
Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Linear Algebra

Brigitte Bidégaray-Fesquet

Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble

MSIAM, 23–24 September 2015

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Overview

1 Vectors and matrices
Elementary operations
Gram–Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR factorizations

2 Eigenvalues and eigenvectors
Power iteration algorithm
Deflation
Galerkin
Jacobi
QR

3 Numerical solution of linear systems
Direct methods
Iterative methods
Preconditioning

4 Storage
Band storage
Sparse storage

5 Bandwidth reduction
Cuthill–McKee algorithm

6 References

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Elementary operations on vectors

Cn resp. Rn: linear space of vectors with n entries in C resp. R.
Generically: F n, where F is a field.

Linear combination of vectors

~w = α~u + β~v , α, β ∈ C or R.

f o r i = 1 to n
w(i) = a l p h a ∗ u (i) + b e t a ∗ v (i)

end f o r

Scalar product of 2 vectors

~u · ~v =
nP

i=1

ui vi

uv = 0
f o r i = 1 to n

uv = uv + u (i) ∗ v (i)
end f o r

`2 norm of a vector

‖~u‖2 =

s
nP

i=1

u2
i

uu = 0
f o r i = 1 to n

uu = uu + u (i) ∗ u (i)
end f o r
norm = s q r t (uu)

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Elementary operations on matrices

Mnp(F): linear space of matrices with n × p entries in F .

Linear combination of matrices

C = αA + βB, α, β ∈ F .

f o r i = 1 to n
f o r j = 1 to p

C(i , j) = a l p h a ∗ A(i , j) + b e t a ∗ B(i , j)
end f o r

end f o r

Matrix–vector product

~w = A~u, wi =
pP

j=1

Aijuj

f o r i = 1 to n
wi = 0
f o r j = 1 to p

wi = wi + A(i , j) ∗ u (j)
end f o r
w(i) = wi

end f o r

Matrix–matrix product

C = AB, Cij =
pP

k=1

AikBkj

f o r i = 1 to n
f o r j = 1 to q

c i j = 0
f o r k = 1 to p

c i j = c i j + A(i , k) ∗ B(k , j)
end f o r
C(i , j) = c i j

end f o r
end f o r

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Gram–Schmidt orthonormalization

Let {~v1, . . . , ~vp} be a free family of vectors.
It generates the vector space Ep with dimension p.
We want to construct {~e1, . . . ,~ep}, an orthonormal basis of Ep.

Gram–Schmidt algorithm

~u1 = ~v1 ~e1 =
~u1

‖~u1‖2

~u2 = ~v2 − (~v2 · ~e1)~e1 ~e2 =
~u2

‖~u2‖2

.

~up = ~vp −
p−1P
k=1

(~vp · ~ek)~ek ~ep =
~up

‖~up‖2

~u1 = ~v1

(~v2 · ~e1)~e1
~e1

~v2~u2

~e2

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Matrix norms

Definition

‖A‖ ≥ 0, ∀A ∈Mnn(F), F = C or R.
‖A‖ = 0⇔ A = 0.

‖λA‖ = |λ|‖A‖, ∀A ∈Mnn(F), ∀λ ∈ F .

‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈Mnn(F) (triangle inequality).

‖AB‖ ≤ ‖A‖‖B‖, ∀A,B ∈Mnn(F) (specific for matrix norms).

Subordinate matrix norms

‖A‖p = max
‖x‖p 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p, ∀x ∈ F n, where ‖~x‖p = p

s
nP

i=1

xp
i .

in particular: ‖A‖1 = max
j

P
i

|Aij | and ‖A‖∞ = max
i

P
j

|Aij |.

Matrix-vector product estimate

‖A‖p ≥
‖Ax‖p
‖x‖p

and hence ‖Ax‖p ≤ ‖A‖p‖x‖p for all x ∈ F n.

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Matrix conditioning

Definition

Cond(A) = ‖A−1‖‖A‖.

Properties

Cond(A) ≥ 1,
Cond(A−1) = Cond(A),
Cond(αA) = Cond(A).

For the Euclidian norm

Cond2(A) =
|λmax|
|λmin|

.

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Conditioning and linear systems

Problem

(S0) A~x = ~b, (Sper) (A + δA)(~x + δ~x) = (~b + δ~b).

(Sper)−(S0): Aδ~x + δA(~x + δ~x) = δ~b,

δ~x = A−1
“
δ~b − δA(~x + δ~x)

”
,

‖δ~x‖ ≤ ‖A−1‖
‚‚‚δ~b − δA(~x + δ~x)

‚‚‚ (for a subordinate matrix norm),

‖δ~x‖ ≤ ‖A−1‖
“
‖δ~b‖+ ‖δA‖‖~x + δ~x‖

”
,

‖δ~x‖
‖~x + δ~x‖ ≤ ‖A

−1‖

‖δ~b‖
‖~x + δ~x‖ + ‖δA‖

!
.

Result

‖δ~x‖
‖~x + δ~x‖ ≤ Cond(A)

‖δ~b‖

‖A‖‖~x + δ~x‖ +
‖δA‖
‖A‖

!
.

relative error on x = Cond(A) (relative error on ~b + relative error on A).

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Hermitian, orthogonal. . .

Transposed matrix: (tA)ij = Aji .
Adjoint matrix: (A∗)ij = Aji .

Symmetric matrix

tA = A.

Hermitian matrix

A∗ = A and hence tA = Ā.

Orthogonal matrix (in Mnn(R))

tAA = I .

Unitary matrix (in Mnn(C))

A∗A = I .

Similar matrices (”semblables” in French)

A and B are similar if ∃P/B = P−1AP.

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Profiles

Lower triangular Upper triangular Tridiagonal

Lower Hessenberg Upper Hessenberg

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Householder matrices

Definition

H~v = I − 2
~v t~v

‖~v‖2
2

Properties

1 H~v is orthogonal.

2 If ~v = ~a− ~b 6= ~0 and ‖~a‖2 = ‖~b‖2,

then H~v~a = ~b.

t~v~v = ‖~a‖2 − 2t~a~b + ‖~b‖2 = 2‖~a‖2 − 2t~a~b = 2t~a~v = 2t~v~a

H~v~a = ~a− 2~v t~v~a
‖~v‖2

= ~a− ~v = ~b.

Application

Let ~a ∈ K n, we look for H~v such that H~v~a = t(α, 0, . . . , 0).

Solution: take ~b = t(α, 0, . . . , 0) with α = ‖~a‖2, and ~v = ~a− ~b. Then

H~v~a = ~b.

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Householder tridiagonalisation

Aim

A: symmetric matrix.
Construct a sequence A(1) = A, . . . ,A(n) tridiagonal and A(n)n = HAtH.

A(2) = A(3) = A(4) = A(5) = . . . A(n) =

First step

A(1) ≡

A
(1)
11

t~a
(1)
12

~a
(1)
21 Ã(1)

!
H(1) ≡

„
1 t~0
~0 H̃(1)

«
A(2) ≡

A

(1)
11

t(H̃(1)~a
(1)
21)

H̃(1)~a
(1)
21 H̃(1)Ã(1)t H̃(1)

!
.

Choose H̃(1) such that H̃(1)~a
(1)
21 = t(α, 0, . . . , 0)n−1 = α(~e1)n−1.

α = ‖~a(1)
21 ‖2, ~u1 = ~a

(1)
21 − α(~e1)n−1, H̃(1) = H~u1 .

Complexity

Order
2

3
n3 products.

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Givens tridiagonalization

Let Gpq(c, s) =

0BBBBBBBB@

1 0
1

c s
1

−s c
1

0 1

1CCCCCCCCA
with c2 + s2 = 1.

tGAG =
If A is symmetric: else: leads to Hessenberg matrix

0

0

0

0

0

0

0

0

. . . 0

∗

0

∗

0

0

∗
∗

Complexity

Order
4

3
n3 products.

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Principles of LU factorization

=

1
1

1
1

1
1

1
1

1
1

1 0

×

0

A L U

Some regular matrix (with non-zero determinant) are not
LU-transformable, e.g. ([0 1; 1 1]) is not.

If it exists, the LU decomposition of A is not unique.
It is unique if A is non-singular.

A is non-singular and LU-transformable
⇐⇒ all the determinants of the fundamental principal minors are
non zero (and in this case the decomposition is unique).

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Doolittle LU factorization – principle

It proceeds line by line.8>><>>:
A11 = L11U11 L11 = 1
A12 = L11U12

. . . ⇒ {U1j}j=1,...,n

A1n = L11U1n8>><>>:
A21 = L21U11 ⇒ L21

A22 = L21U12 + U22

. . . ⇒ {U2j}j=2,...,n

A2n = L21U1n + U2n8>>>><>>>>:
A31 = L31U11 ⇒ L31

A32 = L31U12 + L32U22 ⇒ L32

A33 = L31U13 + L32U23 + U33

. . . ⇒ {U3j}j=3,...,n

A3n = L31U1n + L32U2n + U3n

. . .

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Doolittle LU factorization – algorithm

Doolittle algorithm

Lij =

Aij −
j−1P
k=1

LikUkj

Ujj
Uij = Aij −

i−1P
k=1

LikUkj

f o r i = 1 to n
f o r j = 1 to i−1

sum = 0
f o r k=1 to j−1

sum = sum + L (i , k)∗U(k , j)
end f o r
L (i , j) = (A(i , j)−sum)/U(j , j)

end f o r
L (i , i) = 1
f o r j = i to n

sum = 0
f o r k = 1 to i−1

sum = sum + L (i , k)∗U(k , j)
end f o r
U(i , j) = A(i , j) − sum

end f o r
end f o r

Complexity

Order n3 products

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Cholesky factorization for an Hermitian matrix

Principle

A = C tC

Cholesky algorithm

Cii =

s
Aii −

i−1P
k=1

CikCik Cij =

Aij −
j−1P
k=1

CikCjk

Cjj
, j 6= i

C(1 , 1) = s q r t (A(1 , 1))
f o r i = 2 to n

f o r j = 1 to i−1
sum = 0
f o r k = 1 to j−1

sum = sum + C(i , k)∗C(j , k)
end f o r
C(i , j) = (A(i , j)−sum)/C(j , j)

end f o r
sum=0
f o r k = 1 to i−1

sum = sum + C(i , k)∗C(i , k)
end f o r
C(i , i) = s q r t (A(i , i) − sum)

end f o r

Complexity

Order n3 products

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

LU factorization – profiles

Non-zero elements

In blue: A
In red: superposition of L and U

The interior of the profile is filled!

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

QR factorization – principle

Principle

A = QR, where Q orthogonal and R right (upper) triangular.
Gm . . .G2G1A = R,
A = tG1

tG2 . . .
tGm| {z }

Q

R

Let Gij(c, s) =

0BBBBBBBB@

1 0
1

c s
1

−s c
1

0 1

1CCCCCCCCA
with c2 + s2 = 1.

× ×
× ×

× =
(i, j)

(GA)ij = −sAjj + cAij

c =
Ajjq

A2
ij + A2

jj

s =
Aijq

A2
ij + A2

jj

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

QR factorization – algorithm

Algorithm

R = A
Q = I d // s i z e of A
f o r i = 2 to n

f o r j = 1 to i−1
r o o t = s q r t (R(i , j)∗R(i , j)+R(j , j)∗R(j , j))
i f r o o t != 0

c = R(j , j)/ r o o t
s = R(i , j)/ r o o t

e l s e
c = 1
s = 0

end i f
C o n s t r u c t G j i
R = G j i ∗R // m a t r i x p r o d u c t
Q = Q∗ t r a n s p o s e (G j i) // m a t r i x p r o d u c t

end f o r
end f o r

Complexity

Order n3 products

Linear Algebra

Vectors and matrices

Elementary operations

Gram–Schmidt
orthonormalization

Matrix norm

Conditioning

Specific matrices

Tridiagonalisation

LU and QR
factorizations

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

QR factorization – Python example

A =

0BBBB@
3 2 1 0 0
4 3 2 1 0
5 4 3 2 1
6 5 4 3 2
7 6 5 4 3

1CCCCA

R =

0BBBB@
11.619 9.467 7.316 5.164 3.271

3.437 10−16 6.086 10−01 1.217 1.826 1.704
4.476 10−17 1.989 10−18 2.324 10−15 3.768 10−15 −3.775 10−01

−6.488 10−16 1.082 10−17 0.000 1.618 10−16 −6.764 10−02

−6.671 10−16 −2.548 10−17 0.000 −3.082 10−33 −5.029 10−01

1CCCCA

Q =

0BBBB@
0.2582 −0.7303 −0.3775 −0.0676 −0.5029
0.3443 −0.4260 −0.0062 −0.1589 0.821
0.4303 −0.1217 0.5407 0.7050 −0.1030
0.5164 0.1826 0.4472 −0.6627 −0.2466
0.6025 0.4869 −0.6042 0.1842 0.0311

1CCCCA

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Power iteration algorithm – Python experiment

A =

„
10 0
−9 1

«
Eigenvalues and eigenvectors:

λ1 = 1, λ2 = 10, ~v1 =

„
0
1

«
, ~v2 =

„
1
−1

«
.

Construct the series
~xk = A~xk−1

~x0 =

„
2
1

«
, ~x1 =

„
20
−17

«
, ~x2 =

„
200
−197

«
, ~x3 =

„
2000
−1997

«
. . .

~x tends to the direction of the eigenvector associated to the higher
modulus eigenvalue.

”~xk/~xk−1” tends to the higher modulus eigenvalue.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Power iteration algorithm – Algorithm

Computation of the eigenvalue with higher modulus.
A may be diagonalizable or not, the dominant eigenvalue can be unique
or not.

Algorithm

choose q (0)
f o r k = 1 to c o n v e r g e n c e

x (k) = A ∗ q (k−1)
q (k) = x (k) / norm (x (k))

end f o r
lambdamax = x (k) (j)/ q (k−1)(j)

Attention: good choice of component j .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Power iteration algorithm – Python example

A =

0@10 0 0
0 5 0
0 0 2

1A
Rotations:

R1 =

0@ cos(1) 0 sin(1)
0 1 0

− sin(1) 0 cos(1)

1A ,R2 =

0@1 0 0
0 cos(2) sin(2)
0 − sin(2) cos(2)

1A

B = R2R1AtR1
tR2 =

0@ 4.33541265 −3.30728724 1.51360499
−3.30728724 7.20313893 −1.00828318
1.51360499 −1.00828318 5.46144841

1A
Eigenvalues and eigenvectors:

λ1 = 2, λ2 = 5, λ3 = 10,

~v1 =

0@−0.8415
−0.4913
0.2248

1A , ~v2 =

0@1.365 10−16

0.4161
0.9093

1A , ~v3 =

0@−0.5403
0.7651
−0.3502

1A .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Power iteration algorithm – Remarks

1 Convergence results depend on the fact that
the matrix is diagonalizable or not
the dominant eigenvalue is multiple or not

2 The choice of the norm is not explicit: usually max norm or
euclidian norm

3 ~q0 should not be orthogonal to the eigen-subspace associated to
the dominant eigenvalue.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Inverse iteration algorithm – Algorithm

Computation of the eigenvalue with smallest modulus.
A may be diagonalizable or not, the dominant eigenvalue can be unique
or not.
Based on the fact that

λmin(A) =
“
λmax(A−1)

”−1

.

Algorithm

choose q (0)
f o r k = 1 to c o n v e r g e n c e

s o l v e A ∗ x (k) = q (k−1)
q (k) = x (k) / norm (x (k))

end f o r
lambdamin = q (k−1)(j) / x (k) (j)

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Inverse iteration algorithm – Python example

A =

0@10 0 0
0 5 0
0 0 2

1A
Rotations:

R1 =

0@ cos(1) 0 sin(1)
0 1 0

− sin(1) 0 cos(1)

1A ,R2 =

0@1 0 0
0 cos(2) sin(2)
0 − sin(2) cos(2)

1A

B = R2R1AtR1
tR2 =

0@ 4.33541265 −3.30728724 1.51360499
−3.30728724 7.20313893 −1.00828318
1.51360499 −1.00828318 5.46144841

1A
Eigenvalues and eigenvectors:

λ1 = 2, λ2 = 5, λ3 = 10,

~v1 =

0@−0.8415
−0.4913
0.2248

1A , ~v2 =

0@1.365 10−16

0.4161
0.9093

1A , ~v3 =

0@−0.5403
0.7651
−0.3502

1A .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Generalized inverse iteration algorithm – Algorithm

Computation of the closest eigenvalue to a given µ.
The eigenvalues of A− µI are the λi − µ,
where λi are the eigenvalues of A.
⇒ apply the inverse iteration algorithm to A− µI .

Algorithm

choose q (0)
f o r k = 1 to c o n v e r g e n c e

s o l v e (A−mu∗ I) ∗ x (k) = q (k−1)
q (k) = x (k) / norm (x (k))

end f o r
lambda = q (k−1)(j) / x (k) (j) + mu

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Generalized inverse iteration algorithm – Python example

A =

0@10 0 0
0 5 0
0 0 2

1A µ = 4.

Rotations:

R1 =

0@ cos(1) 0 sin(1)
0 1 0

− sin(1) 0 cos(1)

1A ,R2 =

0@1 0 0
0 cos(2) sin(2)
0 − sin(2) cos(2)

1A

B = R2R1AtR1
tR2 =

0@ 4.33541265 −3.30728724 1.51360499
−3.30728724 7.20313893 −1.00828318
1.51360499 −1.00828318 5.46144841

1A
Eigenvalues and eigenvectors:

λ1 = 2, λ2 = 5, λ3 = 10,

~v1 =

0@−0.8415
−0.4913
0.2248

1A , ~v2 =

0@1.365 10−16

0.4161
0.9093

1A , ~v3 =

0@−0.5403
0.7651
−0.3502

1A .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Deflation – Algorithm and Python example

Computation of all the eigenvalues in modulus decreasing order.

When an eigenelement (λ, q) is found, it is removed from further
computation by replacing A← A− λ~qt~q.

Algorithm

f o r i = 1 to n
choose q (0)
f o r k = 1 to c o n v e r g e n c e

x (k) = A ∗ q (k−1)
q (k) = x (k) / norm (x (k))

end f o r
lambda = x (k) (j) / q (k−1)(j)
A = A − lambda ∗ q ∗ t r a n s p o s e (q)

// e l i m i n a t e s d i r e c t i o n q
end f o r

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Galerkin method – Algorithm

Let H be a subspace of dimension m, generated by the orthonormal
basis (~q1, . . . , ~qm).
Construct the rectangular matrix Q = (~q1, . . . , ~qm).
Remark: Q∗Q = Idm

Goal

Look for eigenvectors in H.

If ~u ∈ H, ~u =
mP

i=1

αi~qi (unique).

~u = Q~U, where ~U = t(α1, . . . , αm).

A~u = λ~u ⇔ AQ~U = λQ~U.
Project on H: Q∗AQ~U = λQ∗Q~U = λ~U.

⇒ We look for eigenelements of B = Q∗AQ.

Vocabulary:
• {λi , ~ui} are the Ritz elements,
• B is the Rayleigh matrix.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Jacobi method – Algorithm

Goal

Diagonalize the (real symmetric) matrix.

Until a ”reasonably diagonal” matrix is obtained:

Choose the largest off-diagonal element (largest modulus)

Construct a rotation matrix that annihilates this term

In the end, the eigenvalues are the diagonal elements.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

QR method – Algorithm

Algorithm

A(1) = A
f o r k = 1 to c o n v e r g e n c e

[Q(k) ,R(k)] = Q R f a c t o r (A(k))
A(k+1) = R(k)∗Q(k)

end f o r

The eigenvalues are the diagonal elements of the last matrix Ak+1.

Properties

Ak+1 = RkQk = Q∗k QkRkQk = Q∗k AkQk

⇒ Ak+1 and Ak are similar.

If Ak is tridiagonal or Hessenberg, Ak+1 also is
⇒ First restrict to this case keeping similar matrices.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

QR method – Convergence and Python example

Theorem

Let V ∗ be the matrix of left eigenvectors of A (A∗~u∗ = λ~u∗).
If
• the principal minors of V are non-zero.
• the eigen-values of A are such that |λ1| > · · · > |λn|.
Then the QR method converges Ak+1 tends to an upper triangular form
and (Ak)ii tends to λi .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Power iteration
algorithm

Deflation

Galerkin

Jacobi

QR

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Eigenvalues – Summary

We want to know all the eigenvalues

QR method — better than Jacobi
Preprocessing: find a similar tridiagonal or Heisenberg matrix
(Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an
approximation)

Power iteration algorithm and variants. . .

We only want a sub-set of eigenelements

We know the eigenvalues and look for eigenvectors: deflation and
variants

We know the subspace for eigenvectors: Galerkin and variants

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Principles

A~x = ~b

Elimination methods

The solution to the system remains unchanged if

lines are permuted,

line i is replaced by a linear combination

`i ←
nP

k=1

µk`k , with µi 6= 0.

Factorisation methods

A = LU
LU~x = ~b
We solve two triangular systems
L~y = ~b
U~x = ~y .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Lower triangular matrix

xi =

bi −
i−1P
k=1

Aikxk

Aii

Algorithm

i f A(1 ,1)==0 then s t o p
x (1) = b (1) /A(1 , 1)
f o r i = 2 to n

i f A(i , i)==0 then s t o p
ax = 0
f o r k = 1 to i−1

ax = ax + A(i , k)∗ x (k)
end f o r
x (i) = (b (i)−ax)/A(i , i)

end f o r

Complexity

Order n2/2 products.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Upper triangular matrix

xi =

bi −
nP

k=i+1

Aikxk

Aii

Algorithm

i f A(n , n)==0 then s t o p
x (n) = b (n)/A(n , n)
f o r i = n−1 to 1

i f A(i , i)==0 then s t o p
ax = 0
f o r k = i +1 to n

ax = ax + A(i , k)∗ x (k)
end f o r
x (i) = (b (i)−ax)/A(i , i)

end f o r

Complexity

Order n2/2 products.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Gauss elimination – Principle

Aim

Transform A to upper triangular matrix.

At rank p − 1:

Aij = 0 if i > j , j < p.

`i ← `i − Aip
`p

App

f o r p = 1 to n
p i v o t = A(p , p)
i f p i v o t == 0 s t o p
l i n e (p) = l i n e (p)/ p i v o t
f o r i = p+1 to n

Aip = A(i , p)
l i n e (i) = l i n e (i) − Aip ∗ l i n e (p)

end f o r
end f o r
x = s o l v e (A, b) // upper t r i a n g u l a r

Complexity

Still order n3 products.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Gauss–Jordan elimination – Principle

Aim

Transform A to identity.

At rank p − 1:

Aii = 1 if i < p,

Aij = 0 if i 6= j , j < p.

`i ← `i − Aip
`p

App

f o r p = 1 to n
p i v o t = A(p , p)
i f p i v o t == 0 s t o p
l i n e (p) = l i n e (p)/ p i v o t
f o r i = 1 to n , i !=p

Aip = A(i , p)
l i n e (i) = l i n e (i) − Aip ∗ l i n e (p)

end f o r
end f o r
x = b

Attention

take into account le right-hand side in the ”line”.

what if App = 0?

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Gauss–Jordan elimination – Algorithm

// unknown e n t r i e s number ing
f o r i = 1 to n

num(i) = i
end f o r

f o r p=1 to n
// maximal p i v o t
pmax = abs (A(p , p))
imax = p
jmax = p
f o r i = p to n

f o r j = p to n
i f abs (A(i , j)) > pmax then

pmax = abs (A(i , j))
imax = i
jmax = j

end i f
end f o r

end f o r
// l i n e p e r m u t a t i o n
f o r j = p to n

permute (A(p , j) ,A(imax , j)
end f o r
permute (b (p) , b (imax))
// column p e r m u t a t i o n
f o r i = p to n

permute (A(i , p) ,A(i , jmax)
end f o r
permute (num(p) , num(jmax))

p i v o t = A(p , p)
i f p i v o t == 0 stop , rank (A) = p−1
f o r j = p to n

A(p , j) = A(p , j)/ p i v o t
end f o r
b (p) = b (p)/ p i v o t
f o r i = 1 to n , i !=p

Aip = A(i , p)
f o r j = p to n

A(i , j) = A(i , j) − Aip ∗ A(p , j)
end f o r
b (i) = b (i) − Aip∗b (p)

end f o r
end f o r // l o o p on p

f o r i = 1 to n
x (num(i)) = b (i)

end f o r

Complexity

Order n3 products.

Remark

Also computes the rank of the
matrix.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Factorization methods — Thomas algorithm — principle

LU decomposition for tridiagonal matrices.

=

1
1

1
1

1
1

1
1

1
1 ×

1
1

1
1

1
1

1
1

1
1

A L U
We suppose that Lij and Uij are known for i < p. Then

Ap,p−1 = Lp,p−1Up−1,p−1,

Ap,p = Lp,p−1Up−1,p + Up,p,

Ap,p+1 = Up,p+1.

⇒

Lp,p−1 = Ap,p−1/Up−1,p−1,

Up,p = Ap,p − Lp,p−1Up−1,p = Ap,p − Ap,p−1Up−1,p/Up−1,p−1,

Up,p+1 = Ap,p+1.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Factorization methods — Thomas algorithm — algorithm

Algorithmm

// f a c t o r i z a t i o n
U(1 , 1) = A(1 , 1)
U(1 , 2) = A(1 , 2)
f o r i = 2 to n

i f U(i −1, i −1) = 0 then s t o p
L (i , i −1) = A(i , i −1)/U(i −1, i −1)
U(i , i) = A(i , i) − L (i , i −1)∗U(i −1, i)
U(i , i +1) = A(i , i +1)

end f o r
// c o n s t r u c t i o n of t h e s o l u t i o n
y = s o l v e (L , b) // l o w e r t r i a n g u l a r
x = s o l v e (U, y) // upper t r i a n g u l a r

Complexity

Order 5n products.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Factorization methods — general matrices

For general matrices:

Factorize the matrix

LU algorithm
Choleski algorithm

Solve upper triangular system

Solve lower triangular system.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Iterative methods — Principle

A= E + D + F

To solve A~x = ~b, write A = M − N
and iterate M~xk+1 − N~xk = ~b, i.e. ~xk+1 = M−1N~xk + M−1~b.

Attention

M should be easy to invert.

M−1N should lead to a stable algorithm.

Jacobi M = D, N = −(E + F),

Gauss–Seidel M = D + E , N = −F ,

Successive Over Relaxation M =
D

ω
+ E , N =

„
1

ω
− 1

«
D − F .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Jacobi method

Algorithm

choose x (k=0)
f o r k = 0 to c o n v e r g e n c e

f o r i = 1 to n
r h s = b (i)
f o r j = 1 to n , j != i

r h s = r h s − A(i , j)∗ x (j , k)
end f o r
x (i , k+1) = r h s / A(i , i)

end f o r
t e s t = norm (x (k+1)−x (k))< e p s i l o n

end f o r (wh i l e not t e s t)

xk+1
i =

1

Aii

0@bi −
nX

j=1,j 6=i

Aijx
k
j

1A
~xk+1 = D−1(~b − (E + F)~xk)

= D−1(~b + (D − A)~xk)

= D−1~b + (I − D−1A)~xk .

Remarks

simple,

two copies of the variable ~xk+1

and ~xk ,

insensible to permutations,

converges if the diagonal is
strictly dominant.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Gauss–Seidel method

Algorithm

choose x (k=0)
f o r k = 0 to c o n v e r g e n c e

f o r i = 1 to n
r h s = b (i)
f o r j = 1 to i−1

r h s = r h s − A(i , j)∗ x (j , k+1)
end f o r
f o r j = i +1 to n

r h s = r h s − A(i , j)∗ x (j , k)
end f o r
x (i , k+1) = r h s / A(i , i)

end f o r
t e s t = norm (x (k+1)−x (k))< e p s i l o n

end f o r (wh i l e not t e s t)

Remarks

still simple,

one copy of the variable ~x ,

sensible to permutations,

often converges better than
Jacobi.

xk+1
i =

1

Aii

bi −

i−1X
j=1

Aijx
k+1
j −

nX
j=i+1

Aijx
k
j

!

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

SOR method

xk+1
i =

ω

Aii

bi −

i−1X
j=1

Aijx
k+1
j −

nX
j=i+1

Aijx
k
j

!
+ (1− ω)xk

i

~xk+1 =

„
D

ω
+ E

«−1

~b +

„
D

ω
+ E

«−1 »„
1

ω
− 1

«
D − F

–
~xk

Remarks

still simple,

one copy of the variable ~x ,

Necessary condition for convergence: 0 < ω < 2.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — general principle

For A symmetric definite positive!!

Principle

Construct a series of approximations of the solution to the system

~xk+1 = ~xk + αk~pk ,

where ~pk descent direction and αk to be determined.

The solution ~x minimizes the functional J(~x) = t~xA~x − 2t~b~x .

∂J

∂xi
(~x) =

∂

∂xi

0@X
j,k

xjAjkxk − 2
X

j

bjxj

1A
=

X
k

Aikxk +
X

j

xjAji − 2bi

= 2
“

A~x − ~b
”

i
,

∂J

∂xi
(~x) = 0.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — determining αk

~x also minimizes the functional E(~x) = t(~x − ~x)A~(~x −~x), and E(~x) = 0.
For a given ~pk , which α minimizes E(~xk+1)?

E(~xk + α~pk) = t(~xk + α~pk − ~x)A(~xk + α~pk − ~x),

∂

∂α
E(~xk + α~pk) = t~pkA(~xk + α~pk − ~x) + t(~xk + α~pk − ~x)A~pk

= 2t(~xk + α~pk − ~x)A~pk .

t(~xk + αk~pk − ~x)A~pk = 0
t~xkA~pk + αk

t~pkA~pk − t~xA~pk = 0
t~pkA~xk + αk t~pkA~pk − t~pkA~x = 0.

αk =
t~pkA~xk − t~pkA~x

t~pkA~pk

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — functional profiles (good cases)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

A =

„
2 0
0 2

«
, ~b = A

„
2
1

«
Cond(A) = 1

A =

„
2 1.5

1.5 2

«
, ~b = A

„
2
1

«
Cond(A) = 7

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — functional profiles (bad cases)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Nonpositive case

A =

„
2 8
8 2

«
, ~b = A

„
2
1

«

Nonsymmetric case

A =

„
2 −3
3 2

«
, ~b = A

„
2
1

«

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — optimal parameter (principle)

Principle

Choose ~pk = ~r k ≡ ~b − A~xk .

Choose αk is such that ~r k+1 is orthogonal to ~pk .

~r k+1 = ~b − A~xk+1 = ~b − A(~xk + α~pk) = ~r k − αkA~pk ,

0 = t~pk~r k+1 = t~pk~r k − αk t~pkA~pk .

αk =
t~pk~r k

t~pkA~pk
.

E(~xk+1) = (1− γk)E(~xk)

with γk =
(t~pk~r k)2

(t~pkA~pk)(t~r kA−1~r k)
≥ 1

Cond(A)

|t~pk~r k |
‖~pk‖‖~r k‖ .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — optimal parameter (algorithm)

Algorithm

choose x (k=1)
f o r k = 1 to c o n v e r g e n c e

r (k) = b − A ∗ x (k)
p (k) = r (k)
a l p h a (k) = r (k) . p (k) / p (k) . A ∗ p (k)
x (k+1) = x (k) + a l p h a (k) ∗ p (k)

end f o r // r (k) s m a l l

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — conjugate gradient (principle)

Principle

Choose ~pk = ~r k + βk~pk−1.

Choose βk to minimize the error, i.e. maximize the factor γk

Properties

t~r k~pj = 0 ∀j < k,

Span(~r 1,~r 2, . . . ,~r k) = Span(~r 1,A~r 1, . . . ,Ak−1~r 1)

Span(~p1, ~p2, . . . , ~pk) = Span(~r 1,A~r 1, . . . ,Ak−1~r 1)
t~pkA~pj = 0 ∀j < k
t~r kA~pj = 0 ∀j < k

The algorithm converges in at most n iterations.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — conjugate gradient (algorithm)

Algorithm

choose x (k=1)
p (1) = r (1) = b − A∗x (1)
f o r k = 1 to c o n v e r g e n c e

a l p h a (k) = r (k) . p (k) / p (k) . A ∗ p (k)
x (k+1) = x (k) + a l p h a (k) ∗ p (k)
r (k+1) = r (k) − a l p h a (k) ∗ A ∗ p (k)
b e t a (k+1) = r (k+1) . r (k+1) / r (k) . r (k)
p (k+1) = r (k+1) + b e t a (k+1) ∗ p (k)

end f o r // r (k) s m a l l

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — GMRES

For generic matrices A
GMRES: General Minimal RESidual method

Take a ”fair” approximation ~xk of the solution

Construct the m-dimensional set of free vectors

{~r k ,A~r k , . . . ,Am−1~r k}

This spans the Krylov space Hk
m.

Construct an orthonormal basis for Hk
m – e.g. via Gram-Schmidt

{~v1, . . . , ~vm}

Look for a new approximation ~xk+1 ∈ Hk
m:

~xk+1 =
mX

j=1

Xj~vj = [V]~X

We obtain a system of n equations with m unknowns

A~xk+1 = A[V]~X = ~b.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Descent method — GMRES (cont’d)

Project on Hk
m

[tV]A[V]~X = [tV]~b.

Solve this system of m equations with m unknowns

~xk+1 = [V]~X .

and so on. . .

To work well GMRES should be preconditioned!

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Preconditioning – principle

Principle

Replace system A~x = ~b by C−1A~x = C−1~b
where Cond(C−1A)� Cond(A).

Which matrix C?

C should be easily invertible, typically the product of two triangular
matrices.

C = diag(A), simplest but well. . .

incomplete Cholesky or LU factorization

. . .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Preconditioning – symmetry issues

Symmetry

Even if A and C are symmetric, C−1A may not be symmetric.
What if symmetry is needed?

Let C−1/2 such that C−1/2C−1/2 = C−1.
Then C−1/2AC−1/2 is similar to C−1A.

We consider the system

C +1/2(C−1A)C−1/2C +1/2~x = C +1/2C−1~b

(C−1/2AC−1/2)C +1/2~x = C−1/2~b

Solve
(C−1/2AC−1/2)~y = C−1/2~b

and then
~y = C +1/2~x .

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Direct methods

Iterative methods

Preconditioning

Storage

Bandwidth reduction

References

Preconditioning – preconditioned conjugate gradient

Algorithm

choose x (k=1)
r (1) = b − A∗x (1)
s o l v e Cz (1) = r (1)
p (1) = r (1)
f o r k = 1 to c o n v e r g e n c e

a l p h a (k) = r (k) . z (k) / p (k) . A ∗ p (k)
x (k+1) = x (k) + a l p h a (k) ∗ p (k)
r (k+1) = r (k) − a l p h a (k) ∗ A ∗ p (k)
s o l v e C z (k+1) = r (k+1)
b e t a (k+1) = r (k+1) . z (k+1) / r (k) . z (k)
p (k+1) = z (k+1) + b e t a (k+1) ∗ p (k)

end f o r

At each iteration a system C~z = ~r is solved.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Band storage

Sparse storage

Bandwidth reduction

References

Storage – main issues

Problems involve often a large number of variables, of degrees of
freedom, say 106.

To store a full matrix for a 106-order system, 1012 real numbers (if
real) are needed... In simple precision this necessitates 4 To of
memory.

But high order problems are often very sparse.

We therefore use a storage structure which consists in only storing
relevant, non-zero, data.

Access to one element Aij should be very efficient.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Band storage

Sparse storage

Bandwidth reduction

References

CDS: Compressed Diagonal Storage

L(A) = max
i

Li (A)

where
Li (A) = max

j/Aij 6=0
|i − j |

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Band storage

Sparse storage

Bandwidth reduction

References

CRS: Compressed Row Storage

tabv

tabj

tabi

All the non-zero values of the matrix are stored in a table tab; they
are stored line by line in the increasing order of columns.

A table tabj, with same size than tab stores the column number
of the values in tabv.

A table tabi with size n + 1 stores the indices in tabj of the first
element of each line. The last entry is the size of tabv.

CCS: Compressed Column Storage = Harwell Boeing

Generalization to symmetric matrices

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Band storage

Sparse storage

Bandwidth reduction

References

CRS: Compressed Row Storage – exercise

Question

A =

0BB@
0 4 1 6
2 0 5 0
0 9 7 0
0 0 3 8

1CCA
CRS storage?

Solution

tabi = {1, 4, 6, 8, 10}
tabj = {2, 3, 4, 1, 3, 2, 3, 3, 4}
tabv = {4, 1, 6, 2, 5, 9, 7, 3, 8}

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

Cuthill–McKee
algorithm

References

Cuthill–McKee algorithm – construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the
unknowns.

Construction

The nodes of the graph are the unknowns of
the system. They are labelled with a number
from 1 to n.

The edges are the relations between the
unknowns. Two unknowns i and j are linked if
Aij 6= 0.

The distance d(i, j) between two nodes is the
minimal number of edges to follow to join both
nodes.

The excentricity E(i) = maxj d(i, j)

Far neighbors are λ(i) = {j/d(i, j) = E(i)}

Graph diameter D = maxi E(i)

Peripheral nodes P = {j/E(j) = D}.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

Cuthill–McKee
algorithm

References

Cuthill–McKee algorithm – bandwidth reduction

This graph is used to renumber the unknonws.

Choose a first node and label it with 1.

Attribute the new numbers (2,3,. . .) to the neighbors of node 1
with have the less non-labelled neighbors.

Label the neighbors of node 2

and so on. . .

until all nodes are labelled.

once this is done the numbering is reversed: the first become the
last.

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

Cuthill–McKee
algorithm

References

Cuthill–McKee algorithm – example 1

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

Cuthill–McKee
algorithm

References

Cuthill–McKee algorithm – example 2

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References

Bibliography

P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée à
l’art de l’ingénieur Volumes 1 and 2, 2ème édition, Masson (1997).

Gene H. Golub, Charles F. van Loan, Matrix Computations, 3rd
edition, Johns Hopkins University Press (1996).

Linear Algebra

Vectors and matrices

Eigenvalues and
eigenvectors

Numerical solution of
linear systems

Storage

Bandwidth reduction

References TheEndTheEnd

	Vectors and matrices
	Elementary operations
	Gram–Schmidt orthonormalization
	Matrix norm
	Conditioning
	Specific matrices
	Tridiagonalisation
	LU and QR factorizations

	Eigenvalues and eigenvectors
	Power iteration algorithm
	Deflation
	Galerkin
	Jacobi
	QR

	Numerical solution of linear systems
	Direct methods
	Iterative methods
	Preconditioning

	Storage
	Band storage
	Sparse storage

	Bandwidth reduction
	Cuthill–McKee algorithm

	References

