Message authentication codes – Authenticated encryption Crypto Engineering

Bruno Grenet

Université Grenoble-Alpes

https://membres-ljk.imag.fr/Bruno.Grenet/CryptoEng.html

Introduction

Crypto. is not *only* about encryption!

- Get access to a building, car, ...
- ► Electronic signature for contracts, softwares, ...
- Detect message tampering
- Detect "identity theft"
- **...**
- \Rightarrow require digital signatures and/or message authentication codes (MACs)

Very important rule

Over a symmetric channel with potentially active adversaries

- It may be OK to only authenticate
- ► It is **never** OK to only encrypt

Need both?

Authenticated encryption!

1. MACs and their security

2. Designing MAC

3. Authenticated encryption

Message authentication codes

Definition

A message authentication code (MAC) is a mapping Mac : $\mathcal{K} \times \mathcal{M} \to \mathcal{T}$ with

- $\mathcal{K} = \{0,1\}^{\kappa}$: key space for instance $\kappa = 128$
- $ightharpoonup \mathcal{M} = \bigcup_{\ell < n} \{0, 1\}^{\ell}$: message space for instance $n = 2^{64}$
- $\mathcal{T} = \{0,1\}^t$: tag space for instance t = 256

A MAC comes with a verification algorithm Vrfy : $\mathcal{K} \times \mathcal{M} \times \mathcal{T} \rightarrow \{0,1\}$

▶ Vrfy(k, m, t) = 1 if the tag is valid, that is if $t \leftarrow Mac(k, m)$

Variant

A nonce-based MAC is a mapping Mac : $\mathcal{K} \times \mathcal{N} \times \mathcal{M} \to \mathcal{T}$ with

 $ightharpoonup \mathcal{N} = \{0,1\}^s$: nonce space

for instance s = 64

 $ightharpoonup Vrfy: \mathcal{K} imes \mathcal{N} imes \mathcal{M} o \mathcal{T}$

The nonce is either deterministic or random, but publicly known and single-use

Semantic

The tag authenticates the (sender of the) message

MACs security

Informally, a MAC is secure if an adversay cannot compute valid tags without the key

Three notions

Let $Mac(k, \cdot)$ be a MAC with unknown key.

- Universal forgery: given m, hard to find t s.t. Vrfy(k, m, t) = 1
- Existential forgery: hard to build a pair (m, t) s.t. Vrfy(k, m, t) = 1
- ▶ VIL-PRF security: hard to distinguish $Mac(k, \cdot)$ from a random function $f: \mathcal{M} \to \mathcal{T}$ (VIL-PRF stands for *variable input-length pseudorandom function*)

Remarks

- ► The three notions can be defined using suitable *experiment* and *advantage*
- ▶ VIL-PRF sec. \Rightarrow Existential forgery sec. \Rightarrow Universal forgery sec.

1. MACs and their security

2. Designing MACs

3. Authenticated encryption

MACs from block ciphers (theory)

Case of fixed-length messages

Given $E: \mathcal{K} \times \mathcal{M} \to \mathcal{M}$, build

- \blacktriangleright Mac(k, m): compute $t \leftarrow E(k, m)$ and return t
- \triangleright Vrfv(k, m, t): check whether t = E(k, m)

Variable-length messages

- ▶ Don't do $t_1 \leftarrow \text{Mac}(k, m_1), ..., t_{\ell} \leftarrow \text{Mac}(k, m_{\ell})!$
- Pad the blocks with extra information.
 - Block number
 - ightharpoonup Total message length ℓ
 - Random identifier r
 - $\Rightarrow t_i \leftarrow \text{Mac}(k, r || \ell || i || m_i)$

Properties

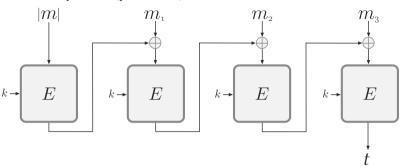
- ► If E is a good **PRF**, Mac has good security properties
- Not efficient for variable-length messages: small, thereby numerous, blocks

cf. ECB

no reordering no shortening

no recombination

MACs from block ciphers (*practice*): ex. of CBC-MAC



Properties

- Security proofs in the PRF model
- Only requires a block cipher
- Not very efficient

MACs from hash functions (theory)

Hash-and-MAC

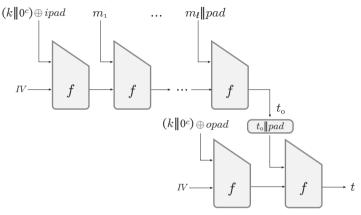
- ► Given:
 - ► A secure Mac for fixed-length messages (with Vrfy)
 - ► A good hash function *H*
- ► Build:
 - ightharpoonup Mac(k, m) = Mac(k, H(m))
 - ightharpoonup Vrfy'(k, m, t) = Vrfy(k, H(m), t)
- Security: OK if Mac is secure and H is collision resistant

Direct constructions

- Given a hash function H, several possibilities:
 - $\qquad \qquad \mathsf{PrefixMac}(k,m) = H(k||m)$
 - ightharpoonup SuffixMac(k, m) = H(m||k)
 - ► SandwichMac $(k_1||k_2, m) = H(k_1||m||k_2)$
- Yet, one good solution is a variant of SandwichMac

length-extension attack collision attack also problems

MACs from hash functions (practice): ex. of HMAC



- ► $HMac(k, m) = H((k||0^c) \oplus opad || H((k||0^c) \oplus ipad || m))$
 - ► *H* is a Merkle-Damgård construction
 - ightharpoonup opad = $(0x36)^{b/8} = 00110110 \ 00110110 \ \dots \ 00110110$
 - ipad = $(0x5c)^{b/8} = 01011100 \ 01011100 \ \dots \ 01011100$

HMAC properties – comparison with CBC-MAC

HMAC properties

- Secure up to the birthday bound of H
- ► Only *black-box* calls to *H*
 - Easy implementation
 - ► With white-box access: NMAC
- Widespread use

slightly more efficient

e.g. in TLS

Block cipher vs. Hash-based MACs

- lacktriangle Block cipher: usually smallish block size ightarrow limited generic security
- Hash functions: faster to process large data

⇒ Hash-based constructions more used than block-cipher-based

- But one can do even better!
 - Polynomial MACs
 - Dedicated constructions

e.g. VMAC PelicanMAC

MACs from polynomials: polynomial hash functions

Reminder: polynomials

- ▶ Degree-(n-1) polynomial over \mathbb{K} : $M(X) = m_0 + m_1 X + \cdots + m_{n-1} X^{n-1}$ with $m_i \in \mathbb{K}$
- \blacktriangleright Evaluation: $M(\cdot): k \mapsto m_0 + m_1 k + \cdots + m_{n-1} k^{n-1}$

Definition

The polynomial hash functions H_k (for $k \in \mathbb{K}$) are (*keyed*) hash functions defined by $H_k(m) = k \times M(k)$, where

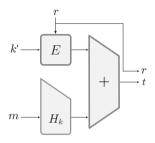
- $M(X) = m_0 + m_1 X + \cdots + m_{n-1} X^{n-1}$

Properties and remarks

- ightharpoonup Multiplication by k is needed for m_0 to "mix" with the key
- $ightharpoonup H_k$ is linear: $H_k(a+b) = H_k(a) + H_k(b)$
- For any $a \neq b$, $\Pr_{k \leftarrow \mathbb{K}}[H_k(a) = H_k(b)] = \Pr_{k \leftarrow \mathbb{K}}[k(A(k) B(k)) = 0] \leq \frac{n}{\#\mathbb{K}}$
 - Ex.: $\#\mathbb{K} \simeq 2^{128}$ and $n = 32 \rightsquigarrow \text{prob.} \simeq 1/2^{-96}$

optimal

MACs from polynomials: ex. of GMAC



- ► $GMac(k, k', m) = \langle r, H_k(m) + E(k', r) \rangle$ with
 - \vdash $H_k(m) = M(k)$
 - r a random *nonce*
 - E a block cipher

MACs from polynomials: implementation issues

Which field \mathbb{K} ?

ightharpoonup must be large enough for collision prob. to be low

e.g. $\#\mathbb{K} \simeq 2^{128}$

- ► Two standard choices:
 - ▶ Prime field: integers modulo a prime number → efficient floating-point arith.

Binary field: "carry-less integers" \rightsquigarrow dedicated instr. (pc1mu1qdq) $\mathbb{F}_{2^{120}-5}$ in Poly1305 $\mathbb{F}_{7^{128}}$ in GMAC

Combination of different fields

VMAC

VIVIA

Evaluation

- ► Given $M = m_0 + \cdots + m_{n-1}X^{n-1}$ and k, compute M(k)
- ► Horner scheme:
 - i. $r \leftarrow m_{n-1}$
 - ii. for *i* from n-2 to 0: $r \leftarrow r \times k + m_i$

 \rightsquigarrow n-1 additions, n-1 mutliplications by the constant k

1. MACs and their security

2. Designing MAC:

3. Authenticated encryption

What do we want to achieve?

We can encrypt and authenticate messages: can we do both?

Why is there a question?

- ► Encrypt-and-authenticate:
 - $ightharpoonup m\mapsto (c,t)$ where $c=\operatorname{Enc}_{k_E}(m)$ and $t=\operatorname{Mac}_{k_M}(m)$
 - Danger: t may reveal information on m
- Authenticate-then-encrypt:
 - $ightharpoonup m\mapsto c ext{ where } c=\operatorname{Enc}_{k_E}(m\|t) ext{ and } t=\operatorname{Mac}_{k_M}(t)$
 - ▶ Danger: the decryption can fail for two reasons (bad padding or invalid tag)

 \leadsto bad padding attack

- Encrypt-then-authenticate:
 - $ightharpoonup m\mapsto (c,t)$ where $c=\operatorname{Enc}_{k_E}(m)$ and $t=\operatorname{Mac}_{k_M}(c)$
 - Danger: seems OK...

Need for a security definition that cover both encryption and authentication

Authenticated Encryption with Associated Data (AEAD)

Settings

- A plaintext is sent encrypted
- ► Some associated data is sent unencrypted
- Both are authenticated
- → Example: IP packets (associated data = headers)

Definition

An AEAD scheme is a pair of mappings

- \triangleright $E: \mathcal{K} \times \mathcal{M} \times \mathcal{D} \times \mathcal{N} \rightarrow \mathcal{C}$
- $\blacktriangleright D: \mathcal{K} \times \mathcal{C} \times \mathcal{D} \times \mathcal{N} \to \mathcal{M} \cup \{\bot\}$

where

- ▶ *E* encrypts $m \in \mathcal{M}$ with $k \in \mathcal{K}$ and $\nu \in \mathcal{N}$ (*nonce*), and authenticates it together with $d \in \mathcal{D}$ (associated data)
- ightharpoonup D decrypts and verifies: returns m if authentication is successful, \perp otherwise
- ► $D(k, E(k, m, d, \nu), d, \nu) = m$ for all k, m, d and ν

Security notions

CPA security

Similar to CPA-security for encryption schemes, with two caveats:

- requests to the challenger include associated data and a nonce
- each nonce should be used only once

Ciphertext integrity – INT-CTXT

```
Challenger draws k \leftarrow \mathcal{K}
```

Adversary requests several $c_i = E(k, m_i, d_i, \nu_i)$ (without knowing k) Adversary tries to guess $(c, d, \nu) \notin \{(c_i, d_i, \nu_i)\}$ s.t. $D(k, c, d, \nu) \neq \bot$

 \rightarrow INT-CTXT advantage = probability of success of the adversary

AEAD security

An AEAD scheme is secure if it is both IND-CPA and INT-CTXT secure

Building AEAD schemes (theory)

Encrypt-then-authenticate

- Given (nonce-based) encryption scheme (Enc, Dec) and MAC (Mac, Vrfy)
- ▶ We build an AEAD scheme (E, D) where

```
E((k_{E}, k_{M}), m, d, \nu): D((k_{E}, k_{M}), (c, t), d, \nu): \\ 1. c \leftarrow Enc(k_{E}, m, \nu) \\ 2. t \leftarrow Mac(k_{M}, (c, d), \nu) \\ 3. Output (c, t) \\ D((k_{E}, k_{M}), (c, t), d, \nu): \\ 1. If Vrfy(k_{M}, (c, d), t, \nu): \\ 2. Return D(k_{E}, c, d, \nu) \\ 3. Else: return \bot
```

Security

The AEAD scheme (E, D) is secure if both the encryption scheme and the MAC are secure

Building AEAD schemes (practice): ex. of GCM

Galois Counter Mode (GCM)

- ► Standardized by NIST (2007)
- ▶ Based on GMAC and AES (used in CTR mode for encryption and in GMAC)

Encryption - authentication

Inputs: key k, message m, associated data d, nonce ν (E is the block cipher)

```
1. k_m \leftarrow E(k, 0^{128}) // Key for GMAC
```

2.
$$x \leftarrow (\nu || 0^{31}1) + 1$$
 // Initial counter value for CTR

3. $c \leftarrow$ encryption of m using E in CTR mode with initial counter value x

```
4. (c', d') \leftarrow \text{pad } c \text{ and } d \text{ with zeroes, to length multiple of } 128
```

5.
$$h \leftarrow H_{k_m}(d'||c'|| \operatorname{length}(d) || \operatorname{length}(c))$$
 // $H_k(m) = M(k)$

6.
$$t \leftarrow h \oplus E(k, x)$$

7. Output (c, t)

About GCM

Properties

- Very fast and parallelizable
- Security:
 - Proven secure if E is a good PRP
 - Proven secure when E is AES
 - \rightarrow Only one assumption for both IND-CPA and INT-CTXT security

Use

- ► SSH
- ► TLS 1.2 & 1.3
- OpenVPN 2.4+
- **.**..

Conclusion

Authentication is essential!

- Authentication without encryption may be useful
- Encryption without authentication is (almost) never useful

But encryption is most of the time needed too!

- Combination of both can lead to nasty surprises...
- ightharpoonup Modern view: do both at the same time ightarrow AEAD

Good authenticated encryption is hard

- Theoretical definitions are complicated, though intuitive
- ► Still an active area of research https://competitions.cr.yp.to/caesar.html

A non-exhaustive list of MACs

AMAC, BMAC, CMAC, DMAC, EMAC, FMAC, GMAC, HMAC, IMAC, JMAC, KMAC, LMAC, MMAC, NMAC, OMAC, PMAC, QMAC, RMAC, SMAC, TMAC, UMAC, VMAC, WMAC, XMAC, YMAC, ZMAC, PelicanMAC, SandwichMAC