
Crypto Engineering (U. Grenoble-Alpes) B. Grenet

TD 3 – Message authentication codes

Exercise 1. Suffix-MAC
Let H : {0, 1}∗→ {0, 1}n be a Merkle-Damgård hash function. Define SuffixMacH : {0, 1}κ × {0, 1}∗→ {0, 1}n
by SuffixMacH(k, m) = H(m∥k).

1. i. What is the (generic) complexity of finding a collision for (m, m′) for H?
ii. Does the complexity changes if one requires m and m′ to be of the same length ℓ > n?

2. Let (m, m′) be a colliding pair for H, with m and m′ having the same length.

i. Give an existential forgery attack for SuffixMacH with query cost 1.
ii. What is the total cost of the attack, if one has to compute (m, m′)?

iii. Is the attack interesting if κ= n/2? And if κ= n?

Exercise 2. CBC-MAC variant
We recall that CBC-MAC uses a block cipher E, and computes a MAC as follows: Write the input message
m = m1∥ · · · ∥mB and prepend it with one block m0 encoding the length of m. Then compute t0 = E(k, m0) and
for i > 0, t i = E(k, mi⊕ t i−1). Finally, output tB. The main drawback of this (secure) method is that prepending
the length requires to know the length in advance. In other words, one cannot begin the computation before
getting the full message.
We study a variants of CBC-MAC, and their securities. For each question, Mac denote the current variant, and
m1 and m2 are two message blocks. We let n be the block length.

1. The first variant simply removes the block m0 containing the length of m.

i. Compute an explicit expression for t1 =Mac(m1).
ii. Compute an explicit expression for t2 =Mac(m1∥m2), in terms of t1.

iii. How can we choose m2 to get a two-block message with tag t1?
iv. Describe an existential forgery attack for Mac. What is its query and time cost?

2. The second variant put the block containing the bit-length as the last block. We still denote the variant by
Mac.

i. Compute an explicit expression for t1 =Mac(m1).
ii. Compute an explicit expression for s =Mac(m1∥〈n〉∥t). Does it depend on m1?

iii. Describe an existential forgery attack for Mac, where the attacker requests the t and s as above, as
well as another tag t2 =Mac(m2).

3. The third variant does not includes the length of m, but encrypts the last tag with an independent key k′:
Let Mac′((k, k′), m) = E(k′,Mac(k, m)). Explain (roughly) why the previous attacks are avoided in this
solution.

1


	1. Suffix-MAC
	2. CBC-MAC variant

