Symmetric encryption – Block ciphers Crypto Engineering

Bruno Grenet

Université Grenoble-Alpes

https://membres-ljk.imag.fr/Bruno.Grenet/CryptoEng.html

Symmetric part of the course

- 3 classes each 3h with mixed CM and TD
 - Friday, September 23.
 - Thursday, September 29.
 - Friday, September 30.

Contents and goals

- Symmetric encryption, hashing, authentication
- Goals:
 - Understanding the models \rightarrow what do we want to achieve?
 - Understanding *some* designs \rightarrow how are they designed and why?
 - Understanding what can *go wrong* \rightarrow what should you avoid?

What is *symmetric* cryptography?

- Cryptography: we want to hide stuff
- Symmetric: we assume a shared secret between participants
- Main question: when is the hiding good enough?

Before we start: Encryption cannot be deterministic!

1. Block ciphers

2. Symmetric encryption

Block ciphers: what do we want to achieve?

Goal: Symmetric Encryption

- Encryption: from a plaintext and a key \rightarrow ciphertexts
- Decryption: from a ciphertext and the key \rightarrow plaintext
- ▶ Security: from a ciphertext alone \rightarrow (almost) nothing

Objects

- Plaintext: any message $\in \{0, 1\}^*$.
- Ciphertext: word $\in \{0,1\}^*$, of length as close to the message as possible efficiency
- Key: word $\in \{0,1\}^*$ not too large, not too small

Block cipher

- Plaintext / ciphertext: fixed-length
- One-to-one mapping for each key \rightarrow deterministic!

Block ciphers are (mainly) a tool to build higher-level schemes

non-determinism

block size

Block cipher: definition

Definition

A block cipher is a mapping $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}'$ such that for all $k \in \mathcal{K}$, $E(k, \cdot)$ is one-to-one, with

- $\mathcal{K} = \{0, 1\}^{\kappa}$: the key space
- $\mathcal{M} = \{0, 1\}^n$: the message space
- $\mathcal{M}' = \{0, 1\}^{n'}$: usually the same as \mathcal{M}

 $\kappa \in \{\mathbf{54}, \mathbf{80}, \mathbf{96}, \mathbf{112}, 128, 192, 256\}$ $n \in \{64, 128, 256\}$

 \rightarrow a block cipher is a family of permutations, indexed by the keys

What are good block ciphers?

Efficiency

- Fast: e.g. *few cycles per byte* on modern CPUs
- Compact: small code / small circuit size
- Easy to implement \rightarrow avoid side-channel attacks, etc.

Security

▶ ...

- Given c = E(k, m), hard to find m without knowing k
- ▶ Given *m*, *hard* to compute *c* without knowing *k*
- Given *oracle access* to $E(k, \cdot)$, *hard* to find k
- Given *oracle access* to $E^{\pm}(k, \cdot)$, *hard* to find k

 E^{\pm} : both *E* and E^{-1}

 \rightarrow Not enough! Ex.: given *E*, define $E'(k, x_L || x_R) = x_L || E(k, x_R)$

Need a *more general* security definition, that encompasses all of the above (and other)

In an ideal world

Definition

Let Perm_n the set of all (2^n) ! permutations of $\mathcal{M} = \{0, 1\}^n$. A block cipher $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ is an ideal block cipher if for all $k \in \mathcal{K}$, $E(k, \cdot) \leftarrow \text{Perm}_n$.

- As random as one could hope
- All keys provide perfectly random and independent permutations
- Non-realistic world:

$$\blacktriangleright \ (2^n)^{2^{n-1}} < (2^n)! < (2^n)^{2^n}$$

• Key size $\simeq \log(2^n!) \simeq n \cdot 2^n$ bits

 $n = 32 \Rightarrow 2^{37}$ -bit keys!

Why ideal?

- Fix a key k and a subset $S \subset M$ of messages
- ▶ Assume an attacker knows: E(k', m) for all $k' \in \mathcal{K} \setminus k$, and E(k, m) for all $m \in \mathcal{M} \setminus S$
- ▶ The attacker has no information about E(k, m) for m in S

PRP and strong PRP security

Informally, a block cipher is secure if its behavior is close enough to the ideal world

PRP experiment

- Fix a block cipher E
- ► A *challenger* gives an *attacker* access to an oracle \mathcal{O} :
 - either $\mathcal{O} \leftarrow \operatorname{Perm}_n$
 - or $\mathcal{O} = E(k, \cdot)$ where $k \leftarrow \mathcal{K}$
- ▶ The attacker must *distinguish* between the two cases
 - Answer 1 (say) if \mathcal{O} is a random permutation, 0 otherwise
- Strong PRP experiment: oracle access to \mathcal{O}^{\pm}

Why does it encompass previous tentative requirements?

- If *m* can be found from c = E(k, m) without *k*
 - Take any c and compute the corresponding m
 - Query the oracle on *m* and compare the result with *c*

Formalization : (strong) PRP advantage

PRP advantage

$$\operatorname{Adv}_{E}^{\operatorname{PRP}}(q,t) = \max_{A_{q,t}^{\mathcal{O}}} \left| \operatorname{Pr} \left[A_{q,t}^{\mathcal{O}}(t) = 1 : \mathcal{O} \twoheadleftarrow \operatorname{Perm}_{n} \right] - \operatorname{Pr} \left[A_{q,t}^{\mathcal{O}}(t) = 1 : \mathcal{O} = E(k, \cdot), k \twoheadleftarrow \mathcal{K} \right] \right|$$

where $A_{q,t}^{\mathcal{O}}$ denotes an algorithm that runs in time $\leq t$ and makes $\leq q$ queries to \mathcal{O} (Similarly for Adv^{SPRP}, with \mathcal{O}^{\pm} in place of \mathcal{O} .)

The PRP advantage provides a *measure* on the quality of a PRP, hence a block cipher
The PRP advantage does *not* define when it is *good*

The generic attack

Challenger: Provides oracle access to either $\mathcal{O} \leftarrow \operatorname{Perm}_n$ or $\mathcal{O} = E(k, \cdot)$ with $k \leftarrow \mathcal{K}$ Attacker: Oracle access to \mathcal{O} , and knows what is $E : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$

- 1. Draw q messages m_1, \ldots, m_q from \mathcal{M} and t keys k_1, \ldots, k_t from \mathcal{K}
- 2. Compute $C_{k_i} = [E(k_i, m_1), ..., E(k_i, m_q)]$ for $1 \le i \le t$
- 3. Query \mathcal{O} on m_1, \ldots, m_q to get $C = [\mathcal{O}(m_1), \ldots, \mathcal{O}(m_q)]$
- 4. Return 1 if there exists k_i s.t. $C = C_{k_i}$, 0 otherwise

Analysis

Number of queries: q; running time:
$$O(qt)$$
 $\Pr\left[A_{q,t}^{\mathcal{O}}()=1:\mathcal{O} \leftarrow \operatorname{Perm}_{n}\right] = \Pr\left[\exists k_{i}, \forall m_{j}, \mathcal{O}(m_{j})=E(k_{i}, m_{j})\right] \leq t/2^{(n-2)q}$
 $\Pr\left[A_{q,t}^{\mathcal{O}}()=1:\mathcal{O}=E(k,\cdot), k \leftarrow \mathcal{K}\right] \geq \Pr\left[\exists k_{i}, k=k_{i}\right]=t/2^{\kappa}$
 $\Rightarrow \operatorname{Adv}_{E}^{\operatorname{PRP}}(q,qt) \geq \frac{t}{2^{\kappa}} - \frac{t}{2^{(n-2)q}} \simeq \frac{t}{2^{\kappa}}$

So, what are good PRPs or block ciphers?

No formal definition of a good PRP

Informal (equivalent) definitions

 $\blacktriangleright \; \mathsf{Adv}_E^{\mathsf{PRP}}(q,t) \simeq t/2^{\kappa}$

- The generic attack is almost the best possible
- The advantage is the same as for an ideal block cipher

Choice of parameter κ

- A good PRP is useless if κ is small
 - ▶ $\kappa \simeq$ 40: breakable on \sim 1 day on my laptop
 - \blacktriangleright $\kappa \simeq$ 60: breakable with a large CPU/GPU cluster (done in academia)
 - \triangleright $\kappa \simeq$ 80: breakable with an ASIC cluster (Bitcoin mining)
 - \blacktriangleright $\kappa \simeq$ 128: seems hard enough
- Other considerations (application dependent, quantum computers, etc.)

Finally

In practice

- AES Rijndael:
 - Most used block cipher nowadays
 - Standardized by the NIST, replacement of DES (considered broken: 56-bit key)
 - Block size n = 128 bits
 - Key size $\kappa =$ 128, 196 or 256 bits
- Other (less used) possibilities:
 - Camellia: n = 128, $\kappa = 128$, 192 or 256
 - SHACAL-2: $n = 128, \kappa = 512$

In theory

- Similar notion of (strong) PRF advantage: replace Perm_n with Func_n
- ► *PRP-PRF switching* \simeq "a good PRP is also a good PRF" *cf.* Adv. Crypto

1. Block ciphers

2. Symmetric encryption

Block ciphers are not enough

Block ciphers offer

- One-to-one (deterministic) encryption
- Fixed-size messages

The tool: modes of operations

> Transforms a block cipher into a symmetric encryption scheme

$$E: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n} \rightsquigarrow \begin{cases} \mathsf{Enc}: \{0,1\}^{\kappa} \times \{0,1\}^{\ell} \times \{0,1\}^{*} \to \{0,1\}^{*} \\ \mathsf{Dec}: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{*} \end{cases}$$

- For all (k, r, m) ∈ {0,1}^κ × {0,1}^ℓ × {0,1}^{*}, Dec(Enc(k, r, m)) = m
 r ∈ {0,1}^ℓ: non-determinism
- A mode is good if it turns good BCs into good encryption schemes

What is a good encryption scheme?

We need

- One-to-many (non-deterministic) encryption
- Variable-size messages

IND-CPA security for symmetric encryption

IND-CPA experiment for Enc : $\mathcal{K} \times \mathcal{R} \times \mathcal{M} \rightarrow \mathcal{M}$

```
Challenger draws k \leftarrow \mathcal{K}
```

Adversary submits queries x_i to the attacker and gets $Enc(k, r_i, x_i)$

Adversary creates two equal-length messages m_0 and m_1 and submits them

```
Challenger draws b \leftarrow \{0,1\} and answers with Enc(k, r, m_b)
```

Adversary tries to guess b

(choice of r_i , r is defined by the mode, can be ignored)

IND-CPA advantage

$$\operatorname{Adv}_{\operatorname{Enc}}^{\operatorname{IND-CPA}}(q,t) = \max_{\substack{A_{q,t}^{\operatorname{Enc}}}} \left| \operatorname{Pr} \left[A_{q,t}^{\operatorname{Enc}} \operatorname{succeeds} \right] - \frac{1}{2} \right|$$

where $A_{q,t}^{Enc}$ is an alg. that runs in time $\leq t$ and makes $\leq q$ queries to the challenger

Comments on IND-CPA security

$$\mathsf{Adv}_{\mathsf{Enc}}^{\mathsf{IND-CPA}}(q,t) = \max_{\substack{A_{q,t}^{\mathsf{Enc}}}} \left| \mathsf{Pr} \left[A_{q,t}^{\mathsf{Enc}} \text{ succeeds} \right] - rac{1}{2}
ight|$$

- IND-CPA: Indistinguishability under chosen plaintext attack
- $\frac{1}{2}$: stupid attacker that guesses *b* at random
- With q, t large enough: advantage $\frac{1}{2}$
- ▶ IND-CPA \Rightarrow non-determinism
- ► IND-CPA ⇒ the attacker cannot find a single bit of the message

Stronger notions: IND-CCA and IND-CCA2

- Indistinguishability under chosen ciphertext attack
- Access to both an encryption oracle and a decryption oracle
- 2 variants: non-adaptative (IND-CCA) or adaptative (IND-CCA2)

computational security

First (bad) example of mode of operation: Electronic Code Book (ECB)

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

First (bad) example of mode of operation: Electronic Code Book (ECB)

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)

Second (real) example of mode of operation: Cipher Block Chaining (CBC)

Second (real) example of mode of operation: Cipher Block Chaining (CBC)

- IND-CPA security if E is a good PRP and IV truly random
- Assume IV not random:
 - Adversary sends a query *m* and gets first IV *r* and $c = E(k, m \oplus r)$
 - Assume adversary knows that for next IV r', $\Pr[r' = x]$ is *large*
 - Adversary sends challenges $m_0 = m \oplus r \oplus x$ and $m_1 = m_0 \oplus 1$
 - Gets back $r' \| c_b = \operatorname{Enc}(m_b)$ with $b \leftarrow \{0, 1\}$
 - If $c_b = c$, guess b = 0, else b = 1

Generic CBC collision attack

Observation

- ► For fixed k, $E(k, \cdot)$ is a permutation $\rightarrow E(k, x) = E(k, y) \iff x = y$
- In CBC, inputs to *E* are of the form $m_i \oplus y$ with
 - *m_i* a message block,
 - y either an IV or a ciphertext block
- $\blacktriangleright \text{ In particular: } E(k, m_i \oplus c_{i-1}) = E(k, m_j' \oplus c_{j-1}') \iff m_i \oplus c_{i-1} = m_j' \oplus c_{j-1}'$

Consequence

- Assume we get two identical ciphertext blocks c_i = c'_j
 ⇐⇒ E(k, m_i ⊕ c_{i-1}) = E(k, m'_j ⊕ c'_{j-1})
 ⇐⇒ m_i ⊕ c_{i-1} = m'_j ⊕ c'_{j-1}
 ⇐⇒ c_{i-1} ⊕ c'_{j-1} = m_i ⊕ m'_j
 That is: c_{i-1} and c'_{j-1} reveal information about m_i and m'_i
 - \Rightarrow breaks IND-CPA security (no matter how good *E*!)

Probability to get collisions?

Assumption

The distribution of the $(m_i \oplus c_{i-1})$ is approx. uniform

- If c_0 is the IV, it has to be approx. uniform
- ▶ If c_{i-1} is a ciphertext, non (approx.) uniformity would imply an attack

Birthday bound

Draw y_1, \ldots, y_q uniformly from a size-*N* set, with $q \leq \sqrt{2N}$. Then

$$\frac{q(q-1)}{4N} \le 1 - e^{-q(q-1)/2N} \le \Pr\left[\exists i \neq j, y_i = y_j\right] \le \frac{q(q-1)}{2N}$$

Consequence

- Collision found w.h.p. if $q \simeq \sqrt{N}$
- For CBC: Collision w.h.p. after observing $\simeq 2^{n/2}$ ciphertext blocks
- $\blacktriangleright\,$ Note: does not depend on key size $\kappa\,$

Last (classic) mode of operation: Counter (CTR)

Last (classic) mode of operation: Counter (CTR)

- Parallel encryption (fast!)
- Looks like a stream cipher
- Sensitive to birthday bound

Security

If E is a good PRF, IND-CPA security

Finally

Modes of operations

- A good mode of operation turns a good block cipher into a good symmetric encryption scheme
- Different mode of operations require different quality for the block cipher
 - Good PRP
 - Good PRF
 - Ideal Block Cipher
- ▶ Proofs of security \rightarrow reductions between problems
- Usually: need more \rightarrow *ad hoc* analysis of the resulting system

Other symmetric encryption schemes

- Other modes of operations
- Stream ciphers (Wifi, 5G, ...)

Conclusion

Symmetric encryption, as we saw it

- Two ingredients:
 - a block cipher
 - a mode of operation
- Security notions:
 - PRP advantage
 - IND-CPA advantage
- More advanced security definitions:
 - strong PRP adv., (strong) PRF adv., ideal block cipher
 - IND-CCA, IND-CCA2

In practice

- Block cipher: mainly AES, with key size 128 bits
- Modes of operations: e.g. extension of CTR in TLS

Final words: Definitions and proofs are important!

fixed-size, deterministic variable-size, non-deterministic

block cipher symmetric encryption