Tutorial 08 – Polynomial hierarchy

Exercise 1.

End of the space

Show that for every space-constructible function $S(n) \ge \log n$, NSPACE(S(n)) = coNSPACE(S(n)). Hint: Remember Immerman-Szelepcsényi theorem and its proof.

Exercise 2.

- **1.** Show that Σ_i^{P} and Π_i^{P} are closed under polynomial time reductions.
- **2.** Show that Σ_i SAT is Σ_i^{P} -complete.
- **3.** Show that $\Sigma_i^{\mathsf{P}} = \bigcup_c \Sigma_i \mathsf{TIME}(n^c)$ and $\Pi_i^{\mathsf{P}} = \bigcup_c \Pi_i \mathsf{TIME}(n^c)$.
- 4. Show that for $i \ge 1$, $\Sigma_{i+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_i \mathsf{SAT}} = \mathsf{NP}^{\Pi_i \mathsf{SAT}}$.
- 5. Justify the notations $\Sigma_{i+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_i^{\mathsf{P}}} = \mathsf{NP}^{\Pi_i^{\mathsf{P}}}$, and $\Pi_{i+1}^{\mathsf{P}} = \mathsf{co}\mathsf{NP}^{\Sigma_i^{\mathsf{P}}} = \mathsf{co}\mathsf{NP}^{\Pi_i^{\mathsf{P}}}$.

Exercise 3.

NP^{NP}?

 $\Sigma\Pi\Delta$

Let MINDNF be the set of couples $\langle \phi, k \rangle$ s.t. there exists a DNF formula ϕ' of size $\leq k$ that is equivalent to the DNF formula ϕ .

- **1.** Show that $MINDNF \in NP^{NP}$.
- **2.** Show that $NP = NP^{NP}$ implies NP = coNP.
- 3. Show that more generally $\Sigma_i^{\mathsf{P}} = \Pi_i^{\mathsf{P}}$ or $\Sigma_i^{\mathsf{P}} = \Sigma_{i+1}^{\mathsf{P}}$ implies the collapse of the polynomial hierarchy.

Exercise 4.
Let
$$\Delta_{i+1}^{\mathsf{P}} = \mathsf{P}^{\Sigma_i^{\mathsf{P}}} = \mathsf{P}^{\Pi_i^{\mathsf{P}}}$$
.

- 1. Show that both definitions are equivalent.
- **2.** Show that $\Sigma_i^{\mathsf{P}} \cup \Pi_i^{\mathsf{P}} \subseteq \Delta_{i+1}^{\mathsf{P}} \subseteq \Sigma_{i+1}^{\mathsf{P}} \cup \Pi_{i+1}^{\mathsf{P}}$.
- **3.** Show that $\Sigma_i^{\mathsf{P}} \cup \Pi_i^{\mathsf{P}} = \Delta_i^{\mathsf{P}}$ implies the collapse of the polynomial hierarchy.
- **4.** Show that Δ_i^{P} is closed under polynomial time reduction, Cook-Turing polynomial time reduction and complementation.
- 5. Show that $\{\phi(x_1, ..., x_n) : \exists ! (a_1, ..., a_n), \phi(a_1, ..., a_n) = 1\}$ belongs to Δ_2^{P} .

Exercise 5.

Let's draw !

Give all the known relations between the following complexity classes (as a graph for instance), with a complete problem if possible, and with quick justifications: P, NP, coNP, EXP, NEXP, coNEXP, L, NL, coNL, PSPACE, NPSPACE, coNPSPACE, EXPSPACE, NEXPSPACE, coNEXPSPACE, Σ_1^{P} , Π_1^{P} , Δ_2^{P} , Σ_2^{P} , Π_2^{P} , Σ_i^{P} , Π_i^{P} , Δ_i^{P} (i > 2), PH. Note. EXP = $\bigcup_c \text{DTIME}(2^{n^c})$, and NEXP, EXPSPACE, NEXPSPACE are similarly defined.