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Symmetric part of the course

» 3 classes — each 3h with mixed CM and TD
> Friday, September 23.
» Thursday, September 29.
> Friday, September 30.

Contents and goals

> Symmetric encryption, hashing, authentication

» Goals:
> Understanding the models — what do we want to achieve?
» Understanding some designs — how are they designed and why?
» Understanding what can go wrong — what should you avoid?

What is symmetric cryptography?
> Cryptography: we want to hide stuff
> Symmetric: we assume a shared secret between participants
> Main question: when is the hiding good enough?

today!



Before we start: Encryption cannot be deterministic!
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FOR ADDED SECURITY, AFTER
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1. Block ciphers



Block ciphers: what do we want to achieve?

Goal: Symmetric Encryption

> Encryption: from a plaintext and a key — ciphertexts non-determinism
> Decryption: from a ciphertext and the key — plaintext
> Security: from a ciphertext alone — (almost) nothing

Objects
> Plaintext: any message € {0, 1}*.
» Ciphertext: word € {0,1}*, of length as close to the message as possible efficiency
> Key: word € {0,1}* not too large, not too small

Block cipher

» Plaintext / ciphertext: fixed-length block size
» One-to-one mapping for each key — deterministic!

Block ciphers are (mainly) a tool to build higher-level schemes




Block cipher: definition

Definition

A [block cipher is a mapping E : K x M — M’ such that for all k € K, E(k,-) is

one-to-one, with
> K ={0,1}": the key space k € {64, 80,96, 12,128,192, 256 }
» M = {0,1}": the message space n € {64,128,256}
» M’ ={0,1}": usually the same as M

— a block cipher is a family of permutations, indexed by the keys




What are good block ciphers?

Efficiency
> Fast: e.g. few cycles per byte on modern CPUs
> Compact: small code / small circuit size

> Easy to implement — avoid side-channel attacks, etc.
> ...

Security

» Given ¢ = E(k, m), hard to find m without knowing k

> Given m, hard to compute ¢ without knowing k

» Given oracle access to E(k,-), hard to find k

» Given oracle access to E*(k, -), hard to find k E*: both E and E™
— Not enough! Ex.: given E, define E'(k, x.||xg) = x.||E(k, xg)

Need a more general security definition, that encompasses all of the above (and other)




In an ideal world

Definition
Let Perm,, the set of all (2")! permutations of M = {0,1}". A block cipher
E: K x M — Mis an lideal block cipher if for all k € I, E(k, ) « Perm,.

» As random as one could hope
> All keys provide perfectly random and independent permutations
» Non-realistic world:
> (27 < (27) < (27)
> Key size ~ log(2") ~ n- 2" bits n = 32 = 2%-bit keys!

Why ideal?
> Fix a key k and a subset S C M of messages

> Assume an attacker knows: E(k’, m) for all k' € K\ k, and E(k, m) forallme M\ S
» The attacker has no information about E(k, m) for min S



PRP and strong PRP security

Informally, a block cipher is secure if its behavior is close enough to the ideal world

PRP experiment
» Fix a block cipher E
» A challenger gives an attacker access to an oracle O:
» either O « Perm,
> or O = E(k,-) where k « K
> The attacker must distinguish between the two cases
> Answer 1 (say) if O is a random permutation, 0 otherwise

> Strong PRP experiment: oracle access to OF

Why does it encompass previous tentative requirements?

» If mcan be found from ¢ = E(k, m) without k
» Take any ¢ and compute the corresponding m
» Query the oracle on m and compare the result with ¢

> ...



Formalization : (strong) PRP advantage

PRP advantage

AdvERP(q, t) = n;gx Pr [Ag?t() =1:0 « Permn}
q,t

=P [0 =1:0=E(k, ), k = K|

where A(q?t denotes an algorithm that runs in time < t and makes < ¢ queries to O

(Similarly for Adv>"RP, with O% in place of O.)

» The PRP advantage provides a measure on the quality of a PRP, hence a block cipher
» The PRP advantage does not define when it is good



The generic attack

Challenger: Provides oracle access to either O «— Perm, or O = E(k, -) with k «- K
Attacker: Oracle access to O, and knows what is E : {0,1}" x {0,1}" — {0,1}"
1. Draw q messages my, ..., mg from M and t keys ki, ..., k; from K
2. Compute Cy, = [E(ki, m), ..., E(ki,mg)] for1 < i<t
3. Query O on m, ..., mg to get C = [O(my),...,O(my)]
4. Return 1if there exists k; s.t. C = Cy,, 0 otherwise

Analysis
» Number of queries: g; running time: O(qt)
> Pr [Ag,?t() —1:0 « Perm,,} = Pr[3k;, Ym;, O(m;) = E(ki, m;)] < t/20-23
> Pr [Ag?t() =1:0=E(k,), k « /c] > Pr[Ski, k = ki = t/2"

PRP t ! d
2 o T e & on
= AdVE (q7 qt) - 2K 2(n—2)q 2k



So, what are good PRPs or block ciphers?

No formal definition of a good PRP

Informal (equivalent) definitions
> AdvERP(q, 1) ~ t/2¢
P The generic attack is almost the best possible
> The advantage is the same as for an ideal block cipher

Choice of parameter x

> A good PRP is useless if « is small
> Kk =~ 40: breakable on ~ 1 day on my laptop
> Kk >~ 60: breakable with a large CPU/GPU cluster (done in academia)
> Kk =~ 80: breakable with an ASIC cluster (Bitcoin mining)
> Kk =~ 128: seems hard enough
> Other considerations (application dependent, quantum computers, etc.)



Finally

In practice

> AES - Rijndael:
> Most used block cipher nowadays
> Standardized by the NIST, replacement of DES (considered broken: 56-bit key)
> Block size n = 128 bits
> Key size k = 128,196 or 256 bits
> Other (less used) possibilities:
» Camellia: n = 128, kK = 128,192 or 256
> SHACAL-2: n =128, k = 512

In theory

> Similar notion of (strong) PRF advantage: replace Perm, with Func,
» PRP-PRF switching ~ “a good PRP is also a good PRF” cf. Adv. Crypto



2. Symmetric encryption



Block ciphers are not enough

Block ciphers offer We need
> One-to-one (deterministic) encryption ~ » One-to-many (non-deterministic) encryption
> Fixed-size messages > Variable-size messages

The tool: modes of operations

» Transforms a block cipher into a symmetric encryption scheme

Enc : {0,1}% x {0,1}¢ x {0,1}* — {0,1}*
E 01 x {01 s (o LB 0T {0 0.1} = o)
Dec: {0,1}" x {0,1}* — {0,1}*
» Forall (k,r,m) € {0,1}* x {0,1}* x {0,1}*, Dec(Enc(k, r,m)) = m
> r € {0,1}: non-determinism
> A mode is good if it turns good BCs into good encryption schemes

What is a good encryption scheme?




IND-CPA security for symmetric encryption

IND-CPA experiment for Enc : K X R x M — M

Challenger draws k « IC
Adversary submits queries x; to the attacker and gets Enc(k, r;, x;)
Adversary creates two equal-length messages my and m; and submits them
Challenger draws b «— {0,1} and answers with Enc(k, r, mp)
Adversary tries to guess b

(choice of rj, r is defined by the mode, can be ignored)

IND-CPA advantage

IND—CPA
Advg, .

(g, t) = max

Enc
Aq,f

1
Pr [Asnf succeeds] — —‘
’ 2

where Agf‘t‘: is an alg. that runs in time < t and makes < g queries to the challenger



Comments on IND-CPA security

1
AdviP~CPA(g, 1) = ax Pr [Ag”tc succeeds] — 2‘
AERNC !

q,t

» IND-CPA: Indistinguishability under chosen plaintext attack

> %: stupid attacker that guesses b at random

> With g, t large enough: advantage % computational security
» IND-CPA = non-determinism

» IND-CPA = the attacker cannot find a single bit of the message

Stronger notions: IND-CCA and IND-CCA2

> Indistinguishability under chosen ciphertext attack
> Access to both an encryption oracle and a decryption oracle
> 2 variants: non-adaptative (IND-CCA) or adaptative (IND-CCA2)



First (bad) example of mode of operation: Electronic Code Book (ECB)

m, m. m,
b E; E;
Cl C2 CS

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)



First (bad) example of mode of operation: Electronic Code Book (ECB)

m, m, m,
l l l
Ei E; Ex

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)
Source : Wikipédia (modif.)



Second (real) example of mode of operation: Cipher Block Chaining (CBC)
m. m. m,

v a D rah)
i |

Ey Fy Ey

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)



Second (real) example of mode of operation: Cipher Block Chaining (CBC)

m, m, m,
v D

Fy Fy F
v C, C, C,

» IND-CPA security if E is a good PRP and IV truly random
» Assume IV not random:
> Adversary sends a query m and gets first IV rand ¢ = E(k, m® r)
> Assume adversary knows that for next IV r/, Pr [’ = x] is large
> Adversary sends challenges my =m® r® xand my = my & 1
» Gets back r’||c, = Enc(mj) with b « {0,1}
> If ¢, =c,guess b= 10,else b=1

Source : . Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)



Generic CBC collision attack

Observation
> For fixed k, E(k,-) is a permutation — E(k,x) = E(k,y) <= x=y
> In CBC, inputs to E are of the form m; & y with
> m; a message block,
>y either an IV or a ciphertext block

» In particular: E(k, m; ® ¢;—1) = E(k, m} D cj’q) = m®ciq= m;. o cj’-f1

Consequence

> Assume we get two identical ciphertext blocks ¢; = cj’-
= E(k,m; ® ci1) = E(k,m; & ¢;_;)
= mdciq= m;- a5 cj’._1
= GG =m®m
» That is: ¢;_; and cj'-_1 reveal information about m; and m;-

= breaks IND-CPA security (no matter how good E!)



Probability to get collisions?

Assumption

The distribution of the (m; & ¢;_1) is approx. uniform
> If ¢ is the IV, it has to be approx. uniform
> If ¢;_q is a ciphertext, non (approx.) uniformity would imply an attack

Birthday bound
Draw y1, ..., yq uniformly from a size-N set, with ¢ < v/2N. Then

q(q—1) —q(g—1)/2N . q(qg—1)
AN <l—e < Pr[3i#j,yi=y] < N

Consequence
» Collision found w.h.p. if ¢ ~ v/N
» For CBC: Collision w.h.p. after observing ~ 2/2 ciphertext blocks
> Note: does not depend on key size k




Last (classic) mode of operation: Counter (CTR)
w Wi i i3

l l l
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Source : . Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)



Last (classic) mode of operation: Counter (CTR)

v i i s
| | |
Ej, Ej, Ej,

My My My

us C C, c

w

» Parallel encryption (fast!)
» Looks like a stream cipher
> Sensitive to birthday bound

Security
If E is a good PRF, IND-CPA security

Source : . Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)



Finally

Modes of operations

» A good mode of operation turns a good block cipher into a good symmetric
encryption scheme

> Different mode of operations require different quality for the block cipher
» Good PRP
» Good PRF
> Ideal Block Cipher

» Proofs of security — reductions between problems
» Usually: need more — ad hoc analysis of the resulting system

Other symmetric encryption schemes

» Other modes of operations
> Stream ciphers (Wifi, 5G, ...)



Conclusion

Symmetric encryption, as we saw it

> Two ingredients:
> ablock cipher
> a mode of operation
P Security notions:
» PRP advantage
> IND-CPA advantage
» More advanced security definitions:
> strong PRP adv., (strong) PRF adv., ideal block cipher
> IND-CCA, IND-CCA2

In practice

» Block cipher: mainly AES, with key size 128 bits
» Modes of operations: e.g. extension of CTR in TLS

fixed-size, deterministic
variable-size, non-deterministic

block cipher

symmetric encryption

Final words: Definitions and proofs are important!
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