Partie 2. Techniques algorithmiques

5. Diviser pour régner

Bruno Grenet

Université Grenoble Alpes – IM²AG L3 Mathématiques et Informatique UE Algorithmique

Table des matières

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

Table des matières

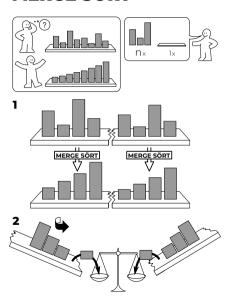
1. Premier exemple : tri fusion

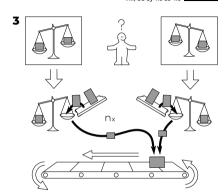
2. Qu'est-ce que « diviser pour régner » ?

3. Deuxième exemple : multiplication d'entiers

MERGE SÖRT

idea-instructions.com/merge-sort/ v1.1, CC by-nc-sa 4.0



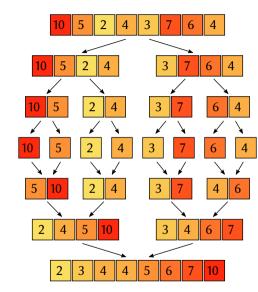




Algorithme du TriFusion

TriFusion(T):

- 1. $n \leftarrow \#T$
- 2. Si $n \le 1$: Renvoyer T
- 3. Sinon:
- 4. $T_1 \leftarrow \mathsf{TriFusion}(T_{[0,\lfloor n/2\rfloor[})$
- 5. $T_2 \leftarrow \text{TriFusion}(T_{\lfloor \lfloor n/2 \rfloor, n \rfloor})$
- 6. Renvoyer Fusion (T_1, T_2)



Algorithme du TRIFUSION

TriFusion(T):

- 1. $n \leftarrow \#T$
- 2. Si $n \le 1$: Renvoyer T
- 3. Sinon:
- 4. $T_1 \leftarrow \text{TriFusion}(T_{[0,|n/2|]})$
- 5. $T_2 \leftarrow \text{TriFusion}(T_{\lfloor \lfloor n/2 \rfloor, n \rfloor})$
- 6. Renvoyer Fusion (T_1, T_2)

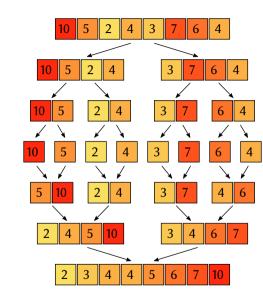
Lemme

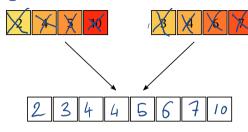
Soit t(n) la complexité de TriFusion et f(n) la complexité de Fusion. Alors

$$t(n) = t(\lfloor n/2 \rfloor) + t(\lceil n/2 \rceil) + f(n) + O(1)$$

pour n > 1, et t(n) = 0 sinon

(complexité = nombre de comparaisons)





Idée de l'algorithme

- $ightharpoonup T_1$ et T_2 vus comme des piles
- S vu comme une file
- À chaque itération,
 - on dépile la plus petite des deux têtes
 - si une pile est vide, on dépile l'autre
 - ightharpoonup on enfile dans S

Fusion(T_1, T_2):

- 1. $n_1 \leftarrow \# T_1$; $n_2 \leftarrow \# T_2$
- 2. $S \leftarrow \text{tableau de taille } n = n_1 + n_2$
- 3. $i_1 \leftarrow 0; i_2 \leftarrow 0$
- 4. Pour $i_S = 0 \ and n 1$:
- 5. Si $i_1 \ge n_1$: $(T_1 \ vide)$
- 6. $S_{[i_S]} \leftarrow T_{2[i_2]}; i_2 \leftarrow i_2 + 1$
- 7. Sinon si $i_2 \ge n_2$: $(T_2 \ vide)$
- 8. $S_{[i_S]} \leftarrow T_{1[i_1]}; i_1 \leftarrow i_1 + 1$
- 9. Sinon si $T_{1[i_1]} \leq T_{2[i_2]}$:
- 10. $S_{[i_S]} \leftarrow T_{1[i_1]}; i_1 \leftarrow i_1 + 1$
- **11.** Sinon:
- 12. $S_{[i_S]} \leftarrow T_{2[i_2]}; i_2 \leftarrow i_2 + 1$
- 13. Renvoyer S

Idée de l'algorithme

- $ightharpoonup T_1$ et T_2 vus comme des piles
- ► *S* vu comme une file
- À chaque itération,
 - on dépile la plus petite des deux têtes si une pile est vide, on dépile l'autre
 - on onfile dans C
 - on enfile dans *S*

Fusion(T_1, T_2):

- 1. $n_1 \leftarrow \# T_1$; $n_2 \leftarrow \# T_2$
- 2. S ← tableau de taille $n = n_1 + n_2$
- 3. $i_1 \leftarrow 0$; $i_2 \leftarrow 0$
- 4. Pour $i_S = 0$ à n 1:
- 5. Si $i_1 \geq n_1$:
- 6. $S_{[i_S]} \leftarrow T_{2[i_2]}; i_2 \leftarrow i_2 + 1$
- 7. Sinon si $i_2 \ge n_2$: $(T_2 \ vide)$
- 8. $S_{[i_S]} \leftarrow T_{1[i_1]}; i_1 \leftarrow i_1 + 1$
- 9. Sinon si $T_{1[i_1]} \leq T_{2[i_2]}$:
- 10. $S_{[i_S]} \leftarrow T_{1[i_1]}; i_1 \leftarrow i_1 + 1$
- **11**. Sinon :
- 12. $S_{[i_S]} \leftarrow T_{2[i_2]}; i_2 \leftarrow i_2 + 1$
- 13. Renvoyer S

Lemme

La complexité f(n) de Fusion est O(n).

Preuve:

 $(T_1 \text{ vide})$

Boucle de Da n-1 Chaque ileiation conte O(1)

Fusion(T_1, T_2):

- 1. $n_1 \leftarrow \# T_1$; $n_2 \leftarrow \# T_2$
- 2. S ← tableau de taille $n = n_1 + n_2$
- 3. $i_1 \leftarrow 0; i_2 \leftarrow 0$
- 4. Pour $i_S = 0 \ and n 1$:

5. Si
$$i_1 \ge n_1$$
: $(T_1 \ vide)$

6.
$$S_{[i_S]} \leftarrow T_{2[i_2]}; i_2 \leftarrow i_2 + 1$$

7. Sinon si
$$i_2 \ge n_2$$
: $(T_2 \ vide)$

8.
$$S_{[i_S]} \leftarrow T_{1[i_1]}; i_1 \leftarrow i_1 + 1$$

- 9. Sinon si $T_{1[i_1]} \leq T_{2[i_2]}$:
- 10. $S_{[i_S]} \leftarrow T_{1[i_1]}; i_1 \leftarrow i_1 + 1$
- **11**. Sinon:
- 12. $S_{[i_S]} \leftarrow T_{2[i_2]}; i_2 \leftarrow i_2 + 1$
- 13. Renvoyer S

Lemme

La complexité f(n) de Fusion est O(n).

Lemme

Si T_1 et T_2 sont deux tableaux triés (par ordre croissant), Fusion(T_1 , T_2) renvoie un tableau trié contenant l'union des éléments de T_1 et T_2 .

Retour sur le TriFusion

Théorème

L'algorithme TriFusion trie tout tableau de taille n en temps $O(n \log n)$.

Preuve de complexité

$$\xi(n) = \xi(\lfloor n/2 \rfloor) + \xi(\lceil n/2 \rceil) + \vartheta(n)$$

 $\xi(n) = \xi(\lfloor n/2 \rfloor) + \xi(n) = \vartheta(n \log n)$: à démontrer.

Intuition de la complexité de TriFusion

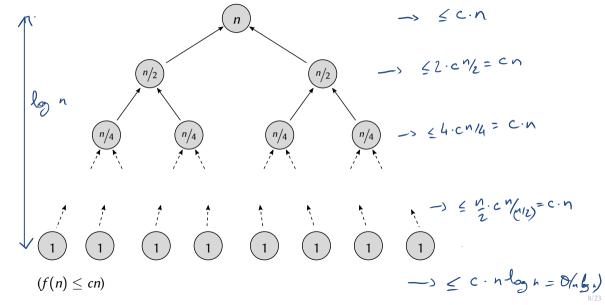


Table des matières

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

La stratégie « diviser pour régner »

- 1. Diviser le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- 3. Combiner les solutions pour reconstruire la solution du problème original.

- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.
- Exemple : la recherche dichotomique

Exemple du tri fusion

- 1. Diviser le tableau en 2 sous-tableaux de tailles environ égales
- 2. Trier récursivement chaque sous-tableau
- 3. Fusionner les sous-tableaux triés

Analyse d'un algorithme « diviser pour régner »

Récurrence(s) sur la taille du problème

Correction

- Hypothèse de récurrence : les appels récursifs sont corrects
- ▶ Preuve d'hérédité : diviser et/ou combiner sont correctes
- Preuve de correction

Complexité

- 1. Établir l'équation de récurrence
- 2. Résoudre la récurrence :
 - soit estimation (arbre de récursion, ...) puis preuve par récurrence
 - soit utilisation du *master theorem*

Une version du « master theorem »

Théorème

Soit $T : \mathbb{N} \to \mathbb{R}$ vérifiant pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

où a, d > 0 et b > 1. Alors

$$T(n) = \begin{cases} O(n^d) & \text{si } b^d > a & (d > \log_b a) \\ O(n^d \log n) & \text{si } b^d = a & (d = \log_b a) \\ O(n^{\log_b a}) & \text{si } b^d < a & (d < \log_b a) \end{cases}$$

Exemple du tri fusion

$$t(n) \leq t(\lceil n/2 \rceil]) + t(\lfloor n/2 \rfloor) + O(n)$$

$$\leq 2 + (\lceil n/2 \rceil) + O(n)$$

$$\leq 2 + (\lceil n/2 \rceil) + O(n)$$

$$\leq 2$$

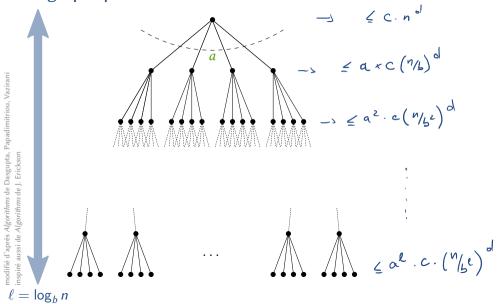
$$\leq 2$$

$$\leq 3$$

$$\leq 4$$

$$\leq 4$$

Intuition graphique



Cœur de la preuve

Résoudre
$$T(n) \le aT(\lceil n/b \rceil) + c \cdot n^d$$
 avec $n = b^\ell$

Lemme

Pour
$$\ell \geq 0$$
, $T(b^{\ell}) \leq a^{\ell}T(1) + cb^{d\ell} \sum_{i=0}^{\ell-1} (a/b^{d})^{i}$

$$\ell = 0 \qquad T(b^{\circ}) \leq a^{\circ} T(1)$$

$$\ell \geq 0 \qquad T(b^{\ell+1}) \leq a \cdot T(b^{\ell}) + c \cdot b^{\ell d} \leq a^{\ell+1}T(1) + a \cdot cb^{d\ell} \sum_{i=0}^{\ell-1} (\frac{a}{b^{i}})^{i} + cb^{\ell} + cb^{\ell} \sum_{i=0}^{\ell-1} (\frac{a}{b^{i}})^{i} + cb^{\ell} + cb^{\ell} \sum_{i=0}^{\ell-1} (\frac{a}{b^{i}})^{i} + cb^{\ell$$

Cœur de la preuve

Résoudre
$$T(n) \le aT(\lceil n/b \rceil) + c \cdot n^d$$
 avec $n = b^{\ell}$

Lemme

Pour
$$\ell \ge 0$$
, $T(b^{\ell}) \le a^{\ell} T(1) + cb^{d\ell} \sum_{\ell=1}^{\ell-1} (a/b^{d})^{i}$

Lemme

$$\sum_{i=0}^{\ell-1} \left(\frac{a}{b^d}\right)^i = \begin{cases} O(1) & \text{si } b^d > a \\ O(\ell) & \text{si } b^d = a \\ O((a/b^d)^\ell) & \text{si } b^d < a \end{cases}$$

$$b^{d} > a \Rightarrow a/b^{d} < 1 : \sum_{i=1}^{l-1} (a/b^{d})^{i} < \sum_{i=3}^{l} (a/b^{d})^{i} = \frac{1}{1 - a/b^{d}} = \Theta(1)$$

$$b^{d} = a \Rightarrow a/b^{d} = 1 : \sum_{i=3}^{l-1} (a/b^{d})^{i} = \frac{1}{a/b^{d}} = \Theta((a/b^{d})^{l})$$

$$b^{d} > a \Rightarrow a/b^{d} > 1 : \sum_{i=3}^{l-1} (a/b^{d})^{i} = \frac{(a/b^{d})^{l}}{a/b^{d}} = \Theta((a/b^{d})^{l})$$

Cœur de la preuve

Résoudre
$$T(n) \le aT(\lceil n/b \rceil) + c \cdot n^d$$
 avec $n = b^{\ell}$

Lemme

Pour
$$\ell \ge 0$$
, $T(b^{\ell}) \le a^{\ell} T(1) + c b^{d\ell} \sum_{i=0}^{\ell-1} (a/b^d)^i$

Lemme

$$\sum_{i=0}^{\ell-1} \left(\frac{a}{b^d}\right)^i = \begin{cases} O(1) & \text{si } b^d > a \\ O(\ell) & \text{si } b^d = a \\ O((a/b^d)^\ell) & \text{si } b^d < a \end{cases}$$

Corollaire

$$T(b^{\ell}) = egin{cases} O(a^{\ell} + b^{d\ell}) & ext{si } b^{d} > a \ O(a^{\ell} + b^{d\ell} \cdot \ell) & ext{si } b^{d} = a \ O(a^{\ell} + b^{d\ell} (a/b^{d})^{\ell}) & ext{si } b^{d} < a \end{cases}$$

Fin de la preuve

$$Cas \ n = b^{\ell} \longrightarrow \ell = \ell_{\Im b} \ n$$

$$T(b^{\ell}) = \begin{cases} O(b^{d\ell}) & \text{si } b^{d} > a \\ O(b^{d\ell} \cdot \ell) & \text{si } b^{d} = a \\ O(a^{\ell}) & \text{si } b^{d} < a \end{cases} \longrightarrow O(n^{d} \log n)$$

$$O(a^{\ell}) \quad \text{si } b^{d} < a \longrightarrow O(n^{d} \log n)$$

Cas général

Cas general

Hypothise:
$$T(n)$$
 est croissant.

On prend I minimal by $b^{l} \ge n$ (due $b^{l-l} \ge n$)

Alors $b^{l} \le b \cdot n$ et $T(n) \le T(b^{l})$
 $T(n) \le T(b^{l}) = \begin{cases} \Theta((bn)^{d}) = \Theta(n^{d}) \\ \Theta((bn)^{d}) = \Theta(n^{d}) \end{cases}$
 $\Theta((bn)^{d}) = \Theta(n^{d})$
 $\Theta((bn)^{d}) = \Theta(n^{d})$

Conclusion

- « Diviser pour régner »
 - 1. Diviser ; 2. Résoudre récursivement ; 3. Combiner

Conception: seuls 1. et 3. demandent de la réflexion

Correction: preuve par récurrence

Complexité: master theorem (en général)

à apprendre

Autres versions du master theorem

Récurrences plus générales

$$ex.: T(n) = aT(\lceil n/b \rceil) + O(n^d \log^c n)$$

- Résultats plus précis
 - Constantes dans le « grand O »
 - ► Termes de plus bas degré

Objectifs du chapitre

- Reconnaître un algo. « diviser pour régner »
- Prouver sa correction et analyser sa complexité
- Tenter une stratégie « diviser pour régner » sur un nouveau problème

Table des matières

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner » 🤅

3. Deuxième exemple : multiplication d'entiers

Retour à l'école primaire

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10 Sortie L'entier $C = A \times B$, en base 10

		1	3	8	2	
	X	7	6	3	4	
× 7 6 3 4 × 7 6 3 4 × 5 5 2 8 × 1 4 6 8 2 9 2 3 6 7 4						
10550		<	8	8		

Complexité

- ► Combien de *multiplications chiffre à chiffre* sont effectuées ?
- Combien d'additions chiffre à chiffre sont effectuées ?

Première tentative

Entrées
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$ 1 3 8 2 Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$ $\times 7 6 3 4$ $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$ $C_{00} = 2 7 8 8$ $C_{01} = 6 2 3 2$ $C_{10} = A_1 \times B_0$ $C_{11} = A_1 \times B_1$ $C_{11} = 9 8 8$ $C_{12} = 1 0 5 5 0 1 8 8$

Correction

$$AB = (A_0 + 10^{\lfloor n/2 \rfloor} A_1) \times (B_0 + 10^{\lfloor n/2 \rfloor} B_1)$$

= $A_0 B_0 + 10^{\lfloor n/2 \rfloor} (A_0 B_1 + A_1 B_0) + 10^{2\lfloor n/2 \rfloor} A_1 B_1$

Complexité

$$T(n) \leq 4T(\lceil n/2 \rceil) + O(n) \qquad \begin{cases} a = 4 \\ b = 2 \\ d = 1 \end{cases} \qquad a = 4 \\ a = 1 \end{cases} \qquad a = 4 \\ a = 1 \qquad a = 4$$

Idée de Karatsuba (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

- ► A_0B_0 et A_1B_1 sont calculés de toute façon \rightsquigarrow un seul produit en plus!
- ► $A_0 A_1$ et $B_0 B_1$ ont $\simeq n/2$ chiffres mais peuvent être négatifs \rightsquigarrow règle des signes

Diviser
$$A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$$

 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$ $C_{11} = A_1 \times B_1$
 $D = (A_0 - A_1) \times (B_0 - B_1)$
Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - D) + 10^{2\lfloor n/2 \rfloor} C_{11}$

	1382
	\times 7 6 3 4
$A_0 - A_1 =$	6 9
$B_0 - B_1 = -$	4 2
$C_{00} =$	2788
$C_{11} = 9$	8 8
-D =	2898
$C_{00} =$	2788
$C_{11} =$	988
= 1 0	550188

Algorithme de Karatsuba (1962)

KARATSUBA(A, B):

- 1. Si A et B n'ont qu'un chiffre : Renvoyer a_0b_0
- 2. Écrire A sous la forme $A_0 + 10^{\lfloor n/2 \rfloor} A_1$
- 3. Écrire *B* sous la forme $B_0 + 10^{\lfloor n/2 \rfloor} B_1$
- 4. $C_{00} \leftarrow \text{Karatsuba}(A_0, B_0)$
- 5. $C_{11} \leftarrow \text{Karatsuba}(A_1, B_1)$
- **6.** $D \leftarrow \text{Karatsuba}(|A_0 A_1|, |B_0 B_1|)$
- 7. $s \leftarrow \text{signe}(A_0 A_1) \times \text{signe}(B_0 B_1)$
- 8. Renvoyer $C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} sD) + 10^{2\lfloor n/2 \rfloor} C_{11}$

Correction

$$A \times B = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor} C_{11}$$

Complexité

Soit K(n) le temps de calcul de KARATSUBA pour des entrées de taille n. Alors

$$K(n) \leq 3K(\lceil n/2 \rceil) + O(n) \quad \stackrel{\circ}{\underset{\beta \neq 2}{\circ}} \quad \stackrel{\circ}{\underset{\beta \neq 2}{\circ}} \quad \underset{\beta \neq 2}{\overset{\circ}{\underset{\beta \neq 2}{\circ}}} \quad \underset{\beta \neq 2}{\overset{\circ}{\underset{\beta \neq 2}{\circ}}$$

Dans la vraie vie

Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$

- Grands entiers: tableaux d'entiers de w bits \iff entiers en base 2^w
- Exemples: gmp (C/C++), BigInteger (Java), int (Python), ...
- Autre utilisation : polynômes

Quel TAD utiliser?

- ightharpoonup TAD entier : opérations en temps O(1)
 - Réaliste pour des entiers raisonnables
 - ► Irréaliste pour de grands entiers
- ► TAD entier borné : opérations en temps O(1) pour des entiers $< 2^w$

Algorithmes plus rapides

- ► Toom-3 (1963) : découpe en 3 morceaux
- ► Toom-Cook (1966): découpe en *r* morceaux
- Schönhage-Strassen (1971) : basé sur la FFT
- benominge strussen (1571) i suse sur la
- ► Harvey-Hoeven (2021): utilise aussi la FFT

 $O(n \log n)$

 $O(n^{1,465})$

 $O(n^{1+\epsilon})$

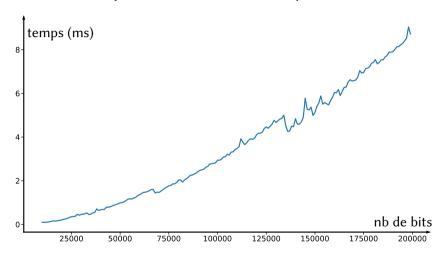
dont multiplication

indices de tableau, ...

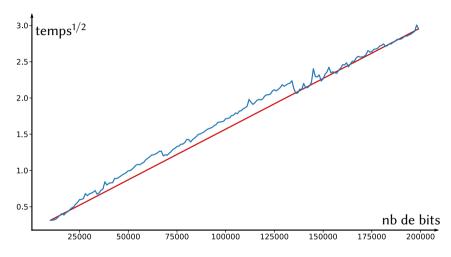
 $O(n \log n \log \log n)$

cryptographie, ...

Pour finir: multiplication d'entiers en Python



Pour finir: multiplication d'entiers en Python



Pour finir: multiplication d'entiers en Python

