
Chapter 4

ODE-PDE modeling and numerical
analysis in quantum optics

When the Hamiltonian of the system is time-varying, it can be di�cult or even impossible to formally or
practically find solution to the evolution equation of the system state. We therefore turn to numerical
solutions.

We are here interested in systems which are exited by or in interaction with an electromagnetic
field, which is time dependent.

The properties of quantum channels that preserve properties of the states is something we also
want to achieve at the numerical level.

4.1 Numerical resolution of the von Neumann equation

4.1.1 Modelling

We consider H = Cd, and a state ⇢ ∈ DM(H) which is governed by the von Neumann equation

i
d

dt
⇢(t) = [H(t),⇢(t)],

where H(t) is a sum of a constant Hamiltonian, H0, that we can consider to be a diagonal matrix
(up to a convenient choice of the basis) and a time-varying Hamiltonian V (t). From the physics point
of view, and regardless of the dimensions that are omitted here, the diagonal entries of H0 are the
discrete energy levels of the system and the potential V is the scalar product of the polarizability p,
a d × d matrix (with entries in C3) that depend on the symmetries of the states, and E(t) ∈ R3 is the
electromagnetic field: V (t) = p ⋅ E(t). Here, we first consider that the electromagnetic field E(t) is
given.

There is also a certain number of physical phenomena that are hard to describe precisely and they
are simply gathered in a phenomenological term, called relaxation term. Hence we study

d

dt
⇢(t) = −i[H(t),⇢(t)] +Q(⇢(t)).

4.1.2 Preservation of the density matrix property at the continuous level

Even with a time-varying Hamiltonian H(t), the density matrix property is preserved through the
time evolution for the relaxation-free equation. Indeed H(t) is still Hermitian (p is Hermitian with a
vanishing diagonal).
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Let us now consider also relaxation terms

(
d

dt
⇢(t))∗ = (−i[H(t),⇢(t)] +Q(⇢(t)))∗ = i(H(t)⇢(t) − ⇢(t)H(t))∗ +Q(⇢(t))∗,

d

dt
⇢∗(t) = −i[H∗(t),⇢∗(t)] +Q(⇢(t))∗,

d

dt
⇢(t) = −i[H(t),⇢(t)] +Q(⇢(t))∗.

In the sequel we will have to distinguish diagonal terms in the density matrix, also called popula-
tions, and the o↵-diagonal terms, called coherences.

To preserve Hermicity, we should have Q(⇢(t))∗ = Q(⇢(t)) and the o↵-diagonal terms have to
check Q(⇢(t))kj = Q(⇢(t))jk. This is ensured by simply setting Q(⇢)jk = −�jk⇢jk with �jk = �kj ∈ R.

We also want to preserve positiveness and the trace. To preserve trace

Q(⇢)jj =�
`≠j

W`j⇢`` −�
`≠j

Wj`⇢jj =�
`≠j

W`j⇢`` − �j⇢jj ,

where �j = ∑`≠j Wj`. By convention Wjj = 0 for all j = 1, . . . , d. Clearly
d

∑
j=1

Q(⇢)jj = 0 and this

preserves the trace.
This form describes transitions according to the following diagram

j

`

Wj` W`j

which means that Wj` is a Wj→`, and justifies the (unusual) order of the subscripts.
We also have a relation between the coe�cients:

Wj` =W`je
�("j−"`),

which ensures that the system d
dt⇢(t) = Q(⇢(t)) ultimately (in absence of forcing, i.e. V (t) = 0) tends

to an equilibrium state, which is a Gibbs state. Indeed, if we only consider the equations involving
relaxation (master equation)

d

dt
⇢jj =�

`≠j

Wj`e
−�("j−"`)⇢`` −�

`≠j

Wj`⇢jj ,

d

dt
e�"j⇢jj =�

`≠j

Wj`e
�"`⇢`` −�

`≠j

Wj`e
�"j⇢jj =�

`≠j

Wj` �e
�"`⇢`` − e

�"j⇢jj�

In the limit we want d
dte

�"j⇢jj(t) → 0 and all the limits of e�"`⇢``(t) are equal. Since the trace is
conserved

lim
t→+∞

⇢jj(t) =
e−�"j

∑
d

i=1 e
−�"j

.

Conditions for positiveness A necessary and su�cient condition for populations to remain non-
negative is simply that Wj` ≥ 0 for all j and `.
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Proof. Necessary condition: suppose the initial condition is ⇢jk = 0 except for j = k = j0 (for which
⇢j0j0 = 1). Then for j ≠ j0

d

dt
⇢jj �

t=0
=Wj0j⇢j0j0 =Wj0j .

And since ⇢jj(0) = 0, this derivative has to be non-negative.
Su�cient condition: Let us suppose there exists t0 and k0 such that ⇢k0k0(t0) = 0. Then

d

dt
⇢k0k0 �

t=t0

= �

j≠k0

Wjk0⇢jj(t0).

tt0

Either t0 = 0 and this will persist until some time t1 where for a j (for which Wjk0 > 0) ⇢jj(t1) > 0 and
then just after t1, ⇢k0k0(t) > 0.
Either t0 > 0, and by the trace property there exist j0 such that ⇢j0j0(t0) > 0. Suppose Wj0k0 > 0,
then d

dt⇢k0k0(t0) > 0, and
d
dt⇢k0k0 cannot be continuous at time t = t0 (and it should be by the Cauchy-

Lipschitz theorem). This simply implies that ⇢k0k0(t0) is impossible, and ⇢k0k0 remains positive .
If Wj0k0 = 0, by continuity of the solutions of the equations with respect to the parameters, ⇢k0k0
remains non-negative.

A sub-property of positiveness is that �⇢jk(t)�
2
≤ ⇢jj(t)⇢kk(t) (the sub-matrix corresponding to j

and k indices has a positive determinant). A necessary and su�cient condition to ensure this is that
2�jk ≥ �j + �k −

�
WjkWkj .

Proof. Hint: study the derivative of f(t) = ⇢jj(t)⇢kk(t) − ⇢jk(t)⇢kj(t).

Let us suppose that the transverse relaxations read as

�jk =
1

2
(�j + �k) + �j + �k −Aj ⋅Ak

where �j ∈ R and Aj ∈ Rd (which does not allow to express the previous
�
WjkWkj) then a su�cient

condition for ⇢ to be nonnegative is �j ≥
1
2�Aj�

2.

Proof. Hint: study the derivative of g(t) =X∗⇢(t)X for X ∈ Cd.

From Lindblad to relaxations What we want to be a relaxation term would stem from the
V↵⇢V

∗

↵ −
1
2{V

∗

↵ V↵,⇢} term. Let us compute this for V↵ = ↵jk�ej��ek�.

V↵⇢V
∗

↵ = ↵jk�ej��ek�⇢�ek��ej �↵jk = �↵jk�
2⇢kk�ej��ej �,

V ∗↵ V↵ = �ek��ej �↵jk↵jk�ej��ek� = �↵jk�
2
�ek��ej � ej��ek� = �↵jk�

2
�ek��ek�,

V ∗↵ V↵⇢ = �↵jk�
2
�ek��ek�⇢ = �↵jk�

2
�ek��ek�

d

�

`,m=1

⇢`m�e`��em� = �↵jk�
2

d

�

`,m=1

⇢`m�ek��ek � e`��em�

= �↵jk�
2

d

�

`,m=1

⇢`m�ek��k`�em� = �↵jk�
2

d

�

`,m=1

⇢`m�k`�ek��em� = �↵jk�
2

d

�

m=1

⇢km�ek��em�,

⇢V ∗↵ V↵ = ⇢�↵jk�
2
�ek��ek� = �↵jk�

2
d

�

`,m=1

⇢`m�e`��em� �ek��ek� = �↵jk�
2

d

�

`,m=1

⇢`m�e`��em � ek��ek�

= �↵jk�
2

d

�

`,m=1

⇢`m�e`��mk�em� = �↵jk�
2

d

�

`,m=1

⇢`m�mk�e`��em� = �↵jk�
2

d

�

`=1

⇢`k�e`��ek�.
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For a generic V↵, we have to sum up these contributions over j and k but we want to sum up only
d2 −1 contributions. To to this in an elegant way, we can simply sum for all j, k = 1, . . . , d but suppose
that one of the ↵jj is zero, e.g. ↵11 = 0. For diagonal terms, we have

�

↵

�V↵⇢V
∗

↵ −
1

2
{V ∗↵ V↵,⇢}�

nn

=

d

�

k=1

�↵nk�
2⇢kk −

1

2

d

�

j=1

�↵jn�
2⇢nn −

1

2

d

�

j=1

�↵jn�
2⇢nn

=

d

�

j=1

��↵nj �
2⇢jj − �↵jn�

2⇢nn� = �
j≠n

��↵nj �
2⇢jj − �↵jn�

2⇢nn� .

where we selected the coe�cients of �en��en� in the previous contributions. Similarly, for the o↵-
diagonal terms

�

↵

�V↵⇢V
∗

↵ −
1

2
{V ∗↵ V↵,⇢}�

nm

= −
1

2

d

�

j=1

�↵jn�
2⇢nm −

1

2

d

�

j=1

�↵jm�
2⇢nm = −

1

2

d

�

j=1

��↵jn�
2
+ �↵jm�

2
�⇢nm.

We recover a model where populations are governed by a master equation with Wnj = �↵jn�
2 for n ≠ j

(we do have �n = ∑j≠nWnj) and �nm =
1
2(�n + �m) + �n + �m with �n = �↵nn�

2.

4.1.3 “Classical” methods do not preserve positiveness

The equation governing ⇢ is a classical ordinary di↵erential equation (ODE) that also reads ⇢′(t) =
f(t,⇢(t)). One could a priori use any classical method to solve this ODE.

In the sequel we will consider a uniform discretization of time and consider discrete times tp = p�t,
where �t is the time step. A time varying matrix A(t) will be approximated at time tp by Ap. Half times
will also be considered and Ap+1�2 will be an approximation of A(tp+1�2) where tp+1�2 = (tp + tp+1)�2.

The problems with classical methods do not stem from the relaxation operator, so we omit it here.

First attempt: Euler scheme The (forward) Euler scheme simply reads

⇢p+1 − ⇢p

�t
= −i[Hp,⇢p].

This preserves Hermicity:

(⇢p+1)∗ = (⇢p − i�t(Hp⇢p − ⇢pHp
))
∗
= (⇢p)∗ + i�t((⇢p)∗(Hp

)
∗
− (Hp

)
∗
(⇢p)∗)

= ⇢p − i�t(Hp⇢p − ⇢pHp
) = ⇢p+1.

Trace is also preserved, since tr([Hp,⇢p]) = 0.
If we write this in a basis where Hp is diagonal, and denote its eigenvalues by �p

j
, this reads

⇢̃p+1
jk
− ⇢̃p

jk

�t
= −i(�p

j
⇢̃p
jk
− ⇢̃p

jk
�p

k
),

and therefore
⇢̃p+1
jk
= �1 − i�t(�p

j
− �p

k
)� ⇢̃p

jk
.

Let us consider the two-level case and suppose that ⇢̃p
jk
= ajak (a pure state), then

det ⇢̃p+1 = ⇢̃p+111 ⇢̃p+122 − �⇢̃
p+1
12 �

2
= ⇢̃p11⇢̃

p

22 − �1 − i�t(�
p

1 − �
p

2)�
2
�⇢̃p12�

2

= �1 − �1 − i�t(�p

1 − �
p

2)�
2
��a1�

2
�a2�

2
= −�t2(�p

1 − �
p

2)
2
�a1�

2
�a2�

2
< 0.

Hence matrix ⇢p+1 is not positive, and the (forward) Euler scheme does no.
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Backward Euler scheme The backward Euler scheme now reads

⇢p+1 − ⇢p

�t
= −i[Hp+1,⇢p+1].

Once more, in a basis where Hp+1 is diagonal,

⇢̃p+1
jk
=

1

1 + i�t(�p+1
j
− �p+1

k
)

⇢̃p
jk
.

The preservation of Hermicity can be seen on this form, hence the eigenvalues of ⇢̃p+1 are real. In the
two level case, let us first suppose that ⇢̃p is a pure state. Then (following the same lines as before)

det ⇢̃p+1 =
�t2(�p+1

1 − �p+1
2 )

2

1 + �t2(�p+1
1 − �p+1

2 )
2
�a1�

2
�a2�

2
> 0.

The trace and the determinant of ⇢̃p+1 are both non negative, the eigenvalues are non negative and
⇢̃p+1 ≥ 0.
In fact, since ⇢̃p is a density matrix, it can be expressed as a mixture of states. By linearity each pure
component of the mixture is transformed by the Euler scheme in a non negative matrix, and the sum
is non negative.

⇢̃p =
N

�

j=1

pj ⇢̃
p

j
�→

N

�

j=1

pj ⇢̃
p+1
j

�
≥0

= ⇢̃p+1 ≥ 0.

This does not say anything for a larger number of levels. However, we will see in the practical session
that this scheme has flaws. . .

Second attempt: Crank-Nicolson scheme Historically, because it is second order, and was
coupled to second order schemes for Maxwell equations, the Bloch equations have been discretized by
the Crank-Nicolson scheme.

⇢p+1 − ⇢p

�t
= −i �Hp+1�2,

1

2
(⇢p + ⇢p+1)� .

Once more we can write this in a basis where Hp+1�2 is diagonal and

⇢̃p+1
jk
=

1 − i�t

2 (�
p+1�2
j

− �p+1�2
k
)

1 + i�t

2 (�
p+1�2
j

− �p+1�2
k
)

⇢̃p
jk
.

It clearly still preserves Hermicity and trace. For the previous two-level case, it gives det ⇢̃p+1 = 0 (thus
it preserves Hermicity and positiveness). This time you have to consider a three-level case to obtain
a counter-example to positiveness.

What structure is not preserved? The solution to i d
dt⇢(t) = [H(t),⇢(t)] is

⇢(t) = exp�−i�
t

0
H(⌧)d⌧�⇢(0) exp�i�

t

0
H(⌧)d⌧� .

Exponentials can be hard and costly to compute. A scheme that would preserve this structure is a
scheme where the exponentials are discretized in a coherent way. For example

⇢p+1 = � −
1

2
i�tHp

�� +
1

2
i�tHp

�

−1

⇢p � +
1

2
i�tHp

�� −
1

2
i�tHp

�

−1

.

This works, but now you have inverses of matrices to compute.
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4.1.4 Splitting methods

General principle The principle of splitting methods is to split the operator of the time evolution
in pieces that you solve separately. There are many reasons to this

• simplify each step of the solution. This is the case for direction splitting often used to split the
computation of a Laplacian in the successive computation in each direction;

• use di↵erent methods for each part of the equation. For example you may want to solve di↵er-
ential operators in the frequency domain and nonlinear operators in the time domain;

• here, preserve exactly the physical properties for each part of the equation, while it is di�cult
to do on the whole equation.

Let us consider an equation reads d
dtx(t) = Ax(t) +Bx(t), and we denote SA(t) the evolution semi-

group1 for equation d
dty(t) = Ay(t) and SB(t) the evolution semi-group for equation d

dtz(t) = Bz(t),
i.e. y(t) = SA(t)y(0) and z(t) = SB(t)z(0).

Lie splitting consists in writing

xp+1 = SB(�t)SA(�t)x
p.

Strang splitting consists in writing

xp+1 = SA(�t�2)SB(�t)SA(�t�2)x
p.

Provided there are no sti↵ness issues, Lie splitting is a first order scheme and Strang splitting is
a second order scheme. This splitting error adds to the possible errors for the separate numerical
solution of SA(�t) and SB(�t). Higher order methods are possible if one of the operator is also well
defined for negative times. (This is a complex matter quite out of the scope of this course).

Case of the Bloch equation For this we anew consider relaxation terms. We have to solve
d
dt⇢(t) = −i[H(t),⇢(t)]+Q(⇢(t)) where H(t) =H0 +V (t). Each of the three parts of the equation can
be solved easily preserving positiveness properties. It is also convenient to solve only two parts taking
H0 into account either with the relaxation Q or with the potential V (t).

The Hamiltonian part should be solved as already seen with a suitable discretization of the expo-
nentials in

⇢(t) = exp�−i�
t

0
H(⌧)d⌧�⇢(0) exp�i�

t

0
H(⌧)d⌧� .

The relaxation part can be solved exactly. O↵-diagonal terms read d
dt⇢jk(t) = −�jk⇢jk(t) if relax-

ation alone is considered and d
dt⇢jk(t) = −(�jk + i("j − "k))⇢jk(t) if H0 is also considered. In any case

the exact solution is ⇢p+1
jk
= exp(−�jk�t)⇢

p

jk
or ⇢p+1

jk
= exp(−(�jk + i("j − "k))�t)⇢

p

jk
.

For the diagonal part, we can gather all the populations in one single vector N(t) (which is the
diagonal of the density matrix). Then setting

W̃ =

�

�
�
�
�

�

−∑
d

j=1W1j W21 . . . Wd1

W12 −∑
d

j=1W2j � ⋮

⋮ � � ⋮

W1d . . . . . . −∑d

j=1Wdj

�

�
�
�
�

�

,

1
An evolution semi-group is a time-dependent family of operators S(t) defined for t ≥ 0 such that S(0) = ; for all

t, s ≥ 0, S(t+s) = S(t)S(s) (composition of operators); limt→0+ S(t) = . We define the infinitesimal generator (A,D(A))

of this semi-group by

D(A) = �x ∈H, lim
t→0+

S(t)x − x

t
exists� and ∀x ∈D(A), Ax = lim

t→0+
S(t)x − x

t
.

64



the solution to the master equation is N(t) = etW̃N(0). On a time step, you always use e�tW̃ , which
can be hard to compute, but that you only have to compute once.

4.2 Interaction with an external classical electromagnetic field

4.2.1 Maxwell equations

An electromagnetic phenomenon can be described by four vector-valued functions depending on the
space x and the time t: the electric field E(x, t), the magnetic field B(x, t), the displacement field
D(x, t) and the magnetizing field H(x, t).

Under some assumptions, these quantities are linked by constitutive relations that describe the
material in which the electromagnetic field evolves. We restrict the presentation to perfect media
(local relation in time and space) with a linear and isotropic (independent of the direction) law
without additional magnetization. It gives the constitutive relations

D(x, t) = "(x)E(x, t), H(x, t) =
1

µ(x)
B(x, t),

where " is the permittivity of the material (that measures the response of the material to an applied
electric field) and µ its permeability (that measures its response to an applied magnetic field). For
homogeneous materials, " and µ are constant throughout the material. Generally, materials are
dispersive and " and µ depend on the frequency of the incident electromagnetic wave. The permittivity
and the permeability are often represented by a relative permittivity "r and a relative permeability
µr (dimensionless quantities) via the expressions " = "r"0 and µ = µrµ0 where "0 is the vacuum
permittivity and µ0 the vacuum permeability, both being linked to the speed of light c by the relation
c2"0µ0 = 1. In the same way, the permittivity " and the permeability µ of the material determine the
velocity v of the electromagnetic waves through the medium via the relation v2"µ = 0.

Finally, we can also consider a perturbation in the electrical constitutive law

D(x, t) = "(x)E(x, t) +P(x, t)

by introducing a polarization P. For instance, it can describe the electric dipole moments (measures
of the separation of positive and negative electrical charges) in a dielectric material, an electrical in-
sulator that can be polarized by an applied electric field due to the displacement (in a microscopic
volume) of bound charges. These charges are called bound charges because they are associated to an
atom or a molecule (by opposition to free charges that move within the material). In that case, the
polarization P is linked to the bound charge density ⇢bound by the relation −divP = ⇢bound and it
creates a polarization current JP = @tP. For us, as we will see later, the dipole approximation will be
used to express the influence of quantum objects on the electromagnetic field.

In a material with an electric (free) charge density ⇢(x, t) and an electric (free) current density
J(x, t), Maxwell’s equations are the following set of partial di↵erential equations:

Gauss’s equation that says the divergence of the electric field is proportional to the electric charge
distribution

div("E) = ⇢ + ⇢bound,

Gauss’s equation for magnetism that states there are no magnetic monopoles (only magnetic
dipoles) and thus the magnetic flux through a surface is zero

div(B) = 0,
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Faraday’s equation that says a time variation of a magnetic field induces an electric field

curl(E) = −@tB,

Ampère’s equation that says a magnetic field can be generated either by a time variation of an
electric field or an electrical current

curl(
1

µ
B) = "@tE + �J + JP �.

Charge conservation A (macroscopic) charge conservation can be derived from Maxwell’s equa-
tion. Indeed, the left-hand side of the Ampère’s equation has a zero divergence by the div–curl identity.
Interchanging the divergence and the time derivative, it gives

0 = @t div("E) + div �J + JP � = @t div("E + P ) + divJ.

Finally, applying the Gauss’s equation, we obtain the charge conservation equation

@t⇢ + divJ = 0.

4.2.2 Propagation equations

In the sequel, we consider dimensionless Maxwell’s equations in a homogeneous material without
source terms. It reads

�
div(B) = 0,

div(E) = 0,

��������������

curl(E) = −@tB,

curl(B) =
1

v2
@tE.

These simplified equations allow to better understand why Maxwell’s equations describe wave propa-
gation phenomena.

Wave equations

From Faraday’s equation, we immediately have

curl(curl(E)) = −@t(curl(B)) = −
1

v2
@2
tE.

Since curl curl = ∇div−� and div(E) = 0, we obtain

@2
tE − v

2�E = 0.

Thus, the electric field is governed by a wave equation. By symmetry, we also obtain that the magnetic
field is governed by the wave equation

@2
tB − v

2�B = 0.

Consequently, the electromagnetic field has properties specific to the solution of a hyperbolic partial
di↵erential equation (finite propagation speed, propagation of singularities, energy conservation. . . ).

For instance, if we multiply (dot product) the wave equation by @tE and integrate in space (as-
suming that the behavior of the solution at infinity is such that all integrals are well defined), we
have

�R3
@2
tE ⋅ @tE dx − v2�R3

�E ⋅ @tE dx = 0.
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Then,

�R3
@2
tE ⋅ @tE dx = �R3

1

2
@t�@tE�

2dx =
1

2

d

dt �R3
�@tE�

2dx,

�R3
�E ⋅ @tE dx = −�R3

∇E ⋅ ∇@tE dx = −�R3

1

2
@t�∇E�

2dx = −
1

2

d

dt �R3
�∇E�2dx.

Thus, taking Ẽ(t) = 1
2 ∫R3(�@tE�

2
+ v2�∇E�2)dx, we obtain dẼ(t)

dt = 0 which means that Ẽ(t) is constant
in time.

Similarly, starting from Maxwell’s equations, we multiply (dot product) Faraday’s equation by B,
Ampère’s equation by E and sum the two expressions. It gives

1

2
@t�B�

2
+

1

2v2
@t�E�

2
= − curl(E) ⋅B + curl(B) ⋅E.

Integrating in space, the second member disappears. Thus, the energy defined by

E(t) =
1

2 �R3
(�B�2 +

1

v2
�E�2)dx

is constant in time.

Schrödinger equation

In plenty of devices, the electromagnetic wave propagates in a given direction z (paraxial approxima-
tion) and is closed to be monochromatic. That is why it is interesting to write the electric field E in
the form

E(x, t) =A(x, t) exp(i(kz − !t)).

We first notice that the wave propagates only when the wavevector k verifies the dispersion relation

!2
= v2k2.

Then, inserting the expression of E(x, t) into the wave equation, we obtain that the function A is
governed by the equation

�@2
tA − 2i!@tA − !

2A� − v2 ��A + 2ik@zA − k
2A� = 0.

The function A is called envelope function of the field since the aim of the ansatz is to decompose
the wave into a fast oscillating part and a slow varying part. Consequently, we make the following
assumptions on the envelope function

@2
tA� !@tA� !2A and @2

zA� k@zA� k2A.

We obtain
−2i!@tA − v

2
(�⊥A + 2ik@zA) = 0,

that can be written as the Schrödinger type equation

(@z +
1

v
@t −

i

2k
�⊥)A = 0.

Helmholtz equation

Another usual approximation consists in fixing a frequency, making the ansatz

E(x, t) =A(x, t) exp(−i!t).

This time we obtain
�@2

tA − 2i!@tA − !
2A� − v2�A = 0.

Neglecting the time derivatives, we obtain the Helmholtz equation

�A = −k2A.
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4.2.3 Coupling Maxwell and Bloch equations

We now consider a classical electromagnetic field (E,B) solution to the dimensionless Maxwell’s
equations in a homogeneous material with a polarization current JP that describes the influence of
a quantum object (or a collection of quantum objects) on the electromagnetic field using the dipole
approximation. It gives

@tB(x, t) = − curlE(x, t),

@tE(x, t) = v
2 curlB(x, t) − JP (x, t),

where JP is expressed via the time derivative of the polarization

JP (x, t) = ⇣g(x)
d

dt
P(t)

with ⇣ a scaling parameter that says how strong is the interaction, g a given function that indicates
the localization of the quantum object and P the polarization defined by the expectation value of the
polarizability p

P(t) = �p�⇢(t) = tr(⇢(t)p),

the density matrix ⇢ being the solution to the Bloch equation

d

dt
⇢(t) = −i[H0 + p ⋅E(t),⇢(t)] +Q(⇢(t)).

On the one hand, the electric field acts on the quantum object, in particular on the time evolution
of populations. With such a model, we can for instance make simulations of self-induced transparency
phenomena (illustrated during the practical). On the other hand, there is a feedback of the quantum
system to the electromagnetic field via the polarization current JP . For instance, it has an e↵ect on
the energy conservation. Indeed, performing the same computation as in the previous section, we
obtain

dE(t)

dt
= −

1

v2 �R3
JP ⋅E dx.

An estimate of the term ∫R3 JP ⋅E dx is needed, eventually with an adaptation of the energy definition.

4.2.4 One dimensional problem

In the sequel, we will restrict our study to one dimensional equations. We assume that the unknowns
depend only on the space variable z. We can separate the equations into two independent systems for
the x- and y-components:

�
��
�
��
�

@tBx = @zEy,

@tEy = v
2@zBx − Jy,

�
��
�
��
�

@tBy = −@zEx,

@tEx = −v
2@zBy − Jx.

The other equations do not require further attention (for instance, we have @tBz = 0, @zBz = 0).
Assuming furthermore p = (px,0,0) (and thus J = (Jx,0,0)) allows us to consider only the right

system of the above systems. We can therefore simplify the notations setting E = Ex, B = By p = px,
P = Px and J = Jx. Notice that tr([p, ⋅]p) = 0 and thus, in 1D,

d

dt
P (t) = tr(

d

dt
⇢(t)p) = tr �� − i[H0 + pE(t),⇢(t)] +Q(⇢(t))�p� = tr �Rn(⇢)p�,

where we introduced the relaxation–nutation operator defined by

Rn(⇢)jk = � − i[H0,⇢(t)] +Q(⇢(t))�
jk
= −i("j − "k)⇢jk +Q(⇢)jk.
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The Maxwell–Bloch coupling finally reads

�
������
�
������
�

@tB = −@zE,

@tE = −v
2@zB − J, with J = ⇣g(z) tr �Rn(⇢)p�,

d

dt
⇢ = Rn(⇢) − iE[p,⇢].

(4.1)

4.3 Numerics for Maxwell–Bloch equations

4.3.1 Yee’s scheme for Maxwell’s equations

Scheme presentation We consider the (popular) Yee’s scheme. It is a finite di↵erence discretization
defined on staggered grids in space and time. Localization of variables are chosen in order to have an
explicit, simple to implement, scheme since Maxwell’s equations are solved one after the other while
preserving properties of the continuous system.

More precisely, for the one dimensional problem, we define tp = p�t for p = 0, . . . ,Nt − 1 where
�t = T

Nt−1
(T being the final time) and zj = j�z for j = 0, . . . ,Nz − 1 where �z = L

Nz−1
(L being

the length of the device). The electric field E is computed at the integer discretization points, the

magnetic field B, instead, is computed at half grid points. Thus, we successively compute Bp+1�2
j+1�2

and

Ep+1
j

that are respectively approximations of B((tp + tp+1)�2, (zj + zj+1)�2) and E(tp+1, zj). It gives,
for all p = 0, . . . ,Nt − 2,

Bp+1�2
j+1�2

−Bp−1�2
j+1�2

�t
+

Ep

j+1 −E
p

j

�z
= 0, ∀j = 0, . . . ,Nz − 2,

Ep+1
j
−Ep

j

�t
+ v2

Bp+1�2
j+1�2

−Bp+1�2
j−1�2

�z
= 0, ∀j = 1, . . . ,Nz − 2,

completed with a discretization of the initial conditions (to compute B−1�2 and E0) and the boundary
conditions (to compute E0 and ENz−1).

z

t

0 1 2
−1�2

1�2

3�2

z

t

0 1 2
−1�2

1�2

3�2

Convergence For linear equations, a finite di↵erence method leads to the resolution of a linear
system AhUh = F , while the exact equation can be seen as AhU = F +Eh. We remind that the scheme
is said to be consistent when Eh → 0 as h→ 0. The error of the numerical approximation is �Uh−U� =
�A−1

h
Eh� ≤ ��A

−1
h
���Eh�. The scheme is said to be stable when ��A−1

h
�� is bounded independently of

h. We can prove the Lax principle that says that a stable and consistent scheme is convergent, i.e.
Uh → U as h→ 0.
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Proposition 5. Assuming enough regularity on (E,B), the Yee’s scheme is a consistent scheme of
order 2 for Maxwell’s equations.

Proof. We assume that E and B of class at least C5 both in time and space and we compute Taylor
expansions. For instance,

B(tp+1�2, z) −B(tp−1�2, z)

�t
= @tB(tp, z) +

�t2

24
@3
tB(tp, z) + o(�t

3
).

After computations, we obtain

�
B(tp+1�2, zj+1�2) −B(tp−1�2, zj+1�2)

�t
+
E(tp, zj+1) −E(tp, zj)

�z
� − �@tB(tp, zj+1�2) + @zE(tp, zj+1�2)�

=
1

24
@3
zE(tp, zj+1�2)(−v

2�t2 + �z2) + o(�t3 + �z3),

�
E(tp+1, zj) −E(tp, zj)

�t
+ v2

B(tp+1�2, zj+1�2) −B(tp+1�2, zj−1�2)

�z
� − �@tE(tp+1�2, zj) + v

2@zB(tp+1�2, zj)�

=
v2

24
@3
zB(tp+1�2, zj)(−v

2�t2 + �z2) + o(�t3 + �z3).

Remark. The equivalent equations associated to this scheme are

@tB + @zE +
�z2

24
(1 − �2

)@3
zE = 0,

@tE + v
2@zB +

v2�z2

24
(1 − �2

)@3
zB = 0,

defining � = v�t

�z
. It means that it is a dispersive scheme. Also, taking the time derivative of this second

equivalent equation, we obtain the following equivalent equation (for the wave equation)

@2
tE − v

2@2
zE −

v2�z2

12
(1 − �2

)@4
zE = 0.

It gives a di↵usive dominant error term with a factor (1 − �2
). Consequently, if � is not chosen close

to 1, the numerical di↵usion associated to the scheme could be perceptible.

Proposition 6. A necessary condition for the L2 stability of the Yee’s scheme is given by the CFL
condition

� ∶=
v�t

�z
≤ 1.

Proof. To investigate the L2 stability, we consider periodic boundary conditions and use the Von
Neumann’s method that consists in saying that the scheme is stable if and only if it is stable for any
individual Fourier mode. We set

Bp−1�2
j+1�2

= ↵pe
i⇠(j+1�2)�z and Ep

j
= �pe

i⇠j�z.

Injecting these expressions into the discretized equations, we obtain

�
↵p+1

�p+1�v
� = �

1 −ia(⇠)
−ia(⇠) 1 − a(⇠)2

��
↵p

�p�v
� ,
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where a(⇠) = 2� sin(⇠�z�2). We denote this amplification matrix A(⇠). A necessary condition for
the L2 stability is that ⇢(A(⇠)) ≤ 1 for all ⇠. Indeed, for any matrix A and any matrix norm � ⋅ �,
⇢(A) ≤ �A� and thus ⇢(A)p ≤ �Ap

� ≤ �A�p. We have tr(A(⇠)) = 2 − a(⇠)2 and det(A(⇠)) = 1. The
critical ⇠ are given for sin(⇠�z�2) = 1. In that case, the discriminant of the characteristic polynomial
is given by � = 16�2

(�2
− 1). It means that eigenvalues are real and of product 1 if � > 1, equal to −1

if � = 1 and complex and of modulus 1 if � < 1. Thus, ⇢(A(⇠)) ≤ 1 for all ⇠ if and only if � < 1.

This computation gives only a necessary condition because the amplification matrix is not normal2.
Nevertheless, we have the following result.

Proposition 7. The condition � < 1 is a su�cient condition for the L2 stability of the Yee’s scheme.

Proof. If � < 1 and sin(⇠�z�2) ≠ 0 (stable if sin(⇠�z�2) since A = I2), the two eigenvalues µ± of A

µ± = 1 −
a(⇠)2

2
± i

a(⇠)

2

�

4 − a(⇠)2

are distinct and of multiplicity 1. We can diagonalize A and then write Ap
= PDpP−1 with

D = �
µ+ 0
0 µ−

� and P = �
ia(⇠)

1−µ+
ia(⇠)

1−µ−
1 1

� .

We have
�Ap
� ≤ �P ��Dp

��P−1� <∞

since �Dp
�∞ = 1, �P �∞ = 2 (because �1 − µ±� = �a(⇠)�) and �P−1�∞ =

2
�

4−a(⇠)2
. Thus the scheme is

stable for � < 1.
If � = 1, −1 is an eigenvalue of A with multiplicity 2 and A is not diagonalizable. By Jordan

decomposition, we can write Ap
= PJpP−1 with

J = �
−1 1
0 −1

� and P = �
ia(⇠)

2
ia(⇠)

4
1 0

� .

Since Jp
= (−1)p �

1 p
0 1
�, its norm is not bounded uniformly in p and it leads to instabilities.

Discrete energy conservation Recall we had for the continuous equation that the energy defined
by

E(t) =
1

2 �R
(B2
+

1

v2
E2
)dx

is constant in time. The goal is to obtain a similar result for the discrete equations.

Proposition 8. Imposing periodic boundary conditions, the discrete energy

E
p−1�2

=
1

2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+

1

v2
(Ep−1�2

j
)
2
−
�2

4
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)
2
�

with Ep−1�2
j

=
E

p
j +E

p−1
j

2 (defining E−1
j

by E0
j
+ v�(B−1�2

j+1�2
−B−1�2

j−1�2
)), is preserved for all p.

Remark. For simplicity, we impose here periodic boundary conditions to avoid technical di�culties
due to boundaries. Assuming E0 = ENz−1 and B−1�2 = B(Nz−1)−1�2, we have

Nz−2

�

j=0

Ej =

Nz−2

�

j=0

Ej+1 and
Nz−2

�

j=0

Bj−1�2 =

Nz−2

�

j=0

Bj+1�2.

2
A matrix A is normal when A

∗
A = AA

∗
. If A is a normal matrix then �A�2 = ⇢(A).
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Proof. We multiply the discretization of Faraday’s equation by
B

p+1�2
j+1�2+Bp−1�2

j+1�2
2 and the discretization of

Ampère’s equation by 1
v2

E
p+1
j +E

p
j

2 :

(Bp+1�2
j+1�2

)
2
− (Bp−1�2

j+1�2
)
2

2
+

�

2v
(Ep

j+1 −E
p

j
)(Bp+1�2

j+1�2
+Bp−1�2

j+1�2
) = 0, (4.2)

(Ep+1
j
)
2
− (Ep

j
)
2

2v2
+

�

2v
(Bp+1�2

j+1�2
−Bp+1�2

j−1�2
)(Ep+1

j
+Ep

j
) = 0.

At the previous time iteration, the last equation reads

(Ep

j
)
2
− (Ep−1

j
)
2

2v2
+

�

2v
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)(Ep

j
+Ep−1

j
) = 0.

Writing the average of the two equations, we obtain

(Ep+1
j
)
2
+ (Ep

j
)
2

4v2
−

(Ep

j
)
2
+ (Ep−1

j
)
2

4v2
+

�

2v
(Bp+1�2

j+1�2
−Bp+1�2

j−1�2
)Ep+1�2

j
+

�

2v
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)Ep−1�2

j
= 0. (4.3)

Then, we perform a discrete integration by parts using periodic boundary conditions

Nz−2

�

j=0

(Ep

j+1 −E
p

j
)(Bp+1�2

j+1�2
+Bp−1�2

j+1�2
) =

Nz−2

�

j=0

Ep

j+1(B
p+1�2
j+1�2

+Bp−1�2
j+1�2

) −

Nz−2

�

j=0

Ep

j
(Bp+1�2

j+1�2
+Bp−1�2

j+1�2
)

=

Nz−2

�

j=0

Ep

j
(Bp+1�2

j−1�2
+Bp−1�2

j−1�2
) −

Nz−2

�

j=0

Ep

j
(Bp+1�2

j+1�2
+Bp−1�2

j+1�2
)

= −

Nz−2

�

j=0

Ep

j
(Bp+1�2

j+1�2
−Bp+1�2

j−1�2
) −

Nz−2

�

j=0

Ep

j
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
).

Thus, adding (4.2) and (4.3) and summing on j, we obtain Ep+1�2 = Ep−1�2 with

E
p−1�2

=
1

2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+

1

v2
(Ep

j
)
2
+ (Ep−1

j
)
2

2
+
�

v

Ep

j
−Ep−1

j

2
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)�.

Since (Ep

j
)
2
+ (Ep−1

j
)
2
=
(E

p
j +E

p−1
j )

2
+(E

p
j −E

p−1
j )

2

2 , Ep−1�2 reads

E
p−1�2

=
1

2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+

1

v2
(Ep−1�2

j
)
2
+ �

Ep

j
−Ep−1

j

2v
��

Ep

j
−Ep−1

j

2v
+ �(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)��.

By Ampère’s equation,
Ep

j
−Ep−1

j

2v
= −

�

2
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
).

Consequently,

E
p−1�2

=
1

2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+

1

v2
(Ep−1�2

j
)
2
−
�2

4
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)
2
�.

Notice that we have

Nz−2

�

j=0

(Bp−1�2
j+1�2

−Bp−1�2
j−1�2

)
2
≤ 2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+ (Bp−1�2

j−1�2
)
2
� = 4

Nz−2

�

j=0

(Bp−1�2
j+1�2

)
2.

Thus Ep−1�2 is positive under the CFL condition � < 1.
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4.3.2 Maxwell–Bloch coupling

The goal is to build a scheme for the Maxwell–Bloch coupling (4.1) that allows to decouple the di↵erent
equations and to preserve physical properties of interest.

Historically, the location of the variables was the following

j j + 1

p

p + 1
Bp+1�2

j+1�2

P p+1
j

Ep+1
j

The Crank-Nicolson scheme was used for the Bloch equation, so we had

Bp+1�2
j+1�2

−Bp−1�2
j+1�2

�t
+

Ep

j+1 −E
p

j

�z
= 0,

Ep+1
j
−Ep

j

�t
+ v2

Bp+1�2
j+1�2

−Bp+1�2
j−1�2

�z
= −

P p+1
j
− P p

j

�t
, with P p+1

j
= ⇣g(xj) tr �p⇢

p+1
j
� ,

⇢p+1
j
− ⇢p

j

�t
= Rn

�

�

⇢p+1
j
+ ⇢p

j

2

�

�
− i
�
�
�
�
�
�

p
Ep+1

j
+Ep

j

2
,
⇢p+1
j
+ ⇢p

j

2

�
�
�
�
�
�

.

It is very natural to keep the space location for ⇢, P or J at integer grid points j. But for the time

location: Do we use ⇢p
j
or ⇢p+1�2

j
? Do we use P or J? Where do we locate them? Do we consider P p

j
,

P p+1�2
j

, Jp

j
, Jp+1�2

j
? For the right-hand side of the Ampère equation, we may have

−

P p+1
j
− P p

j

�t
, −Jp+1�2

j
, −

Jp+1
j
+ Jp

j

2
.

Also, the links with ⇢ may be the following (not exhaustive):

P p

j
= ⇣g(xj) tr(p⇢

p

j
), Jp+1�2

j
= ⇣g(xj) tr

�

�
p
⇢p+1
j
− ⇢p

j

�t

�

�
.

In 1D, there are simplifications (due to the fact that tr(p[p,⇢]) = 0) and we can use

Jp

j
= ⇣g(xj) tr �pRn(⇢

p

j
)� or Jp+1�2

j
= ⇣g(xj) tr �pRn(⇢

p+1�2
j
)� .

Concerning the discretization of the Bloch equation, we know we want to use a splitting (to preserve
properties of ⇢) of order 2 (as Yee’s scheme). A possible one is

⇢p+1�2
j

= SRn(
�t

2
)SE(�t,E

p

j
)SRn(

�t

2
)⇢p−1�2

j

where SRn and SE are the two semi-groups associated respectively to the relaxation nutation part and
to the interaction with the field part, but another choice could be

⇢p+1
j
= SRn(�t)SE(2�t,E

p

j
)SRn(�t)⇢

p−1
j

.
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Among all these choices, our preference in 1D is to choose the grid

j j + 1

p

p + 1
Bp+1�2

j+1�2

Jp+1�2
j

Ep+1
j

and the following discretization

⇢p+1�2
j

= SRn(
�t

2
)SE(�t,E

p

j
)SRn(

�t

2
)⇢p−1�2

j
,

Bp+1�2
j+1�2

−Bp−1�2
j+1�2

�t
+

Ep

j+1 −E
p

j

�z
= 0,

Ep+1
j
−Ep

j

�t
+ v2

Bp+1�2
j+1�2

−Bp+1�2
j−1�2

�z
= −Jp+1�2

j
,

with

Jp+1�2
j

= ⇣g(xj) tr �pRn(⇢
p+1�2
j
)�.

This weak coupling preserves the properties of ⇢ (trace, Hermicity, positiveness) thanks to the
use of the splitting. Also, the following proposition states it is nonlinearly stable under suitable CFL
conditions. To prove it, we study a discrete energy estimate (to compare with the one of the continuous

model: dE(t)
dt = −

1
v2 ∫R JE dx).

Proposition 9. Assuming that g(xj) = �jjD (jD representing the index where the quantum object
is located) and imposing periodic boundary conditions, this weak coupling is nonlinearly L2-stable for
� < 1 and �t < �t0 where �t0 depends only on the coe�cients of the equations.

Proof. Making the same computation as in the previous section, we obtain

E
p+1�2

− E
p−1�2

= −
�t

2v2

Nz−2

�

j=0

�Jp+1�2
j

Ep+1�2
j

+ Jp−1�2
j

Ep−1�2
j

�

where

E
p−1�2

=
1

2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+

1

v2
(Ep−1�2

j
)
2
+ �

Ep

j
−Ep−1

j

2v
��

Ep

j
−Ep−1

j

2v
+ �(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)��.

This time, by Ampère’s equation,

Ep

j
−Ep−1

j

2v
= −

�

2
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
) −

�t

2v
Jp−1�2
j

.

Consequently, Ep−1�2 reads

E
p−1�2

=
1

2

Nz−2

�

j=0

�(Bp−1�2
j+1�2

)
2
+

1

v2
(Ep−1�2

j
)
2
+
�t2

4v2
(Jp−1�2

j
)
2
−
�2

4
(Bp−1�2

j+1�2
−Bp−1�2

j−1�2
)
2
�.
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Next, for the polarization current of the Maxwell-Bloch coupling, we have

E
p+1�2

− E
p−1�2

= −
⇣�t

2v2
� tr(Rn(⇢p+1�2)p)Ep+1�2

jD
+ tr(Rn(⇢p−1�2)p)Ep−1�2

jD
�

≤
⇣�t

4v
� tr(Rn(⇢p+1�2)p)2 + tr(Rn(⇢p−1�2)p)2 +

1

v2
(Ep+1�2

jD
)
2
+

1

v2
(Ep−1�2

jD
)
2
�

≤
⇣�t

4v
�↵�⇢p+1�2�2 + ↵�⇢p−1�2�2 +

1

v2
(Ep+1�2

jD
)
2
+

1

v2
(Ep−1�2

jD
)
2
�,

where ↵ is a constant depending on p and W .
For the splitting scheme, we analyze separately the two parts. One part requires the computing

of SRn(�t)⇢ which is solution to d
dt⇢ = Rn(⇢). From Gronwall lemma, we find that there exists CR

(depending on W ) such that
�SRn(�t)⇢(t)�

2
≤ eCR�t

�⇢(t)�2.

The other part is the computation of SE(�t,E)⇢ which is solution to d
dt⇢ = −iE[p,⇢]. Choosing the

norm � ⋅ �2 (defined by �⇢�22 = tr(⇢
∗⇢)), we have

�SE(�t,E)⇢(t)�
2
2 = �⇢(t)�

2
2.

Applying it to the second-order splitting scheme, we obtain

�⇢p+1�2�22 ≤ e
CR�t
�⇢p−1�2�22.

Consequently, introducing Ẽp−1�2 = Ep−1�2 + �⇢p−1�2�22, we obtain

Ẽ
p+1�2

≤ Ẽ
p−1�2

+ (eCR�t
− 1)�⇢p−1�2�2 +

⇣�t

4v
�↵�⇢p+1�2�2 + ↵�⇢p−1�2�2 +

1

v2
(Ep+1�2

jD
)
2
+

1

v2
(Ep−1�2

jD
)
2
�

≤ (eCR�t
+C2�t)Ẽ

p−1�2
+C2�tẼ

p+1�2

where C2 =
⇣

4v max{↵,1}. Thus, provided that �t < 1
C2

(in order that 1−C2�t > 0), there exists C such
that

Ẽ
p+1�2

≤
1 +C�t

1 −C�t
Ẽ
p−1�2.

This ensures the nonlinear stability under the previous CFL condition � < 1 and for �t < 1
C2
∶= �t0.

4.4 Practical sessions

In complement, two Python notebooks are proposed to study the numerical resolution of the von
Neumann equation and of the Maxwell-Bloch coupling. They are available at the url: https://

membres-ljk.imag.fr/Brigitte.Bidegaray/teaching/courses/
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