
Hash functions
Crypto Engineering

Bruno Grenet

Université Grenoble-Alpes

https://membres-ljk.imag.fr/Bruno.Grenet/CryptoEng.html

https://membres-ljk.imag.fr/Bruno.Grenet/CryptoEng.html

2/17

What are hash functions?
Definition
A(n unkeyed) hash function is a mapping H : M → H, with
▶ M =

⋃
ℓ<N{0, 1}ℓ: the message space typically N ≥ 264

▶ H = {0, 1}n, with N ≫ n: the digests n ∈ {⧸⧸⧸⧹⧹⧹128,⧸⧸⧸⧹⧹⧹160, 224, 256, 384, 512}

0101001000110

Variants
▶ extendable-output function (XOF) → H =

⋃
ℓ<n{0, 1}ℓ

▶ keyed hash function H : K ×M → H family of hash functions

A hash function is simply a function: when is it good?

3/17

Usefulness of hash functions

Hash functions are an essential tool underlying most of (modern) cryptography!

▶ Hash-and-sign RSA signatures, (EC)DSA, . . .
▶ Message authentication codes HMAC, . . . → tomorrow!
▶ Password hashing (with a grain of salt)
▶ Hash-based signatures
▶ Commitment
▶ Key derivation
▶ As one-way functions or random oracle
▶ . . .

4/17

What are good hash functions?
Efficiency
▶ A few dozen cycles per byte
▶ Small memory
▶ . . .

Security
▶ First preimage resistance: given t , hard to find m such that H(m) = t
▶ Second preimage resistance: given m, hard to find m′ such that H(m′) = H(m)
▶ Collision resistance: hard to find m ̸= m′ such that H(m) = H(m′)

Remarks
▶ No definition of hard
▶ In some sense, be careful!

▶ collision resistance is stronger than 2nd preimage resistance
▶ 2nd preimage is stronger than 1st preimage resistance

5/17

The ideal world: random oracles
Definition
A random oracle is a function H : M → H such that ∀x ∈ M,H(x)↞ H

▶ As random as possible
▶ Used in proof as the random oracle model eq. to ideal cipher model
▶ Irrealistic but good hash functions are approximations whatever this means

Generic attacks
▶ 1st preimage: O(2n) exhaustive search
▶ 2nd preimage: O(2n) idem
▶ Collision: O(2n/2) “birthday attack”

→ A hash function is good if the generic attack is (almost) the best one

6/17

1. Hash functions from compression functions

2. Hash functions from permutations

7/17

Compression functions
Definition
A compression function is a mapping f : {0, 1}n × {0, 1}w → {0, 1}n

▶ Family of functions from {0, 1}n to itself
▶ Compare to hash functions: fixed-length input
▶ Compare to block ciphers: not invertible

Goal
Assuming a good f is given, how to construct a good hash function?
▶ Fixed-size → Variable-size domain extension
▶ Compare to bock cipher modes of operation

8/17

The Merkle-Damgård construction (1989)

▶ f : {0, 1}n × {0, 1}w → {0, 1}n

▶ pad(m) = m∥10 · · · 0∥⟨length of m⟩⇝ | pad(m)| = B × w
▶ H(m) = f (· · · f (f (IV ,m1),m2) . . . ,mB)

Efficiency
▶ B sequential calls to f → OK

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

9/17

Merkle-Damgård construction: security
Warm-up: first preimage resistance
▶ If f is 1st preimage resistant, then H is 1st preimage resistant too
▶ Contrapositive:

▶ Assume that given t , an attacker can compute m s.t. H(m) = t
▶ Then writing pad(m) = m1∥ · · · ∥mB, f (H(m1∥ . . . ∥mB−1),mB) = t

Collision resistance
▶ Attacker produces m ̸= m′ s.t. H(m) = H(m′)

▶ let pad(m) = m1∥ · · · ∥mB and pad(m′) = m′
1∥ · · · ∥m′

B′

▶ attacker also computes each hi and each h′
i

▶ If |m| ≠ |m′|, mB ̸= m′
B′ and f (hB−1,mB) = f (h′B′−1,m′

B′) is a collision

▶ Otherwise, let b maximal s.t. (hb−1,mb) ̸= (h′b−1,m′
b−1), then

▶ hb = h′
b since b is maximal

▶ f (hb−1,mb) = f (h′
b−1,m′

b) is a collision

10/17

Merkle-Damgård construction: 2nd preimage vulnerability

Given m, find m′ ̸= m s.t. H(m′) = H(m)

Attack: very rough sketch
▶ Write pad(m) = m1∥ · · · ∥mB, and hi = f (hi−1,mi) for all i
▶ Find a preimage of any hi , of the form (h0,m0) ≃ 2n/B

▶ m0∥mi+1∥ · · · ∥mB almost works
▶ But mB contains the wrong length⇝ this is not pad(m′) for any m′

▶ If we could find a family of m0 of variable lengths⇝ OK
▶ from fixed points hf = f (hf ,mf) ≃ 2n/2 (in some cases)
▶ from multicollisions m1, . . . , mK with same hash ≃ B · 2n/2

⇒ 2nd preimage in ≃ 2n/B + B · 2n/2 instead of O(2n) large B!

Patch: Chod-MD / Wide-pipe MD (2005)
▶ Use f : {0, 1}n+k × {0, 1}w → {0, 1}n+k

▶ Only keep the first n bits of f (hi−1,mi) as input to next f
▶ Very strong provable guarantees

11/17

How to design compression functions?

Davies-Meyer construction

E

f (hi−1,mi) = E(mi, hi−1)⊕ hi−1

Matyas-Meyer-Oseas construction

E
f (hi−1,mi) = E(hi−1,mi)⊕ mi

Security
▶ Systematic analysis of possible constructions (“PGV constructions”)
▶ Rigorous proofs in the ideal cipher model

▶ Not sufficient since actual block ciphers are not ideal!
▶ Example: XBOX used a Davies-Meyer based construction with non-ideal cipher

12/17

Final words on Merkle-Damgård construction
▶ Many examples: MD4, MD5, SHA-0, SHA-1, SHA-2, . . .
▶ MD5 failure:

▶ 1992: Designed by Rivest
▶ 1993: Collision attack on the compression function
▶ 2005: Collision attack on the hash function
▶ 2007-9: Practical useful collisions

Used up to 2008 (at least), while alternatives were available since (at least) 1996!
▶ Another bad example: Git chose SHA-1 in 2005 while weaknesses were known

Lessons
▶ Care about attacks! Even theoretical!
▶ Most (every?) weaknesses can evolve to damaging attacks

Don’t design your own crypto!

13/17

1. Hash functions from compression functions

2. Hash functions from permutations

14/17

Hash function from a permutation
Definition
A permutation of {0, 1}n is an invertible mapping p : {0, 1}n → {0, 1}n.

▶ No key – no security notion such as PRP
▶ Ex.: for any block cipher, E(0, ·) is a permutation
▶ Possible view: block cipher where key and plaintext are given together
▶ A permutation is invertible, but its inverse is often non necessary

Construction of a hash function
▶ Sponge construction : permutation → hash function
▶ Same general idea (but completely different construction) than Merkle-Damgård

15/17

The sponge construction

r

c

m1 m2

...

... ...

...

... mt h1 h2 ...

0

0
P P P P P

hλ

P

v

m‖10…0

absorbing phase squeezing phase

▶ pad(m) = m∥10 · · · 0⇝ length multiple of r
▶ Absorbing phase: compute yi = P(yi−1 ⊕ (mi∥0c)) for i = 1 to t , with y0 = 0r

▶ Squeezing phase:
▶ compute zi = P(zi−1) for i = 2 to λ, with z1 = yt
▶ output hi = first v bits of zi

▶ Finally: H(m) = h1∥h2∥ · · · ∥hλ

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

16/17

Sponge features
Sponge are convenient!
▶ If f is a random permutation, H is indifferentiable from a RO
▶ Flexible:

▶ For a fixed permutation size, values of c, r , t , v and λ → speed/security trade-off
▶ Natively a XOF (choose λ)

▶ Simplicity: easier to design a (good) permutation

SHA-3 – Keccak
▶ Hash function using the sponge construction, from a permutation of {0, 1}1600

▶ Standardized by NIST, after an academic competition (2008-2012)
▶ Best current choice for a hash function
▶ Four main variants: SHA3-224, SHA3-256, SHA3-384 and SHA3-512

If you need a hash function, use SHA-3!

17/17

Conclusion
Two main families
▶ Merkle-Damgård construction from a compression function
▶ Sponge construction from a random permutation
▶ Many broken constructions, few good ones. . .

. . . therefore:

Don’t design crypto yourself!
▶ No generic way to build a hash function
▶ Every small detail counts!

Use SHA-3 (or maybe SHA-2)
▶ Don’t use MD5!
▶ Don’t use SHA-1!

	Hash functions from compression functions
	Hash functions from permutations

