Exercise 1.

For all the questions, give the size and the depth of the circuits you build.

1. Give a circuit computing the xor of its two inputs.
2. Build a circuit computing $\operatorname{sel}(x, y, z)$ defined by $\operatorname{seL}(0, y, z)=y$ and $\operatorname{seL}(1, y, z)=z$.
3. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. We consider multiple-output circuits. (Equivalently, suppose we are given a circuit for each bit of output.) Show how to turn a multiple-output circuit computing f into a (classical) circuit deciding $\{(x, y): y=f(x)\}$.
4. Build a multiple-output circuit computing the addition of two binary integers $x=$ $\overline{x_{n-1} \cdots x_{0}}$ and $y=\overline{y_{n-1} \cdots y_{0}}$ using the schoolbook algorithm.
5. Suppose that n is a power of 2 . Give a circuit computing $x+y$ using the following recursive algorithm: Compute $\overline{x_{n-1} \cdots x_{n / 2}}+\overline{y_{n-1} \cdots y_{n / 2}}$ and $\overline{x_{n-1} \cdots x_{n / 2}}+\overline{y_{n-1} \cdots y_{n / 2}}+1$ in parallel, and use the carry-out of $\overline{x_{n / 2-1} \cdots x_{0}}+\overline{y_{n / 2-1} \cdots y_{0}}$ to choose the correct answer.
6. Compute the size and depth of the circuit we obtain for $\{(x, y, z): x+y=z\}$. Propose another algorithm to decide this language. Is it better?

Exercise 2.

1. Show that every function from $\{0,1\}^{n}$ to $\{0,1\}$ can be represented by a CNF formula of size $n 2^{n}$.
2. Show that a size- $O\left(2^{n}\right)$ circuit is sufficient.
3. (harder) Are you able to build a size- $O\left(2^{n} / n\right)$ circuit?
4. Show that there exist functions without size- $2^{n} /(10 n)$ circuit.

Exercise 3.

Spira's Theorem
A circuit is a boolean formula if every gate but the output in it has outdegree exactly 1 . That is, the underlying graph is a tree.
2) Show that for every size- t formula F, there exists an equivalent formula F^{\prime} with depth at most $4 \log t$. What is the size fo F^{\prime} ? Can we obtain better bound if F^{\prime} is a general circuit instead of a formula?

Exercise 4.

Monotony
A boolean function $f:\{0,1\}^{n} \mapsto\{0,1\}$ is said monotonic if for every i and every $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$,

$$
f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right) \geq f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)
$$

(4) Show that a function is monotonic iff there exists a circuit with gates AND, OR, 0 and 1 , but without NOT gate.

