TD 9. Algorithmes d'approximation

Exercice 1. Partition

Notation. Pour un ensemble S d'entiers, on note $\Sigma_S = \sum_{s \in S} s$.

Étant donné un ensemble de n entiers positifs $A = \{a_0, \ldots, a_{n-1}\}$, on cherche une partition $A = X \sqcup Y$ équilibrée, c'est-à-dire telle que $\Sigma_X \simeq \Sigma_Y$. Plus précisément, on cherche à minimiser max (Σ_X, Σ_Y) . On propose l'algorithme glouton suivant.

Partition(A):

- 1 $(X, Y, \Sigma_X, \Sigma_Y) \leftarrow (\emptyset, \emptyset, 0, 0)$
- 2 Pour i = 0 à n 1:
- 3 Si $\Sigma_X < \Sigma_Y : X \leftarrow X \cup \{a_i\}, \Sigma_X \leftarrow \Sigma_X + a_i$
- 4 Sinon: $Y \leftarrow Y \cup \{a_i\}, \Sigma_Y \leftarrow \Sigma_Y + a_i$
- 5 Renvoyer (X, Y)
- i. Partition fournit-il une solution optimale sur l'entrée A = {4, 2, 3, 2, 7} ?
 ii. Quelle est sa complexité ?

Pour une entrée A, soit (X^*, Y^*) une solution optimale et $OPT = max(\Sigma_{X^*}, \Sigma_{Y^*})$. Soit (X, Y) la solution renvoyée par PartitionGlouton, et on suppose sans perte de généralité $\Sigma_X \geq \Sigma_Y$.

- **2.** i. Montrer que pour tout i, OPT $\geq a_i$.
 - ii. Montrer que OPT $\geq \frac{1}{2}\Sigma_A$.
- 3. On considère le dernier élément a_k ajouté par Partition à X.
 - i. Montrer que $\Sigma_X a_k \le \frac{1}{2}(\Sigma_A a_k) \le \text{OPT} \frac{1}{2}a_k$.
 - ii. En déduire que Partition est une $\frac{3}{2}$ -approximation pour le problème.
 - iii. Construire un exemple pour lequel Partition fournit une solution égale exactement à $\frac{3}{2}$ OPT.
- **4.** (bonus) On modifie très légèrement PARTITION en triant les a_i en ordre décroissant : $a_0 \ge a_1 \ge \cdots \ge a_{n-1}$. On garde les mêmes notations que précédemment.
 - i. Montrer que sur l'entrée {10, 10, 9, 9, 2}, l'algorithme n'est pas optimal.
 - ii. Montrer que si #X = 1, alors la solution renvoyée est optimale.
 - iii. On suppose que $\#X \ge 2$. Montrer que le dernier élément a_k ajouté par PARTITION à X vérifie $a_k \le \frac{2}{3}$ OPT.
 - iv. En déduire que Partition avec tri est une $\frac{4}{3}$ -approximation.
 - v. Construire un exemple pour lequel PARTITION avec tri fournir une solution exactement égale à $\frac{7}{6}$ OPT. 1

^{1.} Remarque. On peut en fait montrer (mais c'est difficile) que l'algorithme glouton avec tri renvoie toujours une solution $\leq \frac{7}{6}$ OPT.

Exercice 2. Coupe maximale

Soit G = (S,A) un graphe. Une *coupe* de G est une partition des sommets $S = X \sqcup Y$ en deux sous-ensembles disjoints non vides. La *taille* d'une coupe $X \sqcup Y$ est le nombre d'arêtes dont une extrémité est dans X et l'autre dans Y. On cherche à calculer une coupe $X \sqcup Y$ de taille maximale.

On utilise l'algorithme probabiliste simpliste suivant : chaque sommet $s \in S$ est affecté indépendamment à X avec probabilité $\frac{1}{2}$ et à Y avec la même probabilité.

- **1.** Soit $a = \{u, v\}$ une arête de *G*. Calculer la probabilité que *a* soit *coupée*, c'est-à-dire qu'une de ses extrémités appartienne à *X* et l'autre à *Y*.
- **2.** Quelle est l'espérance de la taille de la coupe renvoyée par l'algorithme probabiliste ? *Utiliser la linéarité de l'espérance*.
- 3. En déduire que l'espérance de la taille de la coupe renvoyée est $\geq \frac{1}{2}$ OPT où OPT est la taille d'une coupe maximale.

Exercice 3. MAXSAT

On considère des *formules sous forme normale conjonctive* (formule CNF), comme par exemple $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_3) \land (\neg x_3) \land (x_2 \lor x_3)$: c'est une *conjonction de clauses*, chaque clause est une *disjonction de littéraux* et chaque littéral est soit une variable booléenne soit sa négation. Le problème SAT consiste, étant donné une formule CNF, à décider s'il existe une affectation qui satisfait la formule.

Dans cet exercice, on s'intéresse à une variante du problème : MAXSAT. Étant donné la formule CNF, il s'agit de trouver l'affectation qui satisfait *le plus possible de clauses*.

- **1.** Justifier que si on sait résoudre de manière exacte MAXSAT, alors on peut résoudre SAT.
- **2.** Vérifier que dans la formule de l'exemple, au plus 3 clauses sur 4 peuvent être satisfaites simultanément.
- **3.** Quel algorithme (déjà vu) peut-on modifier pour résoudre MAXSAT ? Quelle est sa complexité ?
- **4.** On propose l'algorithme suivant: on renvoie une affectation des variables choisie uniformément, c'est-à-dire qu'on choisit, pour chaque variable, la valeur VRAI avec probabilité $\frac{1}{2}$ ou FAUX avec probabilité $\frac{1}{2}$. On suppose que chaque variable apparaît au plus une fois dans chaque clause.
 - i. Quelle est la complexité de cet algorithme?
 - ii. Soit C une clause de taille k. Montrer que la probabilité que C soit satisfaite est $1-1/2^k$.
 - iii. En déduire que l'espérance du nombre de clauses satisfaites est $\geq m/2$ où m est le nombre total de clauses.
 - iv. Que peut-on dire sur le facteur d'approximation?