
M1 – Computational Complexity (Year 2010/2011) B. Grenet

Tutorial 03 – Respect the hierarchy!

Exercise 1.

1. Prove that coP = P.

2. Prove that L ∈ coNP iff there exists a polyomial P and a deterministic TM M working in
polynomial time s.t.

x ∈ L ⇐⇒ ∀ u ∈ {0, 1}p(|x|), M(x, u) = 1.

3. Prove that if there exists a NP language which is coNP-hard, then NP = coNP.

4. Prove that a language L is NP-complete iff L̄ is coNP-complete.

Exercise 2.

1. Prove that DTIME(2n+k) = DTIME(2n+l) for all l > k > 0.

2. Prove that DTIME(2nk
) (DTIME(2nl

) for all l > k > 0.

Exercise 3. The H in Ladner
In the proof of Ladner’s theorem, the H-function is defined as follows: H(n) is the smallest
integer i < log log n s.t. for all x ∈ {0, 1}∗ with |x| ≤ log n, the TM M with code i decides
whether x ∈ SatH within i|x|i steps, or log log n if no such i exists. The language SatH is
defined by

{
ψ01nH(n)

: ψ ∈ Sat and |ψ| = n
}

.

. Prove that H is polynomial-time (in n) computable.

Exercise 4. Mahaney’s theorem (1982)?

Definition. A language L is said sparse if there exists a polynomial p s.t., for all n, L∩ Σn has
cardinality at most p(n).

1. Let L be a sparse language. What can you say about the cardinality of L ∩ Σ≤n?

We will show that if there exists a sparse NP-hard language L, then P = NP. Let L be such a
language, and let X be in NP:

x ∈ X iff ∃w ∈ Σp(|x|), 〈x, w〉 ∈ A

with p a polynomial and A ∈ P. The aim is to prove that X is polynomial-time decidable.
Let G(A) = {〈x, w〉 : ∃y ∈ Σp(|x|), y ≥ w and 〈x, y〉 ∈ A}.

2. Prove that G(A) is in NP.

1

3. Using a reduction from G(A) to L, prove that X is polynomial-time decidable. Hint.
One can find a polynomial-time algorithm which, on input x, find the longest w such
that 〈x, w〉 ∈ A if it exists.

Exercise 5. Nondeterministic Time Hierarchy Theorem (Cook 1972)??

Theorem. Let f and g be two time-constructible functions s.t. f (n + 1) = o(g(n)). Then

NTIME(f (n)) (NTIME(g(n)).

In the sequel, suppose that f (n + 1) = o(g(n)). We will prove this theorem.

1. Remind the idea behind the proof of the Deterministic Time Hierarchy Theorem, and
explain why this proof cannot be adapted here.

2. Explain how effectively enumerate the NDTM working in time O(f (n)).

We will use a lazy diagonalization. Habitually, to diagonalize, one tries to “eliminate” the
machine Mi on input i. In this lazy version, one tries to eliminate Mi not on a precise input,
but on one of the inputs of a set Ii.
To each machine Mi in the previous enumeration is associated a tally set Ii = {1k : αi ≤ βi}
where αi and βi have to be defined later. Let N the following NDTM: on input x, N finds i
s.t. x ∈ Ii, then

1. If x ∈ Ii \ {1βi}, N emulates Mi(x · 1) in a nondeterministic way, stopping within g(|x|)
steps, and accepts iff Mi stopped and accepted within this time;

2. If x = 1βi , N emulates Mi(1αi) in a deterministic way, and answers the contrary of Mi.

3. How to choose αi et βi so that L(N) ∈ NTIME(g(n))? Hint. Find i s.t. x ∈ Ii has to be
fast enough and step (b) as well.

4. Suppose that L(N) ∈ NTIME(f (n)), through a NDTM M. Prive that there exists i s.t.
M = Mi and s.t. at step (a), Mi is always emulated until it stops.

5. Conclude.

2

