfect secrecy

a.k.a information-theoretic security, a.k.a. unconditional security

No matter what an attacker knows about the message, the ciphertext will not give them any extra information.

Formalisation

Knowledge: probability distributions over messages / ciphertexts / keys

Message: random variable M over M

Ciphertext: random variable C over C

Definition

Shannon (1949)

space of messages

space of ciphertexts

An encryption scheme (Enc, Dec) is perfectly secret if for every *probability distribution* for M, every message $m \in M$ and every $c \in C$ (s.t. $\Pr[C = c] > 0$),

$$\Pr[M = m | C = c] = \Pr[M = m].$$

Security proof for the one-time pad

Theorem

Shannon (1949)

The one-time pad is perfectly secret.

Idea of the proof

Since the key is uniform in $\{0,1\}^{\ell}$, *C* is uniform no matter what (the distribution of) *M* is

Limitations of perfect secrecy

Theorem

Shannon (1949)

For a *perfectly secret* encryption scheme with message space \mathcal{M} and key space \mathcal{K} , (i) $|\mathcal{K}| \ge |\mathcal{M}|$ (ii) if $|\mathcal{K}| = |\mathcal{M}|$, *k* must be uniformly sampled from \mathcal{K}

Proof of (i) Assume |k| < 171 We have to prove Pr[T=m]C=c] = Pr[T=m] to: some distribution Some m and c We use the uniform distribution on TI. Define T(c) = 3 m GT - 3 k Deck(c)= m { Then $|\Pi(c)| \leq |K| \leq |\Pi|$ Take $m \in \Pi(\Pi(c))$; $P_r[\Pi = m[C = c] = 0 \neq P_r[\Pi = m] = 1/\Pi$ 17

Conclusion

- One-time pad: perfectly secret but...
- ... perfect secrecy impossible with *small* keys

Relaxation of the security notion

Allow to recover *some* (very little!) information

Put a limit on the computational power of an attacker

statistical secrecy computational security

Other problems

An attacker can modify any message $c = m \oplus k \implies c \oplus m' = (m \oplus m') \oplus k$ no integrity

 \rightarrow Need definitions!

1. A first example: the one-time pad

2. Computational security

Formal definitions

▶ ...

- Example: what does *secure encryption* mean?
 - An attacker cannot recover the key
 - An attacker cannot recover the message from the ciphertext
 - An attacker cannot retrieve any character of the message from the ciphertext

Formal definitions

- Example: what does *secure encryption* mean?
 - (good definition) Whatever information an attacker has about the message, the ciphertext only provides them with *very little* additional information

Formal definitions

- Example: what does *secure encryption* mean?
 - (good definition) Whatever information an attacker has about the message, the ciphertext only provides them with *very little* additional information

Example: what is an *attacker*?

Ciphertext only attack	COA
Known plaintext attack	KPA
Chosen plaintext attack	CPA
Chosen ciphertext attack	CCA

Formal definitions

- Example: what does *secure encryption* mean?
 - (good definition) Whatever information an attacker has about the message, the ciphertext only provides them with *very little* additional information

Example: what is an *attacker*?

Ciphertext only attack	COA
Known plaintext attack	KPA
Chosen plaintext attack	CPA
Chosen ciphertext attack	CCA

Formal definitions

- Example: what does *secure encryption* mean?
 - (good definition) Whatever information an attacker has about the message, the ciphertext only provides them with *very little* additional information

Example: what is an *attacker*?

Ciphertext only attack	COA
Known plaintext attack	KPA
Chosen plaintext attack	CPA
Chosen ciphertext attack	CCA

Specific assumptions

- Computational power of an attacker (complexity theory)
- Validity of assumptions, comparison between them and necessary assumptions

Formal definitions

- Example: what does *secure encryption* mean?
 - (good definition) Whatever information an attacker has about the message, the ciphertext only provides them with *very little* additional information

Example: what is an *attacker*?

Ciphertext only attack	COA
Known plaintext attack	KPA
Chosen plaintext attack	CPA
Chosen ciphertext attack	CCA

Specific assumptions

- Computational power of an attacker (complexity theory)
- Validity of assumptions, comparison between them and necessary assumptions

Provable security

Proving that a protocol satisfies a security definition, assuming assumptions.

Indistinguishability

Alternative definition for (perfect / statistical) secrecy

Indistinguishability **experiment** for Enc : $Exp_{Enc}^{IND}(A)$

Adversary chooses two messages $m_0, m_1 \in \mathcal{M}$ Challenger draws $k \leftarrow \mathcal{K}, b \leftarrow \{0, 1\}$ and computes $c = \text{Enc}_k(m_b)$ Adversary receives c, tries to guess b and outputs a bit \hat{b} Output TRUE if $\hat{b} = b$

Indistinguishability

Alternative definition for (perfect / statistical) secrecy

Indistinguishability **experiment** for Enc : $Exp_{Enc}^{IND}(A)$

Adversary chooses two messages $m_0, m_1 \in \mathcal{M}$ Challenger draws $k \leftarrow \mathcal{K}, b \leftarrow \{0, 1\}$ and computes $c = \text{Enc}_k(m_b)$ Adversary receives c, tries to guess b and outputs a bit \hat{b} Output TRUE if $\hat{b} = b$

Indistinguishability **advantage** and ε -indistinguishability

Advantage of adversary A:

$$\mathsf{Adv}_{\mathsf{Enc}}^{\mathsf{IND}}(A) = \mathsf{Pr}\left[\mathsf{Exp}_{\mathsf{Enc}}^{\mathsf{IND}}(A) = \mathsf{true}
ight] - rac{1}{2}$$

Enc is ε -indistinguishable if

$$\max_{A} \operatorname{Adv}_{\operatorname{Enc}}^{\operatorname{IND}}(A) \leq \varepsilon$$

Indistinguishability and secrecy

- \blacktriangleright 0-indistinguishable \iff perfectly secret
- ε -indistinguishable $\iff \varepsilon$ -secret

not defined here

Shortcomings

- \triangleright ε -secrecy: requires key length *close to* message length (if ε to be small)

Information-theoretic guarantee usually unachievable in practice

Solution

- Do not consider any adversary...
- but computationally bounded adversaries only
- Remark: adversary = randomized algorithm

From information theory to complexity theory

Computational security

- Maximal advantage for resource-bounded adversaries: max_{A:...} Adv^{IND}_{Enc}(A)
- Concrete security:
 - ▶ Consider adversaries that perform ≤ *t* elementary operations
 - Express the advantage with respect to t
- Asymptotic security:
 - Consider (randomized) *polynomial-time* adversaries (in a *security parameter n*)
 - Prove that the advantage is negligible ($\ll \frac{1}{\text{poly}(n)}$)

Provable security

- Design a security experiment
 - choose the adversary's means (CPA / CCA) & goals (IND / NM)
- Bound the advantage of an adversary for this experiment probability of success

chosen in this course

complexity theory

Orders of magnitude

Computational time

- \blacktriangleright t $\simeq 2^{40}$: \sim 1 day on my laptop
- ▶ $t \simeq 2^{60}$: possible on a large CPU/GPU cluster
- ▶ $t \simeq 2^{80}$: possible with an ASIC cluster
- \blacktriangleright t \simeq 2¹²⁸: seems hard enough

Example: perform 2^{128} operations within 34 years ($\simeq 2^{30}$ seconds)

Hypotheses:

Hardware at 2 ⁵⁰ op/s	quite fast
Hugely parallelizable	not always true
► 1000 W per device	quite good
Results:	
• Require $\simeq 2^{128}/(2^{50} \cdot 2^{30}) = 2^{48}$ machines	$> 280\cdot 10^{12}$
\blacktriangleright Require $\simeq 280000\mathrm{TW}$	$> 1.7 \cdot 10^9 \text{ EPR}$

Require $\simeq 280\,000\,\mathrm{TW}$

done in academia Bitcoin mining

Conclusion

One-time pad

- First example of encryption scheme
- Strong security... in a very weak model!
- Vastly insufficient in practice

Computational security

- ► Experiment + advantage → security notion
- Various security models, depending on the experiment
 - Fix goals & means

What's next?

- Symmetric and public-key encryption
- Authentication and integrity
- Each time:
 - What is the suitable security notion?
 - How to achieve this security notion?