

Linear Algebra

ectors and matrices

Eigenvalues and eigenvectors

Numerical solution of inear systems

andwidth reductio

References

Linear Algebra

Brigitte Bidégaray-Fesquet

Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble

MSIAM, 23-24 September 2015

Linear Algebra

- Vectors and matrices
- Elementary operations
- Gram–Schmidt orthonormalization
- Matrix norm

Overview

- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
- 2 Eigenvalues and eigenvectors
 - Power iteration algorithm
 - Deflation
 - Galerkin
 - Jacobi
 - QR
- Sumerical solution of linear systems
 - Direct methods
 - Iterative methods
 - Preconditioning
- Storage
 - Band storage
 - Sparse storage
- Bandwidth reduction 5

Université Joseph Fourier **X**

Université Joseph Fourier ¥ UFR IM²AG

Elementary operations on vectors

Linear Algebra

Elementary operations

Gram-Schmidt orthonormalization Matrix norm Conditioning Specific matrices Tridiagonalisation LU and QR factorizations \mathbb{C}^n resp. \mathbb{R}^n : linear space of vectors with *n* entries in \mathbb{C} resp. \mathbb{R} . Generically: F^n , where *F* is a field.

Linear combination of vectors

$$\begin{split} \vec{w} &= \alpha \vec{u} + \beta \vec{v}, \ \alpha, \beta \in \mathbb{C} \text{ or } \mathbb{R}. \\ \text{for } i &= 1 \text{ to } n \\ & \text{w(i)} &= \text{alpha} \ * \ \text{u(i)} \ + \ \text{beta} \ * \ \text{v(i)} \\ \text{end for} \end{split}$$

Scalar product of 2 vectors	ℓ^2 norm of a vector	
$\vec{u}\cdot\vec{v}=\sum_{i=1}^n u_iv_i$	$\ \vec{u}\ _2 = \sqrt{\sum_{i=1}^n u_i^2}$	
uv = 0 for i = 1 to n uv = uv + u(i) * v(i) end for	uu = 0 for i = 1 to n uu = uu + u(i) * u(i) end for norm = sqrt(uu)	

Elementary operations on matrices

Linear Algebra

Université Joseph Fourier ⊁

```
Elementary operations
Conditioning
Specific matrices
```

 $\mathcal{M}_{np}(F)$: linear space of matrices with $n \times p$ entries in F.

Linear combination of matrices

 $C = \alpha A + \beta B, \ \alpha, \beta \in F.$

```
for i = 1 to n
  for j = 1 to p
    C(i,j) = alpha * A(i,j) + beta * B(i,j)
  end for
end for
```

	Matrix-matrix product		
Matrix-vector product			
$\vec{w} = A\vec{u}, w_i = \sum_{j=1}^p A_{ij}u_j$	$C = AB, \ C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$		
for i = 1 to n wi = 0	for $i = 1$ to n for $j = 1$ to q cij = 0		
for $j = 1$ to p	for $k = 1$ to p		
wi = wi + A(i,j) * u(j) end for	cij = cij + A(i,k) end for		
w(i) = wi	C(i,j) = cij		
end for	end for		
	end for		

oduct

+ A(i,k) * B(k,i)

Université Joseph Fourier ¥ UFR IM²AG

Gram–Schmidt orthonormalization

Linear Algebra

/ectors and matrices

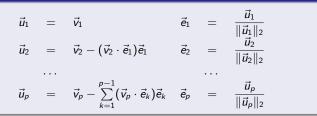
Elementary operations

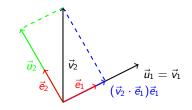
Gram–Schmidt orthonormalization Matrix norm Conditioning Specific matrices

LU and QR

Let $\{\vec{v}_1, \ldots, \vec{v}_p\}$ be a free family of vectors. It generates the vector space E_p with dimension p. We want to construct $\{\vec{e}_1, \ldots, \vec{e}_p\}$, an orthonormal basis of E_p .

Gram–Schmidt algorithm





Joseph Fourier Matrix norms

Linear Algebra

ectors and matrices

Elementary operations Gram–Schmidt orthonormalization Matrix norm

Conditioning Specific matrices Tridiagonalisation LU and QR factorizations

Definition

$\ A\ \geq 0,$
$\ A\ = 0 \Leftrightarrow A = 0.$
$\ \lambda A\ = \lambda \ A\ ,$
$ A + B \le A + B $
$\ AB\ \le \ A\ \ B\ ,$

 $\forall A \in \mathcal{M}_{nn}(F), \ F = \mathbb{C} \text{ or } \mathbb{R}.$ $\forall A \in \mathcal{M}_{nn}(F), \ \forall \lambda \in F.$ $B \|, \ \forall A, B \in \mathcal{M}_{nn}(F) \text{ (triangle inequality).}$ $\forall A, B \in \mathcal{M}_{nn}(F) \text{ (specific for matrix norms).}$

Subordinate matrix norms

$$\|A\|_{p} = \max_{\|x\|_{p}\neq 0} \frac{\|Ax\|_{p}}{\|x\|_{p}} = \max_{\|x\|_{p}=1} \|Ax\|_{p}, \ \forall x \in F^{n}, \ \text{where} \ \|\vec{x}\|_{p} = \sqrt[p]{\sum_{i=1}^{n} x_{i}^{p}}.$$

in particular: $\|A\|_{1} = \max_{j} \sum_{i} |A_{ij}| \ \text{and} \ \|A\|_{\infty} = \max_{i} \sum_{j} |A_{ij}|.$

Matrix-vector product estimate

$$||A||_{p} \geq \frac{||Ax||_{p}}{||x||_{p}}$$
 and hence $||Ax||_{p} \leq ||A||_{p} ||x||_{p}$ for all $x \in F^{n}$.

Matrix conditioning

Linear Algebra

Université Joseph Fourier ¥

lectors and matrices

Elementary operations Gram–Schmidt orthonormalization Matrix norm

Conditioning

Specific matrices Tridiagonalisation LU and QR factorizations

Definition

 $Cond(A) = ||A^{-1}|| ||A||.$

Properties

 $\operatorname{Cond}(A) \ge 1,$ $\operatorname{Cond}(A^{-1}) = \operatorname{Cond}(A),$ $\operatorname{Cond}(\alpha A) = \operatorname{Cond}(A).$

For the Euclidian norm

$$\operatorname{Cond}_2(A) = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}.$$

Conditioning and linear systems

Linear Algebra

Université Joseph Fourier ¥

ectors and matrices

Elementary operations Gram–Schmidt orthonormalization Matrix norm

Conditioning

Specific matrices Tridiagonalisation LU and QR factorizations

$\begin{array}{l} (\mathbf{S}_{0}) \ A\vec{x} = \vec{b}, \qquad (\mathbf{S}_{\mathrm{per}}) \ (A + \delta A)(\vec{x} + \delta \vec{x}) = (\vec{b} + \delta \vec{b}). \\ (\mathbf{S}_{\mathrm{per}}) - (\mathbf{S}_{0}): \ A\delta\vec{x} + \delta A(\vec{x} + \delta \vec{x}) = \delta \vec{b}, \\ \delta\vec{x} = A^{-1} \left(\delta\vec{b} - \delta A(\vec{x} + \delta \vec{x})\right), \\ \|\delta\vec{x}\| \leq \|A^{-1}\| \left\|\delta\vec{b} - \delta A(\vec{x} + \delta \vec{x})\right\| \ (\text{for a subordinate matrix norm}), \\ \|\delta\vec{x}\| \leq \|A^{-1}\| \left(\|\delta\vec{b}\| + \|\delta A\|\|\vec{x} + \delta \vec{x}\|\right), \\ \frac{\|\delta\vec{x}\|}{\|\vec{x} + \delta \vec{x}\|} \leq \|A^{-1}\| \left(\frac{\|\delta\vec{b}\|}{\|\vec{x} + \delta \vec{x}\|} + \|\delta A\|\right). \end{array}$

Result

Problem

$$\frac{\|\delta \vec{x}\|}{\|\vec{x} + \delta \vec{x}\|} \leq \operatorname{Cond}(A) \left(\frac{\|\delta \vec{b}\|}{\|A\| \|\vec{x} + \delta \vec{x}\|} + \frac{\|\delta A\|}{\|A\|} \right).$$

relative error on $x = \operatorname{Cond}(A)$ (relative error on \vec{b} + relative error on A).

Hermitian, orthogonal...

Linear Algebra

/ectors and matrices

Elementary operations Gram–Schmidt orthonormalization Matrix norm Conditioning **Specific matrices** Tridiagonalisation Transposed matrix: $({}^{t}A)_{ij} = A_{ji}$. Adjoint matrix: $(A^{*})_{ij} = \overline{A_{ji}}$.

Symmetric matrix

 $^{t}A = A.$

Hermitian matrix

 $A^* = A$ and hence ${}^tA = \overline{A}$.

Orthogonal matrix (in $\mathcal{M}_{nn}(\mathbb{R})$)

 $^{t}AA = I.$

Unitary matrix (in $\mathcal{M}_{nn}(\mathbb{C})$)

 $A^*A = I$.

Similar matrices ("semblables" in French)

A and B are similar if $\exists P/B = P^{-1}AP$.

Joseph Fourier **X**

Université

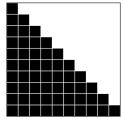
Profiles

Linear Algebra

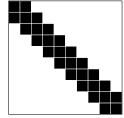
Université Joseph Fourier ¥

/ectors and matrices

Elementary operation Gram-Schmidt orthonormalization Matrix norm Conditioning **Specific matrices** Tridiagonalisation LU and QR factorizations

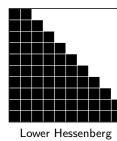


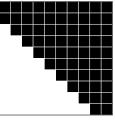
Lower triangular



Upper triangular

Tridiagonal





Upper Hessenberg

Householder matrices

Linear Algebra

Université Joseph Fourier ¥

/ectors and matrices

Elementary operations Gram–Schmidt orthonormalization Matrix norm Conditioning Specific matrices

Fridiagonalisatio U and QR actorizations

Definition

$$H_{\vec{v}} = I - 2 \frac{\vec{v}^t \vec{v}}{\|\vec{v}\|_2^2}$$

Properties

• $H_{\vec{v}}$ is orthogonal.

If
$$\vec{v} = \vec{a} - \vec{b} \neq \vec{0}$$
 and $\|\vec{a}\|_2 = \|\vec{b}\|_2$,
then $H_{\vec{v}}\vec{a} = \vec{b}$.

$${}^{t}\vec{v}\vec{v} = \|\vec{a}\|_{2} - 2^{t}\vec{a}\vec{b} + \|\vec{b}\|_{2} = 2\|\vec{a}\|_{2} - 2^{t}\vec{a}\vec{b} = 2^{t}\vec{a}\vec{v} = 2^{t}\vec{v}\vec{a} H_{\vec{v}}\vec{a} = \vec{a} - \frac{2\vec{v}^{t}\vec{v}\vec{a}}{\|\vec{v}\|_{2}} = \vec{a} - \vec{v} = \vec{b}.$$

Application

Let $\vec{a} \in K^n$, we look for $H_{\vec{v}}$ such that $H_{\vec{v}}\vec{a} = {}^t(\alpha, 0, \dots, 0)$. Solution: take $\vec{b} = {}^t(\alpha, 0, \dots, 0)$ with $\alpha = ||\vec{a}||_2$, and $\vec{v} = \vec{a} - \vec{b}$. Then $H_{\vec{v}}\vec{a} = \vec{b}$.

Householder tridiagonalisation

Linear Algebra

Joseph Fourier 7

Université

/ectors and matrices

Elementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning Specific matrices **Tridiagonalisation** LU and QR

Aim A: symmetric matrix. Construct a sequence $A^{(1)} = A, \dots, A^{(n)}$ tridiagonal and $A^{(n)}n = HA^{t}H$. $A^{(2)} = A^{(3)} = A^{(4)} = A^{(5)} = A^{(5)} \dots A^{(n)} = A^{(n)}$

First step $A^{(1)} \equiv \begin{pmatrix} A^{(1)}_{11} & {}^{t}\vec{a}^{(1)}_{12} \\ \vec{a}^{(1)}_{21} & \vec{A}^{(1)} \end{pmatrix} H^{(1)} \equiv \begin{pmatrix} 1 & {}^{t}\vec{0} \\ \vec{0} & \vec{H}^{(1)} \end{pmatrix} A^{(2)} \equiv \begin{pmatrix} A^{(1)}_{11} & {}^{t}(\vec{H}^{(1)}\vec{a}^{(1)}_{21}) \\ \vec{H}^{(1)}\vec{a}^{(1)}_{21} & \vec{H}^{(1)}\vec{A}^{(1)}\vec{t}\vec{H}^{(1)} \end{pmatrix}$

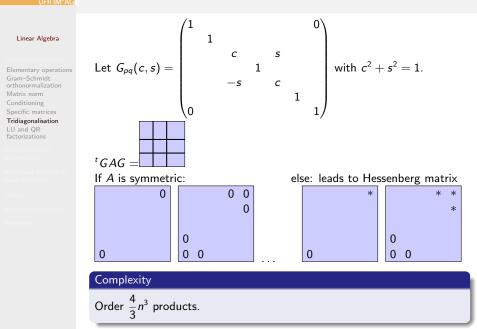
Choose
$$\tilde{H}^{(1)}$$
 such that $\tilde{H}^{(1)}\vec{a}_{21}^{(1)} = {}^t(\alpha, 0, \dots, 0)_{n-1} = \alpha(\vec{e}_1)_{n-1}$.
 $\alpha = \|\vec{a}_{21}^{(1)}\|_2, \ \vec{u}_1 = \vec{a}_{21}^{(1)} - \alpha(\vec{e}_1)_{n-1}, \ \tilde{H}^{(1)} = H_{\vec{u}_1}.$

Complexity

Order $\frac{2}{3}n^3$ products.

Givens tridiagonalization

Université Joseph Fourier ¥

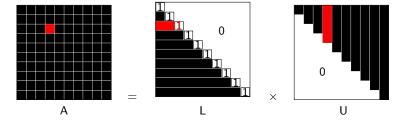


Principles of LU factorization Joseph Fourier 7

Linear Algebra

Université

Elementary operations Conditioning Specific matrices U and QR factorizations



- Some regular matrix (with non-zero determinant) are not LU-transformable, e.g. ([0 1; 1 1]) is not.
- If it exists, the LU decomposition of A is not unique. It is unique if A is non-singular.
- A is non-singular and LU-transformable
 - \iff all the determinants of the fundamental principal minors are non zero (and in this case the decomposition is unique).

Université Joseph Fourier ¥ Doolittle LU factorization – principle

Linear Algebra

- Gram-Schmidt Conditioning
- Specific matrices
- Tridiagonalisation

LU and QR factorizations

It proceeds line by line.

$$\begin{cases}
A_{11} = L_{11}U_{11} & L_{11} = 1 \\
A_{12} = L_{11}U_{12} & \Rightarrow \{U_{1j}\}_{j=1,...,n} \\
A_{1n} = L_{11}U_{1n} & \Rightarrow L_{21} \\
A_{22} = L_{21}U_{12} + U_{22} & \Rightarrow \{U_{2j}\}_{j=2,...,n} \\
A_{2n} = L_{21}U_{1n} + U_{2n} & \Rightarrow \{U_{2j}\}_{j=2,...,n} \\
A_{31} = L_{31}U_{11} & \Rightarrow L_{31} \\
A_{32} = L_{31}U_{12} + L_{32}U_{22} & \Rightarrow L_{32} \\
A_{33} = L_{31}U_{13} + L_{32}U_{23} + U_{33} \\
& \dots & \Rightarrow \{U_{3j}\}_{j=3,...,n} \\
A_{3n} = L_{31}U_{1n} + L_{32}U_{2n} + U_{3n} & \Rightarrow \{U_{3j}\}_{j=3,...,n}
\end{cases}$$

. . .

Doolittle LU factorization - algorithm

Linear Algebra

ectors and matrices

Elementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning Specific matrices Tridiagonalisation LU and QR factorizations

```
L_{ij} = \frac{A_{ij} - \sum\limits_{k=1}^{j-1} L_{ik} U_{kj}}{U_{ii}}
                                        U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik} U_{kj}
   for i = 1 to n
      for j = 1 to i-1
        sum = 0
        for k=1 to j-1
          sum = sum + L(i,k) + U(k,i)
        end for
        L(i,j) = (A(i,j)-sum)/U(j,j)
     end for
     L(i, i) = 1
      for j = i to n
        sum = 0
        for k = 1 to i-1
          sum = sum + L(i,k)*U(k,j)
        end for
        U(i, j) = A(i, j) - sum
     end for
   end for
```

Complexity

Order n^3 products

Doolittle algorithm

Cholesky factorization for an Hermitian matrix

Linear Algebra

Université Joseph Fourier ¥

/ectors and matrices

Elementary operation Gram–Schmidt orthonormalization Matrix norm Conditioning Specific matrices Tridiagonalisation LU and QR

factorizations

Principle $A = C^{t}C$

Cholesky algorithm

$$C_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i-1} C_{ik} C_{ik}}$$

$$C_{ij} = \frac{A_{ij} - \sum\limits_{k=1}^{j-1} C_{ik} C_{jk}}{C_{ii}}, j \neq i$$

j)

Complexity

Order n^3 products

Joseph Fourier LU factorization – profiles

Linear Algebra

/ectors and matrices

Elementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning Specific matrices Tridiagonalisation LU and QR

factorizations

Non-zero elements

In blue: AIn red: superposition of L and U

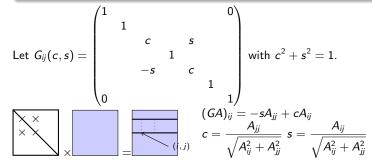
The interior of the profile is filled!

Université Joseph Fourier **#** QR factorization – principle

Linear Algebra

/ectors and matrices

Elementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning Specific matrices Tridiagonalisation LU and QR factorizations



Université Joseph Fourier X UFR IM²AG

QR factorization – algorithm

Linear Algebra

/ectors and matrices

Elementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning Specific matrices Tridiagonalisation LU and QR factorizations

Algorithm

```
R = A
Q = Id // size of A
for i = 2 to n
  for j = 1 to i-1
     root = sqrt (R(i,j)*R(i,j)+R(j,j)*R(j,j))
    if root != 0
       c = R(j,j)/root
       s = R(i,j)/root
    else
       c = 1
       s = 0
    end if
    Construct Gii
    R = Gji*R // matrix product
Q = Q*transpose(Gji) // matrix product
  end for
end for
```

Complexity

Order n^3 products

QR factorization – Python example

Linear Algebra $A = \begin{pmatrix} 3 & 2 & 1 & 0 & 0 \\ 4 & 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2 & 1 \\ 6 & 5 & 4 & 3 & 2 \end{pmatrix}$ Elementary operations Conditioning Specific matrices LU and QR factorizations $R = \begin{pmatrix} 11.619 & 9.467 \\ 3.437 & 10^{-16} & 6.086 & 10^{-01} \\ 4.476 & 10^{-17} & 1.989 & 10^{-18} \\ -6.488 & 10^{-16} & 1.082 & 10^{-17} \\ -6.671 & 10^{-16} & -2.548 & 10^{-17} \end{pmatrix}$ 7.316 5.164 3.271 $\begin{array}{cccc} 1.826 & 1.704 \\ 3.768 \ 10^{-15} & -3.775 \ 10^{-01} \\ 1.618 \ 10^{-16} & -6.764 \ 10^{-02} \\ -3.082 \ 10^{-33} & -5.029 \ 10^{-01} \end{array}$ 1.217 $2.324 \ 10^{-15}$ 0.000 0.000 /0 2582 -0 7303 -0 3775 -0.0676-0 5029

		0.2302	0.1505	0.5115	0.0010	0.5025
		0.3443	-0.4260	-0.0062	-0.1589	0.821
Ģ) =	0.4303	-0.1217	0.5407	0.7050	-0.1030
		0.5164	0.1826	-0.0062 0.5407 0.4472 -0.6042	-0.6627	-0.2466
		0.6025	0.4869	-0.6042	0.1842	0.0311 /

Power iteration algorithm - Python experiment

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Bandwidth reductio Eigenvalues and eigenvectors:

$$\lambda_1 = 1, \lambda_2 = 10, ec{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, ec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

 $A = \begin{pmatrix} 10 & 0 \\ -9 & 1 \end{pmatrix}$

Construct the series

$$\vec{x}^k = A\vec{x}^{k-1}$$

$$\vec{x}^{0} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \vec{x}^{1} = \begin{pmatrix} 20 \\ -17 \end{pmatrix}, \vec{x}^{2} = \begin{pmatrix} 200 \\ -197 \end{pmatrix}, \vec{x}^{3} = \begin{pmatrix} 2000 \\ -1997 \end{pmatrix} \dots$$

 \vec{x} tends to the direction of the eigenvector associated to the higher modulus eigenvalue.

" \vec{x}^k/\vec{x}^{k-1} " tends to the higher modulus eigenvalue.

Power iteration algorithm – Algorithm

Linear Algebra

Université Joseph Fourier 🖌

/ectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Bandwidth reductio Computation of the eigenvalue with higher modulus. *A* may be diagonalizable or not, the dominant eigenvalue can be unique or not.

Algorithm

```
choose q(0)
for k = 1 to convergence
x(k) = A * q(k-1)
q(k) = x(k) / norm(x(k))
end for
lambdamax = x(k)(j)/q(k-1)(j)
```

Attention: good choice of component *j*.

Power iteration algorithm – Python example

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Bandwidth reductio

$A = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

Rotations:

$$R_1 = \begin{pmatrix} \cos(1) & 0 & \sin(1) \\ 0 & 1 & 0 \\ -\sin(1) & 0 & \cos(1) \end{pmatrix}, R_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2) & \sin(2) \\ 0 & -\sin(2) & \cos(2) \end{pmatrix}$$

$$B = R_2 R_1 A^t R_1^t R_2 = \begin{pmatrix} 4.33541265 & -3.30728724 & 1.51360499 \\ -3.30728724 & 7.20313893 & -1.00828318 \\ 1.51360499 & -1.00828318 & 5.46144841 \end{pmatrix}$$

Eigenvalues and eigenvectors:

$$\lambda_1 = 2, \lambda_2 = 5, \lambda_3 = 10,$$

$$\vec{v}_1 = \begin{pmatrix} -0.8415\\ -0.4913\\ 0.2248 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1.365 \ 10^{-16}\\ 0.4161\\ 0.9093 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} -0.5403\\ 0.7651\\ -0.3502 \end{pmatrix}$$

Power iteration algorithm – Remarks

Université Joseph Fourier 🖌

/ectors and matrices Ligenvalues and

Power iteration algorithm

- Deflation Galerkin Jacobi QR
- Numerical solution linear systems Storage
- Bandwidth reduction
- References

- Convergence results depend on the fact that
 - the matrix is diagonalizable or not
 - the dominant eigenvalue is multiple or not
- The choice of the norm is not explicit: usually max norm or euclidian norm
- (a) \vec{q}_0 should not be orthogonal to the eigen-subspace associated to the dominant eigenvalue.

Joseph Fourier Inverse iteration

Inverse iteration algorithm – Algorithm

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Bandwidth reductic

References

Computation of the eigenvalue with smallest modulus. A may be diagonalizable or not, the dominant eigenvalue can be unique or not.

Based on the fact that

$$\lambda_{\min}(A) = \left(\lambda_{\max}(A^{-1})
ight)^{-1}$$

Algorithm

```
choose q(0)
for k = 1 to convergence
solve A * x(k) = q(k-1)
q(k) = x(k) / norm(x(k))
end for
lambdamin = q(k-1)(j) / x(k)(j)
```

Inverse iteration algorithm – Python example

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Bandwidth reductio

$A = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

Rotations:

$$R_{1} = \begin{pmatrix} \cos(1) & 0 & \sin(1) \\ 0 & 1 & 0 \\ -\sin(1) & 0 & \cos(1) \end{pmatrix}, R_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2) & \sin(2) \\ 0 & -\sin(2) & \cos(2) \end{pmatrix}$$

$$B = R_2 R_1 A^t R_1^{\ t} R_2 = \begin{pmatrix} 4.33341205 & -3.30728724 & 1.51300499 \\ -3.30728724 & 7.20313893 & -1.00828318 \\ 1.51360499 & -1.00828318 & 5.46144841 \end{pmatrix}$$

Eigenvalues and eigenvectors:

$$\lambda_1 = 2, \lambda_2 = 5, \lambda_3 = 10,$$

$$\vec{v}_1 = \begin{pmatrix} -0.8415\\ -0.4913\\ 0.2248 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1.365 \ 10^{-16}\\ 0.4161\\ 0.9093 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} -0.5403\\ 0.7651\\ -0.3502 \end{pmatrix}.$$

Generalized inverse iteration algorithm - Algorithm

Linear Algebra

Université Joseph Fourier 🖌

/ectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

```
Numerical solution
inear systems
Storage
Sandwidth reductio
```

```
References
```

```
Computation of the closest eigenvalue to a given \mu.
The eigenvalues of A - \mu I are the \lambda_i - \mu,
where \lambda_i are the eigenvalues of A.
```

 \Rightarrow apply the inverse iteration algorithm to $A - \mu I$.

Algorithm

```
choose q(0)
for k = 1 to convergence
solve (A-mu*l) * x(k) = q(k-1)
q(k) = x(k) / norm(x(k))
end for
lambda = q(k-1)(j) / x(k)(j) + mu
```

Generalized inverse iteration algorithm – Python example

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and Reigenvectors

Power iteration algorithm

Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Bandwidth reductio $A = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \mu = 4.$

Rotations:

$$R_1 = egin{pmatrix} \cos(1) & 0 & \sin(1) \ 0 & 1 & 0 \ -\sin(1) & 0 & \cos(1) \end{pmatrix}, R_2 = egin{pmatrix} 1 & 0 & 0 \ 0 & \cos(2) & \sin(2) \ 0 & -\sin(2) & \cos(2) \end{pmatrix}$$

$$B = R_2 R_1 A^t R_1^t R_2 = \begin{pmatrix} 4.33541265 & -3.30728724 & 1.51360499 \\ -3.30728724 & 7.20313893 & -1.00828318 \\ 1.51360499 & -1.00828318 & 5.46144841 \end{pmatrix}$$

Eigenvalues and eigenvectors:

$$\lambda_1 = 2, \lambda_2 = 5, \lambda_3 = 10,$$

$$\vec{v}_1 = \begin{pmatrix} -0.8415 \\ -0.4913 \\ 0.2248 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1.365 \ 10^{-16} \\ 0.4161 \\ 0.9093 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} -0.5403 \\ 0.7651 \\ -0.3502 \end{pmatrix}$$

Université Joseph Fourier X UFR IM²AG

Deflation - Algorithm and Python example

Linear Algebra

/ectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm

Deflation

Galerkin Jacobi QR

```
Numerical solution c
inear systems
Storage
Bandwidth reduction
```

References

Computation of all the eigenvalues in modulus decreasing order.

When an eigenelement (λ, q) is found, it is removed from further computation by replacing $A \leftarrow A - \lambda \vec{q}^t \vec{q}$.

Algorithm

```
for i = 1 to n
    choose q(0)
    for k = 1 to convergence
        x(k) = A * q(k-1)
        q(k) = x(k) / norm(x(k))
    end for
    lambda = x(k)(j) / q(k-1)(j)
        A = A - lambda * q * transpose(q)
// eliminates direction q
    end for
```

Joseph Fourier F Galerkin method – Algorithm

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage Sandwidth reductio

References

Let H be a subspace of dimension m, generated by the orthonormal basis $(\vec{q}_1, \ldots, \vec{q}_m)$. Construct the rectangular matrix $Q = (\vec{q}_1, \ldots, \vec{q}_m)$. Remark: $Q^*Q = Id_m$

Goal

Look for eigenvectors in H.

If
$$\vec{u} \in H$$
, $\vec{u} = \sum_{i=1}^{m} \alpha_i \vec{q}_i$ (unique).
 $\vec{u} = Q\vec{U}$, where $\vec{U} = {}^t(\alpha_1, \dots, \alpha_m)$

 $\begin{aligned} A\vec{u} &= \lambda \vec{u} \Leftrightarrow AQ\vec{U} = \lambda Q\vec{U}.\\ \text{Project on } H: \ Q^*AQ\vec{U} = \lambda Q^*Q\vec{U} = \lambda \vec{U}. \end{aligned}$

 \Rightarrow We look for eigenelements of $B = Q^*AQ$.

Vocabulary:

- $\{\lambda_i, \vec{u}_i\}$ are the Ritz elements,
- B is the Rayleigh matrix.

Université

Jacobi

Goal

Diagonalize the (real symmetric) matrix.

Until a "reasonably diagonal" matrix is obtained:

- Choose the largest off-diagonal element (largest modulus)
- Construct a rotation matrix that annihilates this term

In the end, the eigenvalues are the diagonal elements.

QR method – Algorithm

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm Deflation Galerkin Jacobi QR

Numerical solution o linear systems Storage

Algorithm

The eigenvalues are the diagonal elements of the last matrix A_{k+1} .

Properties

- $A_{k+1} = R_k Q_k = Q_k^* Q_k R_k Q_k = Q_k^* A_k Q_k$ $\Rightarrow A_{k+1}$ and A_k are similar.
- If A_k is tridiagonal or Hessenberg, A_{k+1} also is \Rightarrow First restrict to this case keeping similar matrices.

QR method – Convergence and Python example

Université Joseph Fourier 🖌

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm Deflation Galerkin Jacobi QR

Numerical solution inear systems itorage Bandwidth reductic

References

Theorem

Let V^* be the matrix of left eigenvectors of A $(A^*\vec{u}^*=\lambda\vec{u}^*).$ If

- the principal minors of V are non-zero.
- the eigen-values of A are such that $|\lambda_1| > \cdots > |\lambda_n|$.

Then the QR method converges A_{k+1} tends to an upper triangular form and $(A_k)_{ii}$ tends to λ_i . Eigenvalues – Summary

Linear Algebra

Joseph Fourier 7

Université

Vectors and matrices Eigenvalues and eigenvectors

Power iteration algorithm Deflation Galerkin Jacobi QR

Numerical solution inear systems Storage

sandwidtn reductio

We want to know all the eigenvalues

• QR method — better than Jacobi Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an approximation)

Power iteration algorithm and variants...

We only want a sub-set of eigenelements

- We know the eigenvalues and look for eigenvectors: deflation and variants
- We know the subspace for eigenvectors: Galerkin and variants

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Direct methods

Iterative methods Preconditioning

andwidth reduction

 $A\vec{x} = \vec{b}$

Elimination methods

Principles

The solution to the system remains unchanged if

- lines are permuted,
- line *i* is replaced by a linear combination

$$\ell_i \leftarrow \sum_{k=1}^n \mu_k \ell_k$$
, with $\mu_i \neq 0$.

Factorisation methods

$$A = LU$$

$$LU\vec{x} = \vec{b}$$

We solve two triangular systems

$$L\vec{y} = \vec{b}$$

$$U\vec{x} = \vec{y}.$$

Lower triangular matrix

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

near systems

Direct methods

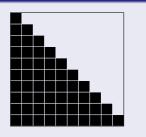
Iterative methods Preconditioning

Bandwidth reduction

$x_i = \frac{b_i - \sum\limits_{k=1}^{i-1} A_{ik} x_k}{A_{ii}}$

Algorithm

if A(1,1)==0 then stop x(1) = b(1)/A(1,1)for i = 2 to n if A(i,i)==0 then stop ax = 0for k = 1 to i-1 ax = ax + A(i,k)*x(k)end for x(i) = (b(i)-ax)/A(i,i)end for



Complexity

Order $n^2/2$ products.

Upper triangular matrix

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

near systems

Direct methods

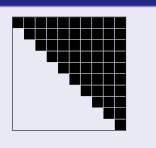
Iterative methods Preconditioning

andwidth reduction

$$x_i = \frac{b_i - \sum\limits_{k=i+1}^n A_{ik} x_k}{A_{ii}}$$

Algorithm

if A(n,n)==0 then stop x(n) = b(n)/A(n,n)for i = n-1 to 1 if A(i,i)==0 then stop ax = 0for k = i+1 to n ax = ax + A(i,k)*x(k)end for x(i) = (b(i)-ax)/A(i,i)end for



Complexity

Order $n^2/2$ products.

Joseph Fourier ⊁ Gauss elimination - Principle

Linear Algebra

Université

Direct methods

Aim

Transform A to upper triangular matrix.

At rank p - 1:

$$A_{ij} = 0 \qquad \text{ if } i > j, \ j < p.$$

```
for p = 1 to n
  pivot = A(p, p)
  if pivot == 0 stop
  line(p) = line(p)/pivot
  for i = p+1 to n
    Aip = A(i, p)
    line(i) = line(i) - Aip * line(p)
  end for
end for
x = solve(A, b) // upper triangular
```

Complexity

 $\ell_i \leftarrow \ell_i - A_{ip} \frac{\ell_p}{A_{pp}}$

Still order n^3 products.

Université Joseph Fourier

Gauss-Jordan elimination - Principle

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

Direct methods

Iterative method Preconditioning

Bandwidth reduction References

Aim

Transform A to identity.

At rank p-1:

$$\begin{aligned} A_{ii} &= 1 & \text{if } i < p, \\ A_{ij} &= 0 & \text{if } i \neq j, \ j < p. \end{aligned}$$

Attention

 $\overline{\ell_i \leftarrow \ell_i - A_{ip} \frac{\ell_p}{A_{pp}}}$

• take into account le right-hand side in the "line".

Gauss-Jordan elimination - Algorithm

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

Direct methods

Iterative methods Preconditioning

```
andwidth reduction
```

```
// unknown entries numbering
for i = 1 to n
    num(i) = i
end for
```

```
for p=1 to n
  // maximal pivot
 pmax = abs(A(p,p))
  imax = p
 imax = p
  for i = p to n
    for i = p to n
      if abs(A(i,j)) > pmax then
        pmax = abs(A(i, j))
        imax = i
        imax = i
      end if
    end for
  end for
  // line permutation
  for j = p to n
    permute(A(p,j),A(imax,j)
 end for
  permute(b(p),b(imax))
  // column permutation
  for i = p to n
    permute(A(i,p),A(i,jmax)
 end for
```

```
permute(num(p),num(jmax))
```

```
pivot = A(p,p)

if pivot = 0 stop, rank(A) = p-1

for j = p to n

A(p,j) = A(p,j)/pivot

end for

b(p) = b(p)/pivot

for i = 1 to n, i!=p

Aip = A(i,p)

for j = p to n

A(i,j) = A(i,j) - Aip * A(p,j)

end for

b(i) = b(i) - Aip*b(p)

end for

end for // loop on p

for i = 1 to n
```

```
for i = 1 to n
x(num(i)) = b(i)
end for
```

Complexity

Order n^3 products.

Remark

Also computes the rank of the matrix.

Joseph Fourier ¥ Factorization methods — Thomas algorithm — principle

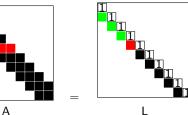
Linear Algebra

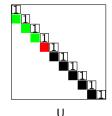
Université

Direct methods

 \Rightarrow

LU decomposition for tridiagonal matrices.





×

We suppose that L_{ij} and U_{ij} are known for i < p. Then

$$\begin{array}{rcl} A_{\rho,\rho-1} & = & L_{\rho,\rho-1} U_{\rho-1,\rho-1}, \\ A_{\rho,\rho} & = & L_{\rho,\rho-1} U_{\rho-1,\rho} + U_{\rho,\rho}, \\ A_{\rho,\rho+1} & = & U_{\rho,\rho+1}. \end{array}$$

Factorization methods — Thomas algorithm — algorithm

Linear Algebra

Université Joseph Fourier ¥

/ectors and matrices Eigenvalues and Eigenvectors

Direct methods

Iterative methods Preconditioning

andwidth reduction References

Algorithmm

```
// factorization
U(1,1) = A(1,1)
U(1,2) = A(1,2)
for i = 2 to n
    if U(i-1,i-1) = 0 then stop
    L(i,i-1) = A(i,i-1)/U(i-1,i-1)
    U(i,i) = A(i,i) - L(i,i-1)*U(i-1,i)
    U(i,i+1) = A(i,i+1)
end for
// construction of the solution
y = solve(L,b) // lower triangular
x = solve(U,y) // upper triangular
```

Complexity

Order 5n products.

Factorization methods — general matrices

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

lumerical solution of near systems

Direct methods

Iterative methods Preconditioning

Bandwidth reduction

For general matrices:

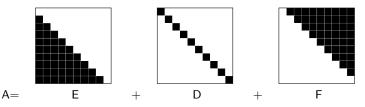
- Factorize the matrix
 - LU algorithm
 - Choleski algorithm
- Solve upper triangular system
- Solve lower triangular system.

Joseph Fourier # Iterative methods — Principle

Linear Algebra

Université

Iterative methods



To solve $A\vec{x} = \vec{b}$, write A = M - Nand iterate $M\vec{x}^{k+1} - N\vec{x}^{k} = \vec{b}$, i.e. $\vec{x}^{k+1} = M^{-1}N\vec{x}^{k} + M^{-1}\vec{b}$.

Attention

- M should be easy to invert.
- $M^{-1}N$ should lead to a stable algorithm.

Jacobi M = D. N = -(E + F). Gauss-Seidel M = D + E, N = -F, Successive Over Relaxation $M = \frac{D}{\omega} + E$, $N = \left(\frac{1}{\omega} - 1\right)D - F$.

Jacobi method

Linear Algebra

```
Vectors and matrices
Eigenvalues and
eigenvectors
```

inear systems

Direct methods Iterative methods Preconditioning

andwidth reduction References

Algorithm

```
choose x(k=0)
for k = 0 to convergence
for i = 1 to n
rhs = b(i)
for j = 1 to n, j!=i
rhs = rhs - A(i,j)*x(j,k)
end for
x(i,k+1) = rhs / A(i,i)
end for
test = norm(x(k+1)-x(k))<epsilon
end for (while not test)
```

$$\begin{aligned} x_i^{k+1} &= \frac{1}{A_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n A_{ij} x_j^k \right) \\ \vec{x}^{k+1} &= D^{-1} (\vec{b} - (E+F) \vec{x}^k) \\ &= D^{-1} (\vec{b} + (D-A) \vec{x}^k) \\ &= D^{-1} \vec{b} + (I - D^{-1}A) \vec{x}^k \end{aligned}$$

Remarks

- simple,
- two copies of the variable \vec{x}^{k+1} and \vec{x}^k ,
- insensible to permutations,
- converges if the diagonal is strictly dominant.

Gauss-Seidel method

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors Numerical solution of

Direct methods Iterative methods Preconditioning

andwidth reduction

Algorithm

$$\mathbf{x}_{i}^{k+1} = \frac{1}{A_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{k+1} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{k} \right)$$

choose x(k=0)for k = 0 to convergence for i = 1 to n rhs = b(i) for j = 1 to i-1rhs = rhs - A(i,j)*x(j,k+1) end for for j = i+1 to n rhs = rhs - A(i,j)*x(j,k) end for x(i,k+1) = rhs / A(i,i)end for test = norm(x(k+1)-x(k))<epsilon end for (while not test)

Remarks

- still simple,
- one copy of the variable \vec{x} ,
- sensible to permutations,
- often converges better than Jacobi.

SOR method

Linear Algebra

Université Joseph Fourier **X**

Vectors and matrices Eigenvalues and Eigenvectors

Direct methods Iterative methods

Preconditioning

Bandwidth reduction

$$x_i^{k+1} = rac{\omega}{A_{ii}} \left(b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=i+1}^n A_{ij} x_j^k
ight) + (1-\omega) x_i^k$$

$$\vec{x}^{k+1} = \left(\frac{D}{\omega} + E\right)^{-1} \vec{b} + \left(\frac{D}{\omega} + E\right)^{-1} \left[\left(\frac{1}{\omega} - 1\right)D - F\right] \vec{x}^k$$

Remarks

- still simple,
- one copy of the variable \vec{x} ,
- Necessary condition for convergence: $0 < \omega < 2$.

Descent method — general principle

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

Direct methods Iterative methods Preconditioning

Bandwidth reduction References

For A symmetric definite positive!!

Principle

Construct a series of approximations of the solution to the system

$$\vec{x}^{k+1} = \vec{x}^k + \alpha^k \vec{p}^k,$$

where \vec{p}^k descent direction and α^k to be determined.

The solution \vec{x} minimizes the functional $J(\vec{x}) = {}^t \vec{x} A \vec{x} - 2{}^t \vec{b} \vec{x}$.

$$\begin{aligned} \frac{\partial J}{\partial x_i}(\vec{x}) &= \frac{\partial}{\partial x_i} \left(\sum_{j,k} x_j A_{jk} x_k - 2 \sum_j b_j x_j \right) \\ &= \sum_k A_{ik} x_k + \sum_j x_j A_{ji} - 2b_i \\ &= 2 \left(A \vec{x} - \vec{b} \right)_i, \\ \frac{\partial J}{\partial x_i}(\vec{x}) &= 0. \end{aligned}$$

Joseph Fourier \mathcal{F} Descent method — determining α_k

Linear Algebra

Vectors and matrices Eigenvalues and Bigenvectors

Direct methods Iterative methods Preconditioning

Bandwidth reduction References $\underline{\vec{x}}$ also minimizes the functional $E(\vec{x}) = {}^t(\vec{x} - \underline{\vec{x}})A(\vec{x} - \underline{\vec{x}})$, and $E(\underline{\vec{x}}) = 0$. For a given \vec{p}^k , which α minimizes $E(\vec{x}^{k+1})$?

$$E(\vec{x}^{k} + \alpha \vec{p}^{k}) = {}^{t}(\vec{x}^{k} + \alpha \vec{p}^{k} - \vec{x})A(\vec{x}^{k} + \alpha \vec{p}^{k} - \vec{x}),$$

$$\frac{\partial}{\partial \alpha}E(\vec{x}^{k} + \alpha \vec{p}^{k}) = {}^{t}\vec{p}^{k}A(\vec{x}^{k} + \alpha \vec{p}^{k} - \vec{x}) + {}^{t}(\vec{x}^{k} + \alpha \vec{p}^{k} - \vec{x})A\vec{p}^{k}$$

$$= 2{}^{t}(\vec{x}^{k} + \alpha \vec{p}^{k} - \vec{x})A\vec{p}^{k}.$$

$${}^{t}(\vec{x}^{k} + \alpha^{k}\vec{p}^{k} - \vec{x})A\vec{p}^{k} = 0$$

$${}^{t}\vec{x}_{k}A\vec{p}_{k} + \alpha_{k}{}^{t}\vec{p}_{k}A\vec{p}^{k} - {}^{t}\vec{x}A\vec{p}^{k} = 0$$

$${}^{t}\vec{p}^{k}A\vec{x}^{k} + \alpha^{k}{}^{t}\vec{p}_{k}A\vec{p}^{k} - {}^{t}\vec{p}^{k}A\vec{x} = 0$$

$$\alpha^{k} = \frac{{}^{t}\vec{\rho}^{k}A\vec{x}^{k} - {}^{t}\vec{\rho}^{k}A\vec{x}}{{}^{t}\vec{\rho}^{k}A\vec{\rho}^{k}}$$

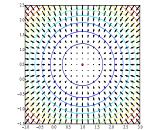
Joseph Fourier **X** Descent method — functional profiles (good cases)

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

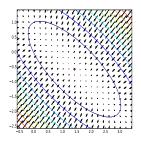
Direct methods Iterative methods Preconditioning

Bandwidth reduction



$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \ \vec{b} = A \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$Cond(A) = 1$$

$$A = \begin{pmatrix} 2 & 1.5 \\ 1.5 & 2 \end{pmatrix}, \ \vec{b} = A \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$Cond(A) = 7$$



Joseph Fourier Descent method — functional profiles (bad cases)

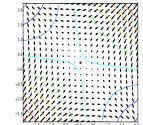
Linear Algebra

Université

Vectors and matrices Eigenvalues and eigenvectors Numerical solution of

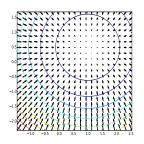
Direct methods Iterative methods Preconditioning

Bandwidth reduction References



Nonpositive case $A = \begin{pmatrix} 2 & 8 \\ 8 & 2 \end{pmatrix}, \vec{b} = A \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Nonsymmetric case $A = \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}, \vec{b} = A \begin{pmatrix} 2 \\ 1 \end{pmatrix}$



Université Joseph Fourier

Descent method — optimal parameter (principle)

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

Direct methods Iterative methods Preconditioning

Bandwidth reduction

Principle

- Choose $\vec{p}^k = \vec{r}^k \equiv \vec{b} A\vec{x}^k$.
- Choose α^k is such that \vec{r}^{k+1} is orthogonal to \vec{p}^k .

$$\vec{r}^{k+1} = \vec{b} - A\vec{x}^{k+1} = \vec{b} - A(\vec{x}^k + \alpha \vec{p}^k) = \vec{r}^k - \alpha^k A \vec{p}^k, 0 = {}^t \vec{p}^k \vec{r}^{k+1} = {}^t \vec{p}^k \vec{r}^k - \alpha^{kt} \vec{p}^k A \vec{p}^k.$$

$$\alpha^{k} = \frac{{}^{t}\vec{p}^{k}\vec{r}^{k}}{{}^{t}\vec{p}^{k}A\vec{p}^{k}}.$$

$$\begin{split} E(\vec{x}^{k+1}) &= (1 - \gamma^k) E(\vec{x}^k) \\ \text{with } \gamma^k &= \frac{({}^t \vec{p}^k \vec{r}^k)^2}{({}^t \vec{p}^k A \vec{p}^k) ({}^t \vec{r}^k A^{-1} \vec{r}^k)} \geq \frac{1}{\text{Cond}(A)} \frac{|{}^t \vec{p}^k \vec{r}^k|}{\|\vec{p}^k\| \|\vec{r}^k\|}. \end{split}$$

Joseph Fourier ¥ Descent method — optimal parameter (algorithm)

Linear Algebra

Université

Iterative methods

Algorithm

```
choose x(k=1)
for k = 1 to convergence
  r(k) = b - A * x(k)
  p(k) = r(k)
  alpha(k) = r(k) . p(k) / p(k) . A * p(k) x(k+1) = x(k) + alpha(k) * p(k)
end for //r(k) small
```

Descent method — conjugate gradient (principle)

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Direct methods Iterative methods Preconditioning

Bandwidth reduction

Principle

- Choose $\vec{p}^k = \vec{r}^k + \beta^k \vec{p}^{k-1}$.
- Choose β^k to minimize the error, i.e. maximize the factor γ^k

Properties

- ${}^t\vec{r}^k\vec{p}^j = 0 \ \forall j < k$,
- Span $(\vec{r}^1, \vec{r}^2, \dots, \vec{r}^k)$ = Span $(\vec{r}^1, A\vec{r}^1, \dots, A^{k-1}\vec{r}^1)$
- Span $(\vec{p}^1, \vec{p}^2, \dots, \vec{p}^k) =$ Span $(\vec{r}^1, A\vec{r}^1, \dots, A^{k-1}\vec{r}^1)$
- ${}^t \vec{p}^k A \vec{p}^j = 0 \ \forall j < k$
- ${}^t\vec{r}^k A\vec{p}^j = 0 \ \forall j < k$
- The algorithm converges in at most *n* iterations.

Joseph Fourier **X** Descent method — conjugate gradient (algorithm)

Linear Algebra

Vectors and matrices Eigenvalues and eigenvectors

near systems

Iterative methods Preconditioning

Bandwidth reduction

Algorithm

choose
$$x(k=1)$$

 $p(1) = r(1) = b - A*x(1)$
for $k = 1$ to convergence
 $alpha(k) = r(k) \cdot p(k) / p(k) \cdot A * p(k)$
 $x(k+1) = x(k) + alpha(k) * p(k)$
 $r(k+1) = r(k) - alpha(k) * A * p(k)$
 $beta(k+1) = r(k+1) \cdot r(k+1) / r(k) \cdot r(k)$
 $p(k+1) = r(k+1) + beta(k+1) * p(k)$
end for $//r(k)$ small

Université Joseph Fourier **H** UFR IM²AG

$\mathsf{Descent}\ \mathsf{method} - \mathsf{GMRES}$

Linear Algebra

Vectors and matrices Eigenvalues and Eigenvectors

Numerical solution of inear systems

Direct methods Iterative methods Preconditioning

andwidth reduction References

For generic matrices A GMRES: General Minimal RESidual method

• Take a "fair" approximation \vec{x}^k of the solution

• Construct the *m*-dimensional set of free vectors

$$\{\vec{r}^k, A\vec{r}^k, \dots, A^{m-1}\vec{r}^k\}$$

This spans the Krylov space H_m^k .

• Construct an orthonormal basis for H_m^k – e.g. via Gram-Schmidt

$$\{\vec{v}_1,\ldots,\vec{v}_m\}$$

• Look for a new approximation $\vec{x}^{k+1} \in H_m^k$:

$$\vec{x}^{k+1} = \sum_{j=1}^m X_j \vec{v}_j = [V] \vec{X}$$

• We obtain a system of n equations with m unknowns

$$A\vec{x}^{k+1} = A[V]\vec{X} = \vec{b}.$$

Descent method — GMRES (cont'd)

Linear Algebra

Université Joseph Fourier **X**

Vectors and matrices Eigenvalues and eigenvectors

Numerical solution of inear systems

Direct methods Iterative methods Preconditioning

Bandwidth reduction

• Project on H_m^k

 $[{}^{t}V]A[V]\vec{X} = [{}^{t}V]\vec{b}.$

• Solve this system of *m* equations with *m* unknowns • $\vec{x}^{k+1} = [V]\vec{X}$.

and so on...

To work well GMRES should be preconditioned!

Preconditioning – principle

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and Eigenvectors

Direct methods Iterative methods Preconditioning

Bandwidth reduction

Principle

Replace system
$$A\vec{x} = \vec{b}$$
 by $C^{-1}A\vec{x} = C^{-1}\vec{b}$
where $Cond(C^{-1}A) \ll Cond(A)$.

Which matrix C?

 ${\ensuremath{\mathcal{C}}}$ should be easily invertible, typically the product of two triangular matrices.

- C = diag(A), simplest but well...
- incomplete Cholesky or LU factorization
- . . .

Preconditioning – symmetry issues

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and eigenvectors

Direct methods Iterative methods Preconditioning

Bandwidth reduction

Symmetry

Even if A and C are symmetric, $C^{-1}A$ may not be symmetric. What if symmetry is needed?

Let $C^{-1/2}$ such that $C^{-1/2}C^{-1/2} = C^{-1}$. Then $C^{-1/2}AC^{-1/2}$ is similar to $C^{-1}A$.

We consider the system

$$C^{+1/2}(C^{-1}A)C^{-1/2}C^{+1/2}\vec{x} = C^{+1/2}C^{-1}\vec{b}$$
$$(C^{-1/2}AC^{-1/2})C^{+1/2}\vec{x} = C^{-1/2}\vec{b}$$

Solve

$$(C^{-1/2}AC^{-1/2})\vec{y} = C^{-1/2}\vec{b}$$

and then

$$\vec{y} = C^{+1/2} \vec{x}$$

Preconditioning – preconditioned conjugate gradient

Linear Algebra

Université Joseph Fourier ¥

Vectors and matrices Eigenvalues and Eigenvectors Numerical solution o

Direct methods Iterative methods Preconditioning

Bandwidth reduction References

Algorithm

choose
$$x(k=1)$$

 $r(1) = b - A*x(1)$
solve $Cz(1) = r(1)$
 $p(1) = r(1)$
for $k = 1$ to convergence
 $alpha(k) = r(k) \cdot z(k) / p(k) \cdot A * p(k)$
 $x(k+1) = x(k) + alpha(k) * p(k)$
 $r(k+1) = r(k) - alpha(k) * A * p(k)$
solve C $z(k+1) = r(k+1)$
 $beta(k+1) = r(k+1) \cdot z(k+1) / r(k) \cdot z(k)$
 $p(k+1) = z(k+1) + beta(k+1) * p(k)$
end for

At each iteration a system $C\vec{z} = \vec{r}$ is solved.

Storage - main issues

Linear Algebra

Joseph Fourier 🖊

Université

/ectors and matrices Eigenvalues and Eigenvectors

- inear systems
- Band storage Sparse storage
- Bandwidth reduct References

- $\bullet\,$ Problems involve often a large number of variables, of degrees of freedom, say $10^6.$
- To store a full matrix for a 10⁶-order system, 10¹² real numbers (if real) are needed... In simple precision this necessitates 4 To of memory.
- But high order problems are often very sparse.
- We therefore use a storage structure which consists in only storing relevant, non-zero, data.
- Access to one element A_{ij} should be very efficient.

Joseph Fourier CDS: Compressed Diagonal Storage

Linear Algebra

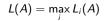
Vectors and matrices Eigenvalues and Eigenvectors

where

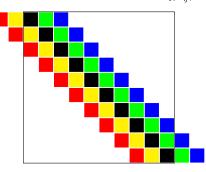
inear systems

Band storage

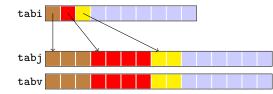
Sparse storage Bandwidth reduction



$L_i(A) = \max_{j/A_{ij}\neq 0} |i-j|$



Joseph Fourier CRS: Compressed Row Storage



Band storage Sparse storage

Linear Algebra

- All the non-zero values of the matrix are stored in a table tab; they are stored line by line in the increasing order of columns.
- A table tabj, with same size than tab stores the column number of the values in tabv.
- A table tabi with size n + 1 stores the indices in tabj of the first element of each line. The last entry is the size of tabv.

CCS: Compressed Column Storage = Harwell Boeing

Generalization to symmetric matrices

Joseph Fourier X CRS: Compressed Row Storage – exercise

Linear Algebra

Band storage Sparse storage

Question $A = \begin{pmatrix} 0 & 4 & 1 & 6 \\ 2 & 0 & 5 & 0 \\ 0 & 9 & 7 & 0 \\ 0 & 0 & 3 & 8 \end{pmatrix}$ CRS storage?

Solution

tabi	=	$\{1,4,6,8,10\}$
tabj	=	$\{2,3,4,1,3,2,3,3,4\}$
tabv	=	$\{4,1,6,2,5,9,7,3,8\}$

Université Joseph Fourier

Cuthill–McKee algorithm – construction of a graph

Linear Algebra

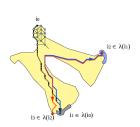
/ectors and matrices Figenvalues and Figenvectors

inear systems

Cuthill–McKee algorithm

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.



Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to *n*.
- The edges are the relations between the unknowns. Two unknowns *i* and *j* are linked if A_{ij} ≠ 0.
- The distance d(i, j) between two nodes is the minimal number of edges to follow to join both nodes.
- The excentricity $E(i) = \max_j d(i, j)$
- Far neighbors are $\lambda(i) = \{j/d(i, j) = E(i)\}$
- Graph diameter $D = \max_i E(i)$
- Peripheral nodes $P = \{j/E(j) = D\}.$

Cuthill–McKee algorithm – bandwidth reduction

Linear Algebra

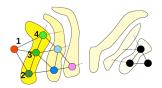
Joseph Fourier 🖅

Université

/ectors and matrices Figenvalues and Figenvectors

inear systems

Cuthill–McKee algorithm



This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.
- Attribute the new numbers (2,3,...) to the neighbors of node 1 with have the less non-labelled neighbors.
- Label the neighbors of node 2
- and so on...
- until all nodes are labelled.
- once this is done the numbering is reversed: the first become the last.

Cuthill–McKee algorithm – example 1

Linear Algebra

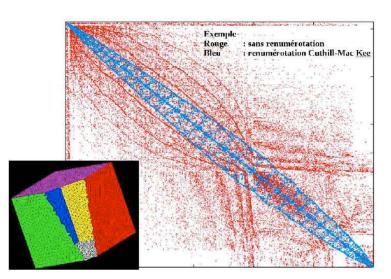
/ectors and matrices

eigenvectors

Numerical solution of inear systems

Cuthill–McKee algorithm

algorithm



Université Joseph Fourier ¥

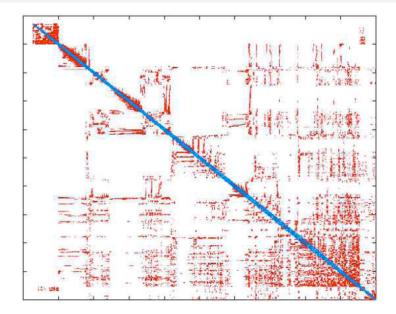
Cuthill–McKee algorithm – example 2

Linear Algebra

Vectors and matrices Eigenvalues and Eigenvectors

Numerical solution of inear systems

Cuthill–McKee algorithm



Bibliography

Linear Algebra

Université Joseph Fourier 🖌

ectors and matrices

Eigenvalues and eigenvectors

Numerical solution of inear systems

andwidth reduction

Reference

P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur Volumes 1 and 2, 2ème édition, Masson (1997).

Gene H. Golub, Charles F. van Loan, *Matrix Computations*, 3rd edition, Johns Hopkins University Press (1996).

Linear Algebra

/ectors and matrices

Eigenvalues and eigenvectors

Numerical solution of inear systems

Storage

Bandwidth reduction

Reference

TheEnd