TD 1 – Block ciphers and symmetric encryption

Exercise 1.

Explain why each of the following statements is wrong.

- **1.** It is never possible to attack an ideal block cipher.
- 2. A block cipher with keys of 512 bits is always secure.
- 3. There will never be any reason, technologically speaking, to use (block cipher) keys larger than 128 bits.
- 4. One should always use (block cipher) keys larger than 128 bits.
- 5. (*) One should always use the latest-published, most recent block cipher.

Exercise 2.

- ECB is not IND-CPA secure
- 🛸 Prove that ECB mode of operation does not yield an IND-CPA secure symmetric encryption scheme, no matter how good the underlying block cipher is. Write the definitions!

Exercise 3.

CBC cipertext stealing

Let $M = m_1 \| \cdots \| m_{\ell-1} \| m_{\ell}$ be a message of length $L = (\ell-1)n + r$ with $r = |m_{\ell}| < n$. A first idea to apply CBC on *M* is to pad its last block with zeroes for its length to be *n*.

Recall that using the CBC mode of operation with a block cipher E and key k, the message M is then encrypted as $C = c_0 \| \cdots \| c_\ell$ where c_0 is a random IV, and $c_i = E(k, m_i \oplus c_{i-1})$ for i > 0, where we assume m_ℓ is padded to length *n*.

- **1.** What is the bit length of *C*?
- **2.** Write the decryption algorithm, that is explain how to compute *M* from *C* and *k*.

We now present an elegant technique to avoid the padding. Let us rewrite the penultimate ciphertext $c_{\ell-1} = E(k, m_{\ell-1} \oplus c_{\ell-2})$ as $c'_{\ell} || P$ where c'_{ℓ} has r bits. Let also $m'_{\ell} = m_{\ell} || 0^{n-r}$ be the padded last block and $c_{\ell-1}' = E(k, m_{\ell}' \oplus (c_{\ell}' || P)).$

- **3.** What is the bit length of $C' = c_0 \| \cdots \| c_{\ell-2} \| c_{\ell-1}' \| c_{\ell}'$?
- **4.** Explain how to recover m_{ℓ} and P from the decryption of $c'_{\ell-1}$, and then $m_{\ell-1}$ from the decryption of c'_{ℓ} .

Exercise 4.

Birthday bound

We draw y_1, \ldots, y_q uniformly and independently at random in a set of size N, with $q \le \sqrt{2N}$. We want to prove that the probability $p_{q,N}$ that there exists $i \neq j$ such that $y_i = y_j$ satisfies $q(q-1)/4N \leq p_{q,N} \leq q(q-1)/2N$. We say that there is a *collision* between y_i and y_j if $y_i = y_j$.

- 1. We first prove the upper bound.
 - **i.** Fix $i \neq j$. What is the probability that $y_i = y_i$?
 - ii. Prove the upper bound. Use the union bound.
- **2.** For the lower bound, denote by N_i the event "there is no collision among y_1, \ldots, y_i ".
 - i. Express the event "there exists at least a collision" in terms of an event N_i .
 - **ii.** Prove that $\Pr[N_a] = \Pr[N_1] \cdot \Pr[N_2|N_1] \cdots \Pr[N_a|N_{a-1}]$.
 - **iii.** What is $\Pr[N_1]$?

 - iv. Prove that $\Pr[N_{i+1}|N_i] = 1 i/N$. v. Conclude that $\Pr[N_q] \le e^{-q(q-1)/2N}$. Use the inequality $1 + x \le e^x$, valid for any x.
 - vi. Finish the proof. Use the inequality $e^{-x} \le 1 x/2$, valid for $0 \le x \le 1$.

B. Grenet

False or false