TD 2 - Hash functions

Exercise 1.

Meet-in-the-middle preimage attack To build a compression function from a block cipher, an alternative to Davies-Meyer construction, known as PGV-13, is $f\left(h_{i-1}, m_{i}\right)=E\left(m_{i}, h_{i-1}\right) \oplus c$ where c is some fixed constant. It can be shown that in the ideal cipher model, a hash function H built from f using the Merkle-Damgård construction has birthday-security against both collision and preimage attacks.
The meet-in-the-middle attack allows to build a preimage for H, roughly in the same time needed to find a collision. We assume in the following that E is an ideal cipher block. In this exercise, to simplify, we consider a variant of Merkle-Damgård construction without padding.

1. i. Given h and t, what is the time needed to find m such that $f(h, m)=t$?
ii. What can you say about the preimage security of f itself?
2. Adapt the proof of the birthday bound to prove the following: Let $y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{q}$ be uniformly and independently drawn from a size- N set, with $q \leq \sqrt{2 N}$; Then the probability that there exist i and j such that $y_{i}=z_{j}$ is between $q^{2} / 2 N$ and q^{2} / N.
3. Back to the attack: Assume we sample q random elements m_{1}, \ldots, m_{q} and compute $y_{i}=f\left(I V, m_{i}\right)$ for $i=1$ to q, and similarly we sample q random elements n_{1}, \ldots, n_{q} and compute $z_{j}=E^{-1}\left(n_{j}, t \oplus c\right)$ for all $j=1$ to q. What is the probability that there exist i and j such that $y_{i}=z_{j}$?
4. Show how to build a two-block preimage of a given t, in time (rougly) $O\left(2^{n / 2}\right)$.

Exercise 2.

Let H be a hash function built from a compression function $f:\{0,1\}^{n} \times\{0,1\}^{w} \rightarrow\{0,1\}^{n}$ using the MerkleDamgård construction. We assume $w>2 n$. For any c, let $H_{c}:\{0,1\}^{c w} \rightarrow\{0,1\}^{n}$ be a function built using the same Merkle-Damgård construction, but without padding and for messages of length $c w$ exactly.
We are interested in finding k-multicollisions, that is a set of k messages m_{1}, \ldots, m_{k} such that $H\left(m_{1}\right)=\cdots=$ $H\left(m_{k}\right)$.

1. i. What time is needed to find a collision $f\left(I V, m_{0}^{0}\right)=f\left(I V, m_{0}^{1}\right)$?
ii. Let $h_{1}=f\left(I V, m_{0}^{0}\right)=f\left(I V, m_{0}^{1}\right)$. What time is needed to find a collision $f\left(h_{1}, m_{1}^{0}\right)=f\left(h_{1}, m_{1}^{1}\right)$?
iii. Show how to find a 4-multicollision for H_{2}, and analyze the running time.
iv. Explain how to turn this 4-multicollision for H_{2} into a 4-multicollision for H.
2. Generalize the previous construction to build 2^{t}-multicollisions and analyze the cost.
