Tutorial 08 - Polynomial hierarchy

Exercise 1.

End of the space

Q Show that for every space-constructible function $S(n) \geq \log n, \operatorname{NSPACE}(S(n))=$ coNSPACE $(S(n))$. Hint: Remember Immerman-Szelepcsényi theorem and its proof.

Exercise 2.

1. Show that Σ_{i}^{P} and Π_{i}^{P} are closed under polynomial time reductions.
2. Show that Σ_{i} SAt is Σ_{i}^{P}-complete.
3. Show that $\Sigma_{i}^{\mathrm{P}}=\bigcup_{c} \Sigma_{i} \operatorname{TIME}\left(n^{c}\right)$ and $\Pi_{i}^{\mathrm{P}}=\bigcup_{c} \Pi_{i} \operatorname{TIME}\left(n^{c}\right)$.
4. Show that for $i \geq 1, \Sigma_{i+1}^{\mathrm{P}}=\mathrm{NP}^{\Sigma_{i} \mathrm{SAT}}=\mathrm{NP}^{\Pi_{i} \mathrm{SAT}}$.
5. Justify the notations $\Sigma_{i+1}^{\mathrm{P}}=\mathrm{NP}^{\Sigma_{i}^{\mathrm{P}}}=N \mathrm{P}^{\Pi_{i}^{\mathrm{P}}}$, and $\Pi_{i+1}^{\mathrm{P}}=\operatorname{coN} P^{\Sigma_{i}^{\mathrm{P}}}=\operatorname{coN} \mathrm{P}^{\Pi_{i}^{\mathrm{P}}}$.

Exercise 3.

NPNP ?
Let MinDNF be the set of couples $\langle\phi, k\rangle$ s.t. there exists a DNF formula ϕ^{\prime} of size $\leq k$ that is equivalent to the DNF formula ϕ.

1. Show that MinDNF $\in N P^{N P}$.
2. Show that $N P=N P^{N P}$ implies $N P=$ coNP.
3. Show that more generally $\Sigma_{i}^{\mathrm{P}}=\Pi_{i}^{\mathrm{P}}$ or $\Sigma_{i}^{\mathrm{P}}=\Sigma_{i+1}^{\mathrm{P}}$ implies the collapse of the polynomial hierarchy.

Exercise 4

Let $\Delta_{i+1}^{\mathrm{P}}=\mathrm{P}^{\Sigma_{i}^{\mathrm{P}}}=\mathrm{P}^{\Pi_{i}^{\mathrm{P}}}$.

1. Show that both definitions are equivalent.
2. Show that $\Sigma_{i}^{\mathrm{P}} \cup \Pi_{i}^{\mathrm{P}} \subseteq \Delta_{i+1}^{\mathrm{P}} \subseteq \Sigma_{i+1}^{\mathrm{P}} \cup \Pi_{i+1}^{\mathrm{P}}$.
3. Show that $\Sigma_{i}^{\mathrm{P}} \cup \Pi_{i}^{\mathrm{P}}=\Delta_{i}^{\mathrm{P}}$ implies the collapse of the polynomial hierarchy.
4. Show that Δ_{i}^{P} is closed under polynomial time reduction, Cook-Turing polynomial time reduction and complementation.
5. Show that $\left\{\phi\left(x_{1}, \ldots, x_{n}\right): \exists!\left(a_{1}, \ldots, a_{n}\right), \phi\left(a_{1}, \ldots, a_{n}\right)=1\right\}$ belongs to Δ_{2}^{P}.

Exercise 5.

* Give all the known relations between the following complexity classes (as a graph for instance), with a complete problem if possible, and with quick justifications: $P, N P$, coNP, EXP, NEXP, coNEXP, L, NL, coNL, PSPACE, NPSPACE, coNPSPACE, EXPSPACE, NEXPSPACE, coNEXPSPACE, $\Sigma_{1}^{\mathrm{P}}, \Pi_{1}^{\mathrm{P}}, \Delta_{2}^{\mathrm{P}}, \Sigma_{2}^{\mathrm{P}}, \Pi_{2}^{\mathrm{P}}, \Sigma_{i}^{\mathrm{P}}, \Pi_{i}^{\mathrm{P}}, \Delta_{i}^{\mathrm{P}}(i>2), \mathrm{PH}$.
Note. EXP $=\bigcup_{c} \operatorname{DTIME}\left(2^{n^{c}}\right)$, and NEXP, EXPSPACE, NEXPSPACE are similarly defined.

