Hash functions
Crypto Engineering

Bruno Grenet

Université Grenoble-Alpes

https://membres-ljk.imag.fr/Bruno.Grenet/CryptoEng.html

https://membres-ljk.imag.fr/Bruno.Grenet/CryptoEng.html

What are hash functions?

Definition
A(n unkeyed) 'hash function is a mapping H : M — H, with
> M = J,_n{0,1}: the message space typically N > 24
> H ={0,1}", with N > n: the digests n € {128, 160, 224, 256, 384, 512}
=1 —
x H)
Variants
> extendable-output function (XOF) — H = |J,,{0,1}*
» keyed hash function H: K x M — H family of hash functions

A hash function is simply a function: when is it good?

Usefulness of hash functions

Hash functions are an essential tool underlying most of (modern) cryptography!

VVyVVYVYYVYYVYY

Hash-and-sign

Message authentication codes
Password hashing (with a grain of salt)
Hash-based signatures

Commitment

Key derivation

As one-way functions or random oracle

RSA signatures, (EC)DSA, ...
HMAC, ... — tomorrow!

What are good hash functions?

Efficiency
> A few dozen cycles per byte

» Small memory
> ...

Security

> First preimage resistance: given t, hard to find m such that H(m) =t
> Second preimage resistance: given m, hard to find m’ such that H(m') = H(m)
» [Collision resistance: hard to find m # m’ such that H(m) = H(n")

Remarks
» No definition of hard
» In some sense, be careful!
> collision resistance is stronger than 2"! preimage resistance
» 2" preimage is stronger than 1° preimage resistance

The ideal world: random oracles
Definition
A [random oracle is a function H : M — H such that Vx € M, H(x) « H

» As random as possible
» Used in proof as the random oracle model

eq. to ideal cipher model
> lIrrealistic but good hash functions are approximations

whatever this means
Generic attacks
> 1% preimage: O(2")

exhaustive search
» 2" preimage: O(2") idem
> Collision: 0(2"/?) “birthday attack”

— A hash function is good if the generic attack is (almost) the best one

1. Hash functions from compression functions

Compression functions

Definition
A ‘compression function is a mapping f : {0,1}" x {0,1}" — {0,1}"

» Family of functions from {0, 1}" to itself
» Compare to hash functions: fixed-length input
» Compare to block ciphers: not invertible

Goal
Assuming a good f is given, how to construct a good hash function?
> Fixed-size — Variable-size domain extension

» Compare to bock cipher modes of operation

The Merkle-Damgard construction (1989)

pad(m) = my meo S mp

N\ N\

h hB—
IV = hg f ! -

> f:{0,1}" x {0,1}¥ — {0,1}"
» pad(m) = m||10- - - 0||(length of m) ~ | pad(m)| = B x w

> H(m) =f(---f(F(IV,m),m) ..., mp)
Efficiency
> Bsequential calls to f — OK

Source : . Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

Merkle-Damgard construction: security

Warm-up: first preimage resistance

> If f is 1° preimage resistant, then H is 1" preimage resistant too
> Contrapositive:

> Assume that given t, an attacker can compute ms.t. H(m) =t

» Then writing pad(m) = my|| - - - ||mg, f(H(my]| ... ||ms—1), mg) =t

Collision resistance
> Attacker produces m # ' s.t. H(m) = H(m')
> let pad(m) = |- ms and pad(im') =] - - ||
> attacker also computes each h; and each]

> If |m| # |m'|, mg # mly and f(hg_1, mg) = f(Hp_,, my) is a collision

> Otherwise, let b maximal s.t. (hp—1, mp) # (h,_,, m)_,), then
> hy = h) since b is maximal
> f(hp—1, mp) = f(H,_,, m}) is a collision

Merkle-Damgard construction: 2" preimage vulnerability

Given m, find m' # ms.t. H(m') = H(m)

Attack: very rough sketch

» Write pad(m) = my|| - - - ||mg, and h; = f(hj—1, m;) for all i
» Find a preimage of any h;, of the form (ho, my) ~2"/B
> mg||mig|| - - - ||mp almost works

> But mg contains the wrong length ~~ this is not pad(n’) for any m’
> [fwe could find a family of my of variable lengths ~~ OK

> from fixed points hy = f(hs, my) ~ 2"/2 (in some cases)
» from multicollisions m', ..., m* with same hash ~ B.2"/2
= 2" preimage in ~ 2"/B + B - 2"/2 instead of 0(2") large B!

Patch: Chod-MD / Wide-pipe MD (2005)
> Use f: {0,1}"7% x {0,1}¥ — {0, 1}tk
» Only keep the first n bits of f(h;_1, m;) as input to next f
> Very strong provable guarantees

How to design compression functions?

Davies-Meyer construction Matyas-Meyer-Oseas construction
}I,j_l —_—T1" E hi II,j_l '—" m \ 67—> hi
f(hiz1, mi) = E(m;, hi—1) © hi_y f(hiz, mi) = E(hiq, mi) © m;
Security

» Systematic analysis of possible constructions (“PGV constructions”)
» Rigorous proofs in the ideal cipher model
> Not sufficient since actual block ciphers are not ideal!
> Example: XBOX used a Davies-Meyer based construction with non-ideal cipher

Final words on Merkle-Damgard construction

> Many examples: MD4, MD5, SHA-0, SHA-1, SHA-2, ...
> MD5 failure:

P 1992: Designed by Rivest

» 1993: Collision attack on the compression function

» 2005: Collision attack on the hash function

» 2007-9: Practical useful collisions

Used up to 2008 (at least), while alternatives were available since (at least) 1996!
» Another bad example: Git chose SHA-1in 2005 while weaknesses were known

Lessons
> Care about attacks! Even theoreticall
> Most (every?) weaknesses can evolve to damaging attacks

Don’t design your own crypto!

2. Hash functions from permutations

Hash function from a permutation

Definition
A permutation of {0,1}" is an invertible mapping p : {0,1}" — {0,1}".

» No key - no security notion such as PRP

» Ex.: for any block cipher, E(0, -) is a permutation

» Possible view: block cipher where key and plaintext are given together
> A permutation is invertible, but its inverse is often non necessary

Construction of a hash function
> Sponge construction : permutation — hash function
> Same general idea (but completely different construction) than Merkle-Damgard

The sponge construction

m||10...0
L m; my h; h,
LN 4 I I
rlo—~b b | —
y 1 i
I P P P
c |0 —
l L U un L 22

Yo absorbing phase et A squeezing phase

» pad(m) = m|[10--- 0 ~~ length multiple of r
» Absorbing phase: compute y; = P(y;—1 & (m;]|0°)) for i = 1to t, with y; = 0"
» Squeezing phase:
» compute z; = P(z;_) for i = 2to A\, with zy = y;
» output h; = first v bits of z;
» Finally: H(m) = h||hy|| - - - || Ax

Source : . Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

Sponge features

Sponge are convenient!

> If f is a random permutation, H is indifferentiable from a RO

> Flexible:
> For a fixed permutation size, values of ¢, r, t, v and A — speed/security trade-off
> Natively a XOF (choose \)

> Simplicity: easier to design a (good) permutation

SHA-3 — Keccak
» Hash function using the sponge construction, from a permutation of {0,1}%
> Standardized by NIST, after an academic competition (2008-2012)
> Best current choice for a hash function
> Four main variants: SHA3-224, SHA3-256, SHA3-384 and SHA3-512

If you need a hash function, use SHA-3!

Conclusion

Two main families
> Merkle-Damgard construction from a compression function
» Sponge construction from a random permutation
» Many broken constructions, few good ones...

... therefore:

Don’t design crypto yourself!

> No generic way to build a hash function
> Every small detail counts!

Use SHA-3 (or maybe SHA-2)

» Don’t use MD5!
» Don’t use SHA-1!

	Hash functions from compression functions
	Hash functions from permutations

