Linear Algebra

Brigitte Bidégaray-Fesquet

Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble

MSIAM, 23-24 September 2015

Overview
(1) Vectors and matrices

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR
(3) Numerical solution of linear systems
- Direct methods
- Iterative methods
- Preconditioning

4 Storage

- Band storage
- Sparse storage
(5) Bandwidth reduction

\section*{Université}
 Joseph Fourier $\$$ Overview

UFRIM2AG
(1) Vectors and matrices

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization Matrix norm
Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR
(3) Numerical solution of linear systems
- Direct methods
- Iterative methods
- Preconditioning
(t) Storage
- Band storage
- Sparse storage
(5) Bandwidth reduction

Université

Elementary operations on vectors
\mathbb{C}^{n} resp. \mathbb{R}^{n} : linear space of vectors with n entries in \mathbb{C} resp. \mathbb{R}. Generically: F^{n}, where F is a field.

Linear combination of vectors

$$
\begin{aligned}
& \vec{w}=\alpha \vec{u}+\beta \vec{v}, \alpha, \beta \in \mathbb{C} \text { or } \mathbb{R} . \\
& \quad \text { for } i=1 \text { to } n \\
& \quad w(i)=\text { alpha } * u(i)+\text { beta } * v(i) \\
& \text { end for }
\end{aligned}
$$

ℓ^{2} norm of a vector

$$
\begin{aligned}
& \text { Scalar product of } 2 \text { vectors } \\
& \vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i} \\
& \text { uv }=0 \\
& \text { for } i=1 \text { to } n \\
& \text { uv }=u v+u(i) * v(i) \\
& \text { end for }
\end{aligned}
$$

$$
\begin{aligned}
& \|\vec{u}\|_{2}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}} \\
& \text { un }=0 \\
& \text { for } i=1 \text { to } n \\
& \text { un }=\text { un }+u(i) * u(i) \\
& \text { end for } \\
& \text { norm }=\operatorname{sqrt}(u u)
\end{aligned}
$$

Université

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR factorizations

Elementary operations on matrices
$\mathcal{M}_{n p}(F)$: linear space of matrices with $n \times p$ entries in F.

Linear combination of matrices

$$
\begin{aligned}
& C=\alpha A+\beta B, \alpha, \beta \in F \\
& \text { for } i=1 \text { to } n \\
& \text { for } j=1 \text { to } p \\
& C(i, j)=\text { alphat } A(i, j)+\text { beta } * B(i, j) \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Matrix-vector product

$$
\begin{aligned}
& \vec{w}=A \vec{u}, w_{i}=\sum_{j=1}^{p} A_{i j} u_{j} \\
& \text { for } i=1 \text { to } n \\
& \text { wi }=0 \\
& \text { for } j=1 \text { to } p \\
& \quad \text { wi }=w i+A(i, j) * u(j) \\
& \text { end for } \\
& \text { w(i) }=\text { wi } \\
& \text { end for }
\end{aligned}
$$

Matrix-matrix product

$$
\begin{aligned}
& C=A B, C_{i j}=\sum_{k=1}^{p} A_{i k} B_{k j} \\
& \text { for } \mathrm{i}=1 \text { to n } \\
& \text { for } \mathrm{j}=1 \text { to q } \\
& \mathrm{cij}=0 \\
& \text { for } \mathrm{k}=1 \text { to } \mathrm{p} \\
& \mathrm{cij}=\mathrm{cij}+\mathrm{A}(\mathrm{i}, \mathrm{k}) * \mathrm{~B}(\mathrm{k}, \mathrm{j}) \\
& \text { end for } \\
& \mathrm{C}(\mathrm{i}, \mathrm{j})
\end{aligned} \mathrm{c}_{\mathrm{c}} \mathrm{cij} .
$$

Université

Linear Algebra

Elementary operations

Gram-Schmidt orthonormalization Matrix norm
Conditioning
Specific matrices
Tridiagonalisation LU and QR factorizations

Gram-Schmidt orthonormalization

Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ be a free family of vectors.
It generates the vector space E_{p} with dimension p.
We want to construct $\left\{\vec{e}_{1}, \ldots, \vec{e}_{p}\right\}$, an orthonormal basis of E_{p}.

Gram-Schmidt algorithm

$$
\begin{aligned}
\vec{u}_{1} & =\vec{v}_{1} & \vec{e}_{1} & =\frac{\vec{u}_{1}}{\left\|\vec{u}_{1}\right\|_{2}} \\
\vec{u}_{2} & =\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{e}_{1}\right) \vec{e}_{1} & \vec{e}_{2} & =\frac{\vec{u}_{2}}{\left\|\vec{u}_{2}\right\|_{2}} \\
& \ldots & & \ldots \\
\vec{u}_{p} & =\vec{v}_{p}-\sum_{k=1}^{p-1}\left(\vec{v}_{p} \cdot \vec{e}_{k}\right) \vec{e}_{k} & \vec{e}_{p} & =\frac{\vec{u}_{p}}{\left\|\vec{u}_{p}\right\|_{2}}
\end{aligned}
$$

Université

UFRIMAG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

Matrix norms

Definition

$$
\begin{array}{ll}
\|A\| \geq 0, & \forall A \in \mathcal{M}_{n n}(F), F=\mathbb{C} \text { or } \mathbb{R} . \\
\|A\|=0 \Leftrightarrow A=0 . & \forall A \in \mathcal{M}_{n n}(F), \forall \lambda \in F . \\
\|\lambda A\|=|\lambda|\|A\|, & \forall A, B \in \mathcal{M}_{n n}(F) \text { (triangle inequality). } \\
\|A+B\| \leq\|A\|+\|B\|, & \forall A, B \in \mathcal{M}_{n n}(F) \text { (specific for matrix norms). }
\end{array}
$$

Université

UFRIM²G

Linear Algebra

Elementary operations Gram-Schmidt orthonormalization

Matrix norm

Conditioning
Specific matrices
Tridiagonalisation
$L U$ and $Q R$
factorizations

Matrix norms

Definition

$$
\begin{array}{ll}
\|A\| \geq 0, & \forall A \in \mathcal{M}_{n n}(F), F=\mathbb{C} \text { or } \mathbb{R} . \\
\|A\|=0 \Leftrightarrow A=0 . & \forall A \in \mathcal{M}_{n n}(F), \forall \lambda \in F . \\
\|\lambda A\|=|\lambda|\|A\|, & \forall A, B \in \mathcal{M}_{n n}(F) \text { (triangle inequality). } \\
\|A+B\| \leq\|A\|+\|B\|, & \forall A, B \in \mathcal{M}_{n n}(F) \text { (specific for matrix norms). }
\end{array}
$$

Subordinate matrix norms

$$
\|A\|_{p}=\max _{\|x\|_{p} \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}, \forall x \in F^{n}, \text { where }\|\vec{x}\|_{p}=\sqrt[p]{\sum_{i=1}^{n} x_{i}^{p}}
$$

$$
\text { in particular: }\|A\|_{1}=\max _{j} \sum_{i}\left|A_{i j}\right| \text { and }\|A\|_{\infty}=\max _{i} \sum_{j}\left|A_{i j}\right|
$$

Université

 Joseph Fourier 1 AUFRIM2AG

Elementary operations Gram-Schmidt orthonormalization

Matrix norm

Conditioning
Specific matrices
Tridiagonalisation LU and QR factorizations

Matrix norms

Definition

$$
\begin{array}{ll}
\|A\| \geq 0, & \forall A \in \mathcal{M}_{n n}(F), F=\mathbb{C} \text { or } \mathbb{R} . \\
\|A\|=0 \Leftrightarrow A=0 . & \forall A \in \mathcal{M}_{n n}(F), \forall \lambda \in F . \\
\|\lambda A\|=|\lambda|\|A\|, & \forall A, B \in \mathcal{M}_{n n}(F) \text { (triangle inequality). } \\
\|A+B\| \leq\|A\|+\|B\|, & \forall A, B \in \mathcal{M}_{n n}(F) \text { (specific for matrix norms). }
\end{array}
$$

Subordinate matrix norms

$$
\|A\|_{p}=\max _{\|x\|_{p} \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}, \forall x \in F^{n}, \text { where }\|\vec{x}\|_{p}=\sqrt[p]{\sum_{i=1}^{n} x_{i}^{p}}
$$

$$
\text { in particular: }\|A\|_{1}=\max _{j} \sum_{i}\left|A_{i j}\right| \text { and }\|A\|_{\infty}=\max _{i} \sum_{j}\left|A_{i j}\right|
$$

Matrix-vector product estimate

$\|A\|_{p} \geq \frac{\|A x\|_{p}}{\|x\|_{p}}$ and hence $\|A x\|_{p} \leq\|A\|_{p}\|x\|_{p}$ for all $x \in F^{n}$.

Université

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Definition

$\operatorname{Cond}(A)=\left\|A^{-1}\right\|\|A\|$.

Université

 Joseph Fourier 7UFRIMAG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations
Matrix conditioning

Definition

$$
\operatorname{Cond}(A)=\left\|A^{-1}\right\|\|A\| .
$$

Properties

$\operatorname{Cond}(A) \geq 1$,
$\operatorname{Cond}\left(A^{-1}\right)=\operatorname{Cond}(A)$,
$\operatorname{Cond}(\alpha A)=\operatorname{Cond}(A)$.

Université

 Joseph Fourier $\$$UFRIM²AG

Matrix conditioning

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Definition

$$
\operatorname{Cond}(A)=\left\|A^{-1}\right\|\|A\| .
$$

Properties

$\operatorname{Cond}(A) \geq 1$,
$\operatorname{Cond}\left(A^{-1}\right)=\operatorname{Cond}(A)$,
$\operatorname{Cond}(\alpha A)=\operatorname{Cond}(A)$.

For the Euclidian norm

$\operatorname{Cond}_{2}(A)=\frac{\left|\lambda_{\max }\right|}{\left|\lambda_{\text {min }}\right|}$.

Université

UFRIM²G

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization Matrix norm Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

Conditioning and linear systems

Problem

$$
\left(\mathrm{S}_{0}\right) A \vec{x}=\vec{b}, \quad\left(\mathrm{~S}_{\mathrm{per}}\right)(A+\delta A)(\vec{x}+\delta \vec{x})=(\vec{b}+\delta \vec{b})
$$

$$
\begin{aligned}
& \left(\mathrm{S}_{\mathrm{per}}\right)-\left(\mathrm{S}_{0}\right): A \delta \vec{x}+\delta A(\vec{x}+\delta \vec{x})=\delta \vec{b} \\
& \delta \vec{x}=A^{-1}(\delta \vec{b}-\delta A(\vec{x}+\delta \vec{x})) \\
& \|\delta \vec{x}\| \leq\left\|A^{-1}\right\|\|\delta \vec{b}-\delta A(\vec{x}+\delta \vec{x})\| \text { (for a subordinate matrix norm) } \\
& \|\delta \vec{x}\| \leq\left\|A^{-1}\right\|(\|\delta \vec{b}\|+\|\delta A\|\|\vec{x}+\delta \vec{x}\|) \\
& \frac{\|\delta \vec{x}\|}{\|\vec{x}+\delta \vec{x}\|} \leq\left\|A^{-1}\right\|\left(\frac{\|\delta \vec{b}\|}{\|\vec{x}+\delta \vec{x}\|}+\|\delta A\|\right)
\end{aligned}
$$

Université

UFRIM²AG

Conditioning and linear systems

Linear Algebra

Elementary operations Gram-Schmidt orthonormalization

Matrix norm

Conditioning

Specific matrices
Tridiagonalisation
LU and QR
factorizations

Problem

$$
\left(\mathrm{S}_{0}\right) A \vec{x}=\vec{b}, \quad\left(\mathrm{~S}_{\text {per }}\right)(A+\delta A)(\vec{x}+\delta \vec{x})=(\vec{b}+\delta \vec{b}) .
$$

$$
\left(\mathrm{S}_{\mathrm{per}}\right)-\left(\mathrm{S}_{0}\right): A \delta \vec{x}+\delta A(\vec{x}+\delta \vec{x})=\delta \vec{b},
$$

$$
\delta \vec{x}=A^{-1}(\delta \vec{b}-\delta A(\vec{x}+\delta \vec{x})),
$$

$$
\|\delta \vec{x}\| \leq\left\|A^{-1}\right\|\|\delta \vec{b}-\delta A(\vec{x}+\delta \vec{x})\| \text { (for a subordinate matrix norm) }
$$

$$
\|\delta \vec{x}\| \leq\left\|A^{-1}\right\|(\|\delta \vec{b}\|+\|\delta A\|\|\vec{x}+\delta \vec{x}\|)
$$

$$
\frac{\|\delta \vec{x}\|}{\|\vec{x}+\delta \vec{x}\|} \leq\left\|A^{-1}\right\|\left(\frac{\|\delta \vec{b}\|}{\|\vec{x}+\delta \vec{x}\|}+\|\delta A\|\right)
$$

Result

$$
\frac{\|\delta \vec{x}\|}{\|\vec{x}+\delta \vec{x}\|} \leq \operatorname{Cond}(A)\left(\frac{\|\delta \vec{b}\|}{\|A\|\|\vec{x}+\delta \vec{x}\|}+\frac{\|\delta A\|}{\|A\|}\right)
$$

relative error on $x=\operatorname{Cond}(A)$ (relative error on $\vec{b}+$ relative error on A).

Université

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Transposed matrix: $\left({ }^{t} A\right)_{i j}=A_{j i}$.
Adjoint matrix: $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.

Symmetric matrix

${ }^{t} A=A$.

Université

Transposed matrix: $\left({ }^{t} A\right)_{i j}=A_{j i}$.
Adjoint matrix: $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.

Symmetric matrix

$$
{ }^{t} A=A .
$$

Hermitian matrix

$A^{*}=A$ and hence ${ }^{t} A=\bar{A}$.

Université

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization Matrix norm Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Hermitian, orthogonal...

Transposed matrix: $\left({ }^{t} A\right)_{i j}=A_{j i}$.
Adjoint matrix: $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.

Symmetric matrix

${ }^{t} A=A$.
Hermitian matrix
$A^{*}=A$ and hence ${ }^{\mathrm{t}} A=\bar{A}$.
Orthogonal matrix (in $\mathcal{M}_{n n}(\mathbb{R})$)
${ }^{t} A A=1$.

Université

Hermitian, orthogonal...

Transposed matrix: $\left({ }^{t} A\right)_{i j}=A_{j i}$.
Adjoint matrix: $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.

Symmetric matrix

${ }^{t} A=A$.

Hermitian matrix

$$
A^{*}=A \text { and hence }{ }^{t} A=\bar{A} .
$$

Orthogonal matrix (in $\mathcal{M}_{n n}(\mathbb{R})$)

${ }^{t} A A=I$.

Unitary matrix (in $\mathcal{M}_{n n}(\mathbb{C})$)
$A^{*} A=l$.

Universite

Hermitian, orthogonal...

Transposed matrix: $\left({ }^{t} A\right)_{i j}=A_{j i}$.
Adjoint matrix: $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$.

Symmetric matrix

${ }^{t} A=A$.

Hermitian matrix

$A^{*}=A$ and hence ${ }^{t} A=\bar{A}$.

Orthogonal matrix (in $\mathcal{M}_{n n}(\mathbb{R})$)
${ }^{t} A A=1$.

Unitary matrix (in $\mathcal{M}_{n n}(\mathbb{C})$)
$A^{*} A=I$.

Similar matrices ("semblables" in French)

A and B are similar if $\exists P / B=P^{-1} A P$.

Upper triangular

Tridiagonal

Lower Hessenberg

Upper Hessenberg

Université

Householder matrices

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Definition

$$
H_{\vec{v}}=I-2 \frac{\vec{v}^{t} \vec{v}}{\|\vec{v}\|_{2}^{2}}
$$

Universite

 Joseph FourierUFRIMAG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Definition
 $$
H_{\vec{v}}=I-2 \frac{\vec{v}^{t} \vec{v}}{\|\vec{v}\|_{2}^{2}}
$$

Properties

Université

 Joseph Fourier 7UFRIM²AG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

$$
\begin{aligned}
& \text { Definition } \\
& H_{\vec{v}}=I-2 \frac{\vec{v}^{t} \vec{v}}{\|\vec{v}\|_{2}^{2}}
\end{aligned}
$$

Properties
(1) $H_{\vec{v}}$ is orthogonal.

Université

UFRIMAG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization Matrix norm Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

Householder matrices

Definition

$$
H_{\vec{v}}=I-2 \frac{\vec{v}^{t} \vec{v}}{\|\vec{v}\|_{2}^{2}}
$$

Properties

(1) $H_{\vec{v}}$ is orthogonal.
(2) If $\vec{v}=\vec{a}-\vec{b} \neq \overrightarrow{0}$ and $\|\vec{a}\|_{2}=\|\vec{b}\|_{2}$, then $H_{\vec{v}} \vec{a}=\vec{b}$.

Université

UFRIMAG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Householder matrices

Definition

$$
H_{\vec{v}}=I-2 \frac{\vec{v}^{t} \vec{v}}{\|\vec{v}\|_{2}^{2}}
$$

Properties

(1) $H_{\vec{v}}$ is orthogonal.
(2) If $\vec{v}=\vec{a}-\vec{b} \neq \overrightarrow{0}$ and $\|\vec{a}\|_{2}=\|\vec{b}\|_{2}$, then $H_{\vec{v}} \vec{a}=\vec{b}$.

$$
\begin{aligned}
& { }^{t} \vec{v} \vec{v}=\|\vec{a}\|_{2}-2^{t} \vec{a} \vec{b}+\|\vec{b}\|_{2}=2\|\vec{a}\|_{2}-2^{t} \vec{a} \vec{b}=2^{t} \vec{a} \vec{v}=2^{t} \vec{v} \vec{a} \\
& H_{\vec{v}} \vec{a}=\vec{a}-\frac{2 \vec{v}^{t} \vec{a} \vec{a}}{\|\vec{v}\|_{2}}=\vec{a}-\vec{v}=\vec{b} .
\end{aligned}
$$

Université

Definition

$$
H_{\vec{v}}=I-2 \frac{\vec{v}^{t} \vec{v}}{\|\vec{v}\|_{2}^{2}}
$$

Properties

(1) $H_{\vec{v}}$ is orthogonal.
(2) If $\vec{v}=\vec{a}-\vec{b} \neq \overrightarrow{0}$ and $\|\vec{a}\|_{2}=\|\vec{b}\|_{2}$, then $H_{\vec{v}} \vec{a}=\vec{b}$.

$$
\begin{aligned}
& { }^{t} \vec{v} \vec{v}=\|\vec{a}\|_{2}-2^{t} \vec{a} \vec{b}+\|\vec{b}\|_{2}=2\|\vec{a}\|_{2}-2^{t} \vec{a} \vec{b}=2^{t} \vec{a} \vec{v}=2^{t} \vec{v} \vec{a} \\
& H_{\vec{v}} \vec{a}=\vec{a}-\frac{2 \vec{v} \vec{v} \vec{a}}{\|\vec{v}\|_{2}}=\vec{a}-\vec{v}=\vec{b} .
\end{aligned}
$$

Application

Let $\vec{a} \in K^{n}$, we look for $H_{\vec{v}}$ such that $H_{\vec{v}} \vec{a}={ }^{t}(\alpha, 0, \ldots, 0)$.
Solution: take $\vec{b}={ }^{t}(\alpha, 0, \ldots, 0)$ with $\alpha=\|\vec{a}\|_{2}$, and $\vec{v}=\vec{a}-\vec{b}$. Then $H_{\vec{v}} \vec{a}=\vec{b}$.

Université

UFRIMAG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
$L U$ and $Q R$ factorizations

Householder tridiagonalisation

Aim

A: symmetric matrix.
Construct a sequence $A^{(1)}=A, \ldots, A^{(n)}$ tridiagonal and $A^{(n)} n=H A^{t} H$.

Université

Linear Algebra

Elementary operations Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation LU and QR factorizations

Householder tridiagonalisation

Aim

A: symmetric matrix.
Construct a sequence $A^{(1)}=A, \ldots, A^{(n)}$ tridiagonal and $A^{(n)} n=H A^{t} H$.

First step

$$
A^{(1)} \equiv\left(\begin{array}{cc}
A_{11}^{(1)} & { }^{t} \vec{a}_{12}^{(1)} \\
\vec{a}_{21}^{(1)} & \tilde{A}^{(1)}
\end{array}\right) H^{(1)} \equiv\left(\begin{array}{cc}
1 & { }^{t} \overrightarrow{0} \\
\overrightarrow{0} & \tilde{H}^{(1)}
\end{array}\right) A^{(2)} \equiv\left(\begin{array}{cc}
A_{11}^{(1)} & \left.{ }^{t}\left(\tilde{H}^{(1)}\right)_{21}^{(1)}\right) \\
\tilde{H}^{(1)} \vec{a}_{21}^{(1)} & \tilde{H}^{(1)} \tilde{A}^{(1) t} \tilde{H}^{(1)}
\end{array}\right) .
$$

Université

 Joseph Fourier UFR IM ${ }^{2}$ AGElementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

Householder tridiagonalisation

Aim

A: symmetric matrix.
Construct a sequence $A^{(1)}=A, \ldots, A^{(n)}$ tridiagonal and $A^{(n)} n=H A^{t} H$.

First step

$$
A^{(1)} \equiv\left(\begin{array}{cc}
A_{11}^{(1)} & { }^{t} \vec{a}_{12}^{(1)} \\
\vec{a}_{21}^{(1)} & \tilde{A}^{(1)}
\end{array}\right) H^{(1)} \equiv\left(\begin{array}{cc}
1 & { }^{t} \overrightarrow{0} \\
\overrightarrow{0} & \tilde{H}^{(1)}
\end{array}\right) A^{(2)} \equiv\left(\begin{array}{cc}
A_{11}^{(1)} & \left.{ }^{t}\left(\tilde{H}^{(1)}\right)_{21}^{(1)}\right) \\
\tilde{H}^{(1)} \vec{a}_{21}^{(1)} & \tilde{H}^{(1)} \tilde{A}^{(1) t} \tilde{H}^{(1)}
\end{array}\right) .
$$

Choose $\tilde{H}^{(1)}$ such that $\tilde{H}^{(1)} \vec{a}_{21}^{(1)}={ }^{t}(\alpha, 0, \ldots, 0)_{n-1}=\alpha\left(\vec{e}_{1}\right)_{n-1}$. $\alpha=\left\|\vec{a}_{21}^{(1)}\right\|_{2}, \vec{u}_{1}=\vec{a}_{21}^{(1)}-\alpha\left(\vec{e}_{1}\right)_{n-1}, \tilde{H}^{(1)}=H_{\vec{u}_{1}}$.

Université

 Joseph FourierUFRIMAG

Householder tridiagonalisation

Linear Algebra

Elementary operations Gram-Schmidt orthonormalization Matrix norm Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

Aim

A: symmetric matrix.
Construct a sequence $A^{(1)}=A, \ldots, A^{(n)}$ tridiagonal and $A^{(n)} n=H A^{t} H$.

First step

$A^{(1)} \equiv\left(\begin{array}{cc}A_{11}^{(1)} & { }^{t} \vec{a}_{12}^{(1)} \\ \vec{a}_{21}^{(1)} & \tilde{A}^{(1)}\end{array}\right) H^{(1)} \equiv\left(\begin{array}{cc}1 & { }^{t} \overrightarrow{0} \\ \overrightarrow{0} & \tilde{H}^{(1)}\end{array}\right) A^{(2)} \equiv\left(\begin{array}{cc}A_{11}^{(1)} & \left.{ }^{t}\left(\tilde{H}^{(1)}\right)_{21}^{(1)}\right) \\ \tilde{H}^{(1)} \vec{a}_{21}^{(1)} & \tilde{H}^{(1)} \tilde{A}^{(1) t} \tilde{H}^{(1)}\end{array}\right)$.

Choose $\tilde{H}^{(1)}$ such that $\tilde{H}^{(1)} \vec{a}_{21}^{(1)}={ }^{t}(\alpha, 0, \ldots, 0)_{n-1}=\alpha\left(\vec{e}_{1}\right)_{n-1}$. $\alpha=\left\|\vec{a}_{21}^{(1)}\right\|_{2}, \vec{u}_{1}=\vec{a}_{21}^{(1)}-\alpha\left(\vec{e}_{1}\right)_{n-1}, \tilde{H}^{(1)}=H_{\vec{u}_{1}}$.

Complexity

Order $\frac{2}{3} n^{3}$ products.

Givens tridiagonalization

If A is symmetric:

else: leads to Hessenberg matrix

Complexity

Order $\frac{4}{3} n^{3}$ products.

Principles of LU factorization

- Some regular matrix (with non-zero determinant) are not LU-transformable, e.g. ([0 1; 11]) is not.

Principles of LU factorization

- Some regular matrix (with non-zero determinant) are not LU-transformable, e.g. ([0 $1 ; 11]$) is not.
- If it exists, the LU decomposition of A is not unique. It is unique if A is non-singular.

Université

 Joseph Fourier $\$$ UFRIM²GLinear Algebra

Elementary operations

Principles of LU factorization

- Some regular matrix (with non-zero determinant) are not LU-transformable, e.g. ([0 $1 ; 11]$) is not.
- If it exists, the LU decomposition of A is not unique. It is unique if A is non-singular.
- A is non-singular and LU-transformable \Longleftrightarrow all the determinants of the fundamental principal minors are non zero (and in this case the decomposition is unique).

Université
UFR IM ${ }^{2}$ AG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
$L U$ and $Q R$ factorizations

It proceeds line by line.

$$
\begin{aligned}
& \left\{\begin{array}{llll}
A_{11}= & L_{11} U_{11} & L_{11}=1 \\
A_{12}= & L_{11} U_{12} & & \Rightarrow\left\{U_{1 j}\right\}_{j=1, \ldots, n} \\
& \cdots & &
\end{array}\right. \\
& \left\{\begin{array}{lll}
A_{21} & = & L_{21} U_{11} \\
A_{22} & = & L_{21} U_{12}+U_{22} \\
& \cdots & L_{21} U_{1 n}+U_{2 n} \\
A_{2 n} & = & L_{21} \\
\end{array} \Rightarrow\left\{U_{2 j}\right\}_{j=2, \ldots, n}\right. \\
& \left\{\begin{array}{l}
A_{31}=L_{31} U_{11} \Rightarrow L_{31} \\
A_{32}=L_{31} U_{12}+L_{32} U_{22} \quad \Rightarrow L_{32} \\
A_{33}=L_{31} U_{13}+L_{32} U_{23}+U_{33} \\
\\
A_{3 n}= \\
L_{31} U_{1 n}+L_{32} U_{2 n}+U_{3 n}
\end{array} \Rightarrow\left\{U_{3 j}\right\}_{j=3, \ldots, n}\right.
\end{aligned}
$$

Université

Doolittle LU factorization - algorithm

Doolittle algorithm

$$
\begin{aligned}
& L_{i j}=\frac{A_{i j}-\sum_{k=1}^{j-1} L_{i k} U_{k j}}{U_{j j}} \\
& U_{i j}=A_{i j}-\sum_{k=1}^{i-1} L_{i k} U_{k j} \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i}-1 \\
& \text { sum }=0 \\
& \text { for } k=1 \text { to } j-1 \\
& \text { sum }=\operatorname{sum}+\mathrm{L}(\mathrm{i}, \mathrm{k}) * \mathrm{U}(\mathrm{k}, \mathrm{j}) \\
& \text { end for } \\
& L(i, j)=(A(i, j)-s u m) / U(j, j) \\
& \text { end for } \\
& L(i, i)=1 \\
& \text { for } \mathrm{j}=\mathrm{i} \text { to } \mathrm{n} \\
& \text { sum }=0 \\
& \text { for } k=1 \text { to } i-1 \\
& \text { sum }=\operatorname{sum}+L(i, k) * U(k, j) \\
& \text { end for } \\
& U(\mathrm{i}, \mathrm{j})=\mathrm{A}(\mathrm{i}, \mathrm{j})-\text { sum } \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Complexity

Order n^{3} products

Université

Cholesky factorization for an Hermitian matrix

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR factorizations

Principle

$A=C{ }^{t} C$

Cholesky algorithm

end for

$$
C(i, i)=\operatorname{sqrt}(A(i, i)-\operatorname{sum})
$$

Complexity

Complexity

Order n^{3} products
end for

$$
\begin{aligned}
& C_{i i}=\sqrt{A_{i i}-\sum_{k=1}^{i-1} C_{i k} C_{i k}} \\
& \mathrm{C}(1,1)=\operatorname{sqrt}(\mathrm{A}(1,1)) \\
& \text { for } \mathrm{i}=2 \text { to } \mathrm{n} \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{i}-1 \\
& \text { sum }=0 \\
& \text { for } k=1 \text { to } j-1 \\
& \text { sum }=\text { sum }+C(i, k) * C(j, k) \\
& \text { end for } \\
& C(i, j)=(A(i, j)-\text { sum }) / C(j, j) \\
& \text { end for } \\
& \text { sum }=0 \\
& \text { for } k=1 \text { to } i-1 \\
& \text { sum }=\operatorname{sum}+C(i, k) * C(i, k)
\end{aligned}
$$

Université

UFRIM²AG

LU factorization - profiles

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR factorizations

The interior of the profile is filled!

Université

UFR IM ${ }^{2}$ AG

Linear Algebra

Elementary operations

Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR factorizations

QR factorization - principle

Principle

$A=Q R$, where Q orthogonal and R right (upper) triangular.

$$
G_{m} \ldots G_{2} G_{1} A=R
$$

$$
A=\underbrace{{ }^{t} G_{1}{ }^{t} G_{2} \ldots{ }^{t} G_{m}}_{Q} R
$$

Université

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization
Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR factorizations

QR factorization - algorithm

Algorithm

```
\(R=A\)
\(Q=I d \quad / /\) size of \(A\)
for \(i=2\) to \(n\)
    for \(\mathrm{j}=1\) to \(\mathrm{i}-1\)
        root \(=\operatorname{sqrt}(R(i, j) * R(i, j)+R(j, j) * R(j, j))\)
        if root \(!=0\)
            \(c=R(j, j) / r o o t\)
            \(s=R(i, j) / r o o t\)
        else
            \(c=1\)
            \(\mathrm{s}=0\)
        end if
        Construct Gji
        \(\mathrm{R}=\mathrm{Gji} * \mathrm{R} \quad / /\) matrix product
        \(Q=Q * t r a n s p o s e(G j i) \quad / /\) matrix product
    end for
end for
```


Complexity

Order n^{3} products

Université

Joseph Fourier 7
UFR M M^{2} AG

Linear Algebra

Elementary operations
Gram-Schmidt orthonormalization Matrix norm
Conditioning
Specific matrices Tridiagonalisation LU and QR factorizations

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
3 & 2 & 1 & 0 & 0 \\
4 & 3 & 2 & 1 & 0 \\
5 & 4 & 3 & 2 & 1 \\
6 & 5 & 4 & 3 & 2 \\
7 & 6 & 5 & 4 & 3
\end{array}\right) \\
R=\left(\begin{array}{ccccc}
11.619 & 9.467 & 7.316 & 5.164 & 3.271 \\
3.43710^{-16} & 6.08610^{-01} & 1.217 & 1.826 & 1.704 \\
4.47610^{-17} & 1.98910^{-18} & 2.32410^{-15} & 3.76810^{-15} & -3.77510^{-01} \\
-6.48810^{-16} & 1.08210^{-17} & 0.000 & 1.61810^{-16} & -6.76410^{-02} \\
-6.67110^{-16} & -2.54810^{-17} & 0.000 & -3.08210^{-33} & -5.02910^{-01}
\end{array}\right) \\
Q=\left(\begin{array}{lllll}
0.2582 & -0.7303 & -0.3775 & -0.0676 & -0.5029 \\
0.3443 & -0.4260 & -0.0062 & -0.1589 & 0.821 \\
0.4303 & -0.1217 & 0.5407 & 0.7050 & -0.1030 \\
0.5164 & 0.1826 & 0.4472 & -0.6627 & -0.2466 \\
0.6025 & 0.4869 & -0.6042 & 0.1842 & 0.0311
\end{array}\right) \\
Q
\end{gathered}
$$

\section*{Université}
 Joseph Fourier 2 Overview

UFRIM²AG

Linear Algebra
(1) Vectors and matrices

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR
(3) Numerical solution of linear systems
- Direct methods
- Iterative methods
- Preconditioning
(4) Storage
- Band storage
- Sparse storage
(5) Bandwidth reduction

$$
A=\left(\begin{array}{cc}
10 & 0 \\
-9 & 1
\end{array}\right)
$$

Eigenvalues and eigenvectors:

$$
\lambda_{1}=1, \lambda_{2}=10, \vec{v}_{1}=\binom{0}{1}, \vec{v}_{2}=\binom{1}{-1} .
$$

Construct the series

$$
\begin{gathered}
\vec{x}^{k}=A \vec{x}^{k-1} \\
\vec{x}^{0}=\binom{2}{1}, \vec{x}^{1}=\binom{20}{-17}, \vec{x}^{2}=\binom{200}{-197}, \vec{x}^{3}=\binom{2000}{-1997} \ldots
\end{gathered}
$$

\vec{x} tends to the direction of the eigenvector associated to the higher modulus eigenvalue.
" $\vec{x}^{k} / \vec{x}^{k-1 "}$ tends to the higher modulus eigenvalue.

Computation of the eigenvalue with higher modulus.
A may be diagonalizable or not, the dominant eigenvalue can be unique or not.

Algorithm

```
choose q(0)
for k = 1 to convergence
    x(k) = A * q(k-1)
    q(k) = x(k) / norm(x(k))
end for
lambdamax = x(k)(j)/q(k-1)(j)
```

Attention: good choice of component j.

Power iteration algorithm - Python example

Linear Algebra

Power iteration algorithm Deflation Galerkin Jacobi QR

$$
A=\left(\begin{array}{ccc}
10 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Rotations:

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
\cos (1) & 0 & \sin (1) \\
0 & 1 & 0 \\
-\sin (1) & 0 & \cos (1)
\end{array}\right), R_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (2) & \sin (2) \\
0 & -\sin (2) & \cos (2)
\end{array}\right) \\
B=R_{2} R_{1} A^{t} R_{1}^{t} R_{2}=\left(\begin{array}{ccc}
4.33541265 & -3.30728724 & 1.51360499 \\
-3.30728724 & 7.20313893 & -1.00828318 \\
1.51360499 & -1.00828318 & 5.46144841
\end{array}\right)
\end{gathered}
$$

Eigenvalues and eigenvectors:

$$
\begin{gathered}
\lambda_{1}=2, \lambda_{2}=5, \lambda_{3}=10 \\
\vec{v}_{1}=\left(\begin{array}{c}
-0.8415 \\
-0.4913 \\
0.2248
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
1.36510^{-16} \\
0.4161 \\
0.9093
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
-0.5403 \\
0.7651 \\
-0.3502
\end{array}\right)
\end{gathered}
$$ Université

Joseph Fourier Power iteration algorithm - Remarks

UFR M M ${ }^{2}$ AG

Linear Algebra

Deflation
Galerkin
Jacobi
QR
(1) Convergence results depend on the fact that

Power iteration algorithm - Remarks

Linear Algebra
(1) Convergence results depend on the fact that

- the matrix is diagonalizable or not

Université

Linear Algebra

Deflation
Galerkin
Jacobi
QR
(1) Convergence results depend on the fact that

- the matrix is diagonalizable or not
- the dominant eigenvalue is multiple or not
(1) Convergence results depend on the fact that
- the matrix is diagonalizable or not
- the dominant eigenvalue is multiple or not
(2) The choice of the norm is not explicit: usually max norm or euclidian norm
(1) Convergence results depend on the fact that
- the matrix is diagonalizable or not
- the dominant eigenvalue is multiple or not
(2) The choice of the norm is not explicit: usually max norm or euclidian norm
(3) \vec{q}_{0} should not be orthogonal to the eigen-subspace associated to the dominant eigenvalue.

Computation of the eigenvalue with smallest modulus.
A may be diagonalizable or not, the dominant eigenvalue can be unique or not.
Based on the fact that

$$
\lambda_{\min }(A)=\left(\lambda_{\max }\left(A^{-1}\right)\right)^{-1}
$$

Algorithm

```
choose q(0)
for k = 1 to convergence
        solve A * x(k) = q(k-1)
        q(k) = x(k) / norm(x(k))
end for
lambdamin = q(k-1)(j) / x(k)(j)
```

$$
A=\left(\begin{array}{ccc}
10 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Rotations:

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
\cos (1) & 0 & \sin (1) \\
0 & 1 & 0 \\
-\sin (1) & 0 & \cos (1)
\end{array}\right), R_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (2) & \sin (2) \\
0 & -\sin (2) & \cos (2)
\end{array}\right) \\
B=R_{2} R_{1} A^{t} R_{1}^{t} R_{2}=\left(\begin{array}{ccc}
4.33541265 & -3.30728724 & 1.51360499 \\
-3.30728724 & 7.20313893 & -1.00828318 \\
1.51360499 & -1.00828318 & 5.46144841
\end{array}\right)
\end{gathered}
$$

Eigenvalues and eigenvectors:

$$
\begin{gathered}
\lambda_{1}=2, \lambda_{2}=5, \lambda_{3}=10 \\
\vec{v}_{1}=\left(\begin{array}{c}
-0.8415 \\
-0.4913 \\
0.2248
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
1.36510^{-16} \\
0.4161 \\
0.9093
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
-0.5403 \\
0.7651 \\
-0.3502
\end{array}\right)
\end{gathered}
$$

Université

UFR M^{2} AG
Generalized inverse iteration algorithm - Algorithm

Computation of the closest eigenvalue to a given μ. The eigenvalues of $A-\mu I$ are the $\lambda_{i}-\mu$, where λ_{i} are the eigenvalues of A.
\Rightarrow apply the inverse iteration algorithm to $A-\mu I$.

```
Algorithm
choose q(0)
for \(k=1\) to convergence
    solve (A-mu*I) \(* x(k)=q(k-1)\)
    \(q(k)=x(k) / \operatorname{norm}(x(k))\)
end for
lambda \(=q(k-1)(j) / x(k)(j)+m u\)
```

$$
A=\left(\begin{array}{ccc}
10 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \mu=4
$$

Rotations:

$$
\begin{gathered}
R_{1}=\left(\begin{array}{ccc}
\cos (1) & 0 & \sin (1) \\
0 & 1 & 0 \\
-\sin (1) & 0 & \cos (1)
\end{array}\right), R_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (2) & \sin (2) \\
0 & -\sin (2) & \cos (2)
\end{array}\right) \\
B=R_{2} R_{1} A^{t} R_{1}^{t} R_{2}=\left(\begin{array}{ccc}
4.33541265 & -3.30728724 & 1.51360499 \\
-3.30728724 & 7.20313893 & -1.00828318 \\
1.51360499 & -1.00828318 & 5.46144841
\end{array}\right)
\end{gathered}
$$

Eigenvalues and eigenvectors:

$$
\begin{gathered}
\lambda_{1}=2, \lambda_{2}=5, \lambda_{3}=10 \\
\vec{v}_{1}=\left(\begin{array}{c}
-0.8415 \\
-0.4913 \\
0.2248
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
1.36510^{-16} \\
0.4161 \\
0.9093
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
-0.5403 \\
0.7651 \\
-0.3502
\end{array}\right)
\end{gathered}
$$

Université

UFRIMAG

Computation of all the eigenvalues in modulus decreasing order.
When an eigenelement (λ, q) is found, it is removed from further computation by replacing $A \leftarrow A-\lambda \vec{q}^{t} \vec{q}$.

Algorithm

```
    for \(i=1\) to \(n\)
        choose \(q(0)\)
        for \(k=1\) to convergence
            \(x(k)=A * q(k-1)\)
            \(\mathrm{q}(\mathrm{k})=x(\mathrm{k}) / \operatorname{norm}(x(k))\)
        end for
        lambda \(=\times(k)(j) / q(k-1)(j)\)
        \(\mathrm{A}=\mathrm{A}-\operatorname{lambda} * \mathrm{q} *\) transpose (q)
// eliminates direction \(q\)
end for
```

Let H be a subspace of dimension m, generated by the orthonormal basis $\left(\vec{q}_{1}, \ldots, \vec{q}_{m}\right)$.
Construct the rectangular matrix $Q=\left(\vec{q}_{1}, \ldots, \vec{q}_{m}\right)$.
Remark: $Q^{*} Q=I d_{m}$

Goal

Look for eigenvectors in H.

$$
\begin{aligned}
& \text { If } \vec{u} \in H, \vec{u}=\sum_{i=1}^{m} \alpha_{i} \vec{q}_{i} \text { (unique). } \\
& \vec{u}=Q \vec{U} \text {, where } \vec{U}={ }^{t}\left(\alpha_{1}, \ldots, \alpha_{m}\right) .
\end{aligned}
$$

$$
A \vec{u}=\lambda \vec{u} \Leftrightarrow A Q \vec{U}=\lambda Q \vec{U}
$$

$$
\text { Project on } H: Q^{*} A Q \vec{U}=\lambda Q^{*} Q \vec{U}=\lambda \vec{U}
$$

\Rightarrow We look for eigenelements of $B=Q^{*} A Q$.
Vocabulary:

- $\left\{\lambda_{i}, \vec{u}_{i}\right\}$ are the Ritz elements,
- B is the Rayleigh matrix.

Goal

Diagonalize the (real symmetric) matrix.
Until a "reasonably diagonal" matrix is obtained:

Goal

Diagonalize the (real symmetric) matrix.
Until a "reasonably diagonal" matrix is obtained:

- Choose the largest off-diagonal element (largest modulus)

Goal

Diagonalize the (real symmetric) matrix.
Until a "reasonably diagonal" matrix is obtained:

- Choose the largest off-diagonal element (largest modulus)
- Construct a rotation matrix that annihilates this term

Goal

Diagonalize the (real symmetric) matrix.
Until a "reasonably diagonal" matrix is obtained:

- Choose the largest off-diagonal element (largest modulus)
- Construct a rotation matrix that annihilates this term

In the end, the eigenvalues are the diagonal elements.

Université

UFR M M ${ }^{2}$ AG

Power iteration algorithm

QR method - Algorithm

Algorithm

```
\(\mathrm{A}(1)=\mathrm{A}\)
for \(k=1\) to convergence
        \([Q(k), R(k)]=Q R_{\text {_factor }}(A(k))\)
        \(A(k+1)=R(k) * Q(k)\)
end for
```

The eigenvalues are the diagonal elements of the last matrix A_{k+1}.

Properties

- $A_{k+1}=R_{k} Q_{k}=Q_{k}^{*} Q_{k} R_{k} Q_{k}=Q_{k}^{*} A_{k} Q_{k}$ $\Rightarrow A_{k+1}$ and A_{k} are similar.
- If A_{k} is tridiagonal or Hessenberg, A_{k+1} also is \Rightarrow First restrict to this case keeping similar matrices.

Université

UFR M M ${ }^{2}$ AG

Linear Algebra
QR method - Convergence and Python example

Theorem

Let V^{*} be the matrix of left eigenvectors of $A\left(A^{*} \vec{u}^{*}=\lambda \vec{u}^{*}\right)$. If

- the principal minors of V are non-zero.
- the eigen-values of A are such that $\left|\lambda_{1}\right|>\cdots>\left|\lambda_{n}\right|$.

Then the QR method converges A_{k+1} tends to an upper triangular form and $\left(A_{k}\right)_{i i}$ tends to λ_{i}.

Université

Linear Algebra
We want to know all the eigenvalues

Eigenvalues - Summary

Université

UFR IM ${ }^{2}$ AG

Linear Algebra

We want to know all the eigenvalues

- QR method - better than Jacobi

Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

Université

We want to know all the eigenvalues

- QR method - better than Jacobi

Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an approximation)

Université

We want to know all the eigenvalues

- QR method - better than Jacobi

Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an approximation)

- Power iteration algorithm and variants...

Université

Eigenvalues - Summary

We want to know all the eigenvalues

- QR method - better than Jacobi

Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an approximation)

- Power iteration algorithm and variants...

We only want a sub-set of eigenelements

Université

We want to know all the eigenvalues

- QR method - better than Jacobi

Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an approximation)

- Power iteration algorithm and variants...

We only want a sub-set of eigenelements

- We know the eigenvalues and look for eigenvectors: deflation and variants

Université

We want to know all the eigenvalues

- QR method - better than Jacobi

Preprocessing: find a similar tridiagonal or Heisenberg matrix (Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an approximation)

- Power iteration algorithm and variants...

We only want a sub-set of eigenelements

- We know the eigenvalues and look for eigenvectors: deflation and variants
- We know the subspace for eigenvectors: Galerkin and variants

\section*{Université}
 Joseph Fourier 2 Overview

(1) Vectors and matrices

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR

3 Numerical solution of linear systems

- Direct methods
- Iterative methods
- Preconditioning

4 Storage

- Band storage
- Sparse storage
(5) Bandwidth reduction

Université

Principles

Linear Algebra

$$
A \vec{x}=\vec{b}
$$

Elimination methods

The solution to the system remains unchanged if

Université

Principles

Linear Algebra

Direct methods Iterative methods Preconditioning

$$
A \vec{x}=\vec{b}
$$

Elimination methods

The solution to the system remains unchanged if

- lines are permuted,

Université

Principles

$$
A \vec{x}=\vec{b}
$$

Elimination methods

The solution to the system remains unchanged if

- lines are permuted,
- line i is replaced by a linear combination
$\ell_{i} \leftarrow \sum_{k=1}^{n} \mu_{k} \ell_{k}$, with $\mu_{i} \neq 0$

Université

$$
A \vec{x}=\vec{b}
$$

Elimination methods

The solution to the system remains unchanged if

- lines are permuted,
- line i is replaced by a linear combination

$$
\ell_{i} \leftarrow \sum_{k=1}^{n} \mu_{k} \ell_{k}, \text { with } \mu_{i} \neq 0
$$

Factorisation methods

$$
A=L U
$$

$$
L U \vec{x}=\vec{b}
$$

We solve two triangular systems

$$
\begin{aligned}
& L \vec{y}=\vec{b} \\
& U \vec{x}=\vec{y} .
\end{aligned}
$$

Université

Linear Algebra

$$
x_{i}=\frac{b_{i}-\sum_{k=1}^{i-1} A_{i k} x_{k}}{A_{i i}}
$$

Algorithm

$$
\begin{aligned}
& \text { if } A(1,1)==0 \text { then stop } \\
& \times(1)=b(1) / A(1,1) \\
& \text { for } i=2 \text { to } n \\
& \text { if } A(i, i)==0 \text { then stop } \\
& a x=0 \\
& \text { for } k=1 \text { to } i-1 \\
& a x=a x+A(i, k) * x(k) \\
& \text { end for } \\
& \times(i)=(b(i)-a x) / A(i, i) \\
& \text { end for }
\end{aligned}
$$

Complexity

Order $n^{2} / 2$ products.

Université

 Joseph Fourier 7 UFR M M ${ }^{2}$ AGUpper triangular matrix

$$
x_{i}=\frac{b_{i}-\sum_{k=i+1}^{n} A_{i k} x_{k}}{A_{i i}}
$$

Algorithm

```
if \(\mathrm{A}(\mathrm{n}, \mathrm{n})==0\) then stop
\(x(n)=b(n) / A(n, n)\)
for \(\mathrm{i}=\mathrm{n}-1\) to 1
        if \(A(i, i)==0\) then stop
        \(a x=0\)
        for \(k=i+1\) to \(n\)
            \(a x=a x+A(i, k) * x(k)\)
        end for
        \(x(i)=(b(i)-a x) / A(i, i)\)
end for
```


Complexity

Order $n^{2} / 2$ products.

Université

$$
A_{i j}=0 \quad \text { if } i>j, j<p
$$

for $p=1$ to n
pivot $=A(p, p)$
if pivot $=0$ stop
line $(p)=$ line $(p) /$ pivot
for $\mathrm{i}=\mathrm{p}+1$ to n
Aip $=A(i, p)$
line (i) $=$ line (i) - Aip * line (p)
end for
end for
$\ell_{i} \leftarrow \ell_{i}-A_{i p} \frac{\ell_{p}}{A_{p p}}$
$x=$ solve($\mathrm{A}, \mathrm{b}) / /$ upper triangular

Complexity

Still order n^{3} products.

Université

$$
\begin{array}{ll}
A_{i i}=1 & \text { if } i<p \\
A_{i j}=0 & \text { if } i \neq j, j<p
\end{array}
$$

for $p=1$ to n
pivot $=A(p, p)$
if pivot $=0$ stop
line $(p)=\operatorname{line}(p) /$ pivot
for $i=1$ to $n, \quad i!=p$ Aip $=A(i, p)$ line (i) $=\operatorname{line}(i)-\operatorname{Aip} * \operatorname{line}(p)$ end for
end for
$x=b$

Attention

- take into account le right-hand side in the "line".
- what if $A_{p p}=0$?

Université

Gauss-Jordan elimination - Algorithm

```
    pivot \(=A(p, p)\)
    if pivot \(=0\) stop, \(\operatorname{rank}(A)=p-1\)
    for \(\mathrm{j}=\mathrm{p}\) to n
    \(A(p, j)=A(p, j) /\) pivot
    end for
    \(\mathrm{b}(\mathrm{p})=\mathrm{b}(\mathrm{p}) /\) pivot
    for \(i=1\) to \(n, i!=p\)
        Aip \(=A(i, p)\)
        for \(\mathrm{j}=\mathrm{p}\) to n
            \(A(i, j)=A(i, j)-A i p * A(p, j)\)
        end for
        \(b(i)=b(i)-A i p * b(p)\)
    end for
end for // loop on \(p\)
for \(\mathrm{i}=1\) to n
    \(x(\) num \((i))=b(i)\)
end for
```


Complexity

Order n^{3} products.

Remark

Also computes the rank of the matrix.

Factorization methods - Thomas algorithm — principle

LU decomposition for tridiagonal matrices.

We suppose that $L_{i j}$ and $U_{i j}$ are known for $i<p$. Then

$$
\begin{aligned}
& A_{p, p-1}= L_{p, p-1} U_{p-1, p-1}, \\
& A_{p, p}= L_{p, p-1} U_{p-1, p}+U_{p, p}, \\
& A_{p, p+1}= U_{p, p+1} . \\
& \Rightarrow \\
& L_{p, p-1}= A_{p, p-1} / U_{p-1, p-1}, \\
& U_{p, p}= A_{p, p}-L_{p, p-1} U_{p-1, p}=A_{p, p}-A_{p, p-1} U_{p-1, p} / U_{p-1, p-1}, \\
& U_{p, p+1}= A_{p, p+1} .
\end{aligned}
$$

Université

UFRIM²G

Algorithmm

$$
\begin{aligned}
& \text { // factorization } \\
& U(1,1)=A(1,1) \\
& U(1,2)=A(1,2) \\
& \text { for } i=2 \text { to } \\
& \quad \text { if } U(i-1, i-1)=0 \text { then stop } \\
& L(i, i-1)=A(i, i-1) / U(i-1, i-1) \\
& U(i, i)=A(i, i)-L(i, i-1) * U(i-1, i) \\
& U(i, i+1)=A(i, i+1) \\
& \text { end for } \\
& / / \text { construction of the solution } \\
& y=\text { solve }(L, b) / / \text { lower triangular } \\
& x=\text { solve }(U, y) / / \text { upper triangular }
\end{aligned}
$$

Complexity

Order $5 n$ products.

Factorization methods - general matrices

Linear Algebra

For general matrices:

- Factorize the matrix

Factorization methods - general matrices

Linear Algebra

Direct methods

 Iterative methods PreconditioningFor general matrices:

- Factorize the matrix
- LU algorithm

Factorization methods - general matrices

Linear Algebra

For general matrices:

- Factorize the matrix
- LU algorithm
- Choleski algorithm

Factorization methods - general matrices

Linear Algebra

For general matrices:

- Factorize the matrix
- LU algorithm
- Choleski algorithm
- Solve upper triangular system

Factorization methods - general matrices

For general matrices:

- Factorize the matrix
- LU algorithm
- Choleski algorithm
- Solve upper triangular system
- Solve lower triangular system.

Iterative methods - Principle

Linear Algebra

$\mathrm{A}=$

D
$+$

F

To solve $A \vec{x}=\vec{b}$, write $A=M-N$ and iterate $M \vec{x}^{k+1}-N \vec{x}^{k}=\vec{b}$, i.e. $\vec{x}^{k+1}=M^{-1} N \vec{x}^{k}+M^{-1} \vec{b}$.

Attention

$\mathrm{A}=$

D
$+$

F

To solve $A \vec{x}=\vec{b}$, write $A=M-N$ and iterate $M \vec{x}^{k+1}-N \vec{x}^{k}=\vec{b}$, i.e. $\vec{x}^{k+1}=M^{-1} N \vec{x}^{k}+M^{-1} \vec{b}$.

Attention

- M should be easy to invert.

To solve $A \vec{x}=\vec{b}$, write $A=M-N$
and iterate $M \vec{x}^{k+1}-N \vec{x}^{k}=\vec{b}$, i.e. $\vec{x}^{k+1}=M^{-1} N \vec{x}^{k}+M^{-1} \vec{b}$.

Attention

- M should be easy to invert.
- $M^{-1} N$ should lead to a stable algorithm.

To solve $A \vec{x}=\vec{b}$, write $A=M-N$
and iterate $M \vec{x}^{k+1}-N \vec{x}^{k}=\vec{b}$, i.e. $\vec{x}^{k+1}=M^{-1} N \vec{x}^{k}+M^{-1} \vec{b}$.

Attention

- M should be easy to invert.
- $M^{-1} N$ should lead to a stable algorithm.

$$
\text { Jacobi } M=D, N=-(E+F)
$$

To solve $A \vec{x}=\vec{b}$, write $A=M-N$
and iterate $M \vec{x}^{k+1}-N \vec{x}^{k}=\vec{b}$, i.e. $\vec{x}^{k+1}=M^{-1} N \vec{x}^{k}+M^{-1} \vec{b}$.

Attention

- M should be easy to invert.
- $M^{-1} N$ should lead to a stable algorithm.

Jacobi $M=D, N=-(E+F)$,
Gauss-Seidel $M=D+E, N=-F$,

To solve $A \vec{x}=\vec{b}$, write $A=M-N$
and iterate $M \vec{x}^{k+1}-N \vec{x}^{k}=\vec{b}$, i.e. $\vec{x}^{k+1}=M^{-1} N \vec{x}^{k}+M^{-1} \vec{b}$.

Attention

- M should be easy to invert.
- $M^{-1} N$ should lead to a stable algorithm.

Jacobi $M=D, N=-(E+F)$,
Gauss-Seidel $M=D+E, N=-F$,
Successive Over Relaxation $M=\frac{D}{\omega}+E, N=\left(\frac{1}{\omega}-1\right) D-F$.

Université

Algorithm

```
choose x(k=0)
for k = 0 to convergence
    for i = 1 to n
    rhs = b(i)
        for j = 1 to n, j!=i
            rhs = rhs - A(i,j)*x(j,k)
        end for
        x(i,k+1) = rhs / A(i,i)
    end for
    test = norm(x(k+1)-x(k))<epsilon
end for (while not test)
```

$$
\begin{array}{ll}
x_{i}^{k+1}=\frac{1}{A_{i i}}\left(b_{i}-\sum_{j=1, j \neq i}^{n} A_{i j} x_{j}^{k}\right) \begin{array}{l}
\text { Remarks } \\
\text { o simple, } \\
\text { o two copies of the variable } \vec{x}^{k+1} \\
\text { and } \vec{x}^{k},
\end{array}
\end{array}
$$

- insensible to permutations,
- converges if the diagonal is strictly dominant.

Université

Algorithm

$$
x_{i}^{k+1}=\frac{1}{A_{i j}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)
$$

$$
\text { choose } \times(k=0)
$$

$$
\text { for } k=0 \text { to convergence }
$$

$$
\text { for } i=1 \text { to } n
$$

$$
r h s=b(i)
$$

$$
\text { for } j=1 \text { to } i-1
$$

$$
\text { rhs }=\text { rhs }-A(i, j) * x(j, k+1)
$$

end for

$$
\text { for } j=i+1 \text { to } n
$$

$$
\text { rhs }=r h s-A(i, j) * x(j, k)
$$

end for

$$
x(i, k+1)=r h s / A(i, i)
$$

end for

$$
\text { test }=\text { norm }(x(k+1)-x(k))<\text { epsilon }
$$

end for (while not test)

Remarks

- still simple,
- one copy of the variable \vec{x},
- sensible to permutations,
- often converges better than Jacobi.

Université Joseph Fourier $\% \mathrm{SOR}$ method

UFRIM2AG

Linear Algebra

Direct methods

$$
x_{i}^{k+1}=\frac{\omega}{A_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)+(1-\omega) x_{i}^{k}
$$

Université Joseph Fourier

UFRIM ${ }^{2}$ AG

Linear Algebra

Direct methods Iterative methods Preconditioning

$$
x_{i}^{k+1}=\frac{\omega}{A_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)+(1-\omega) x_{i}^{k}
$$

$$
\vec{x}^{k+1}=\left(\frac{D}{\omega}+E\right)^{-1} \vec{b}+\left(\frac{D}{\omega}+E\right)^{-1}\left[\left(\frac{1}{\omega}-1\right) D-F\right] \vec{x}^{k}
$$

\section*{Université}
 Universite SOR method

UFRIMAG

Linear Algebra

Direct methods Iterative methods Preconditioning

$$
x_{i}^{k+1}=\frac{\omega}{A_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)+(1-\omega) x_{i}^{k}
$$

$$
\vec{x}^{k+1}=\left(\frac{D}{\omega}+E\right)^{-1} \vec{b}+\left(\frac{D}{\omega}+E\right)^{-1}\left[\left(\frac{1}{\omega}-1\right) D-F\right] \vec{x}^{k}
$$

Remarks

Université

Joseph Fourier SOR method

UFRIMAG

Linear Algebra

Direct methods Iterative methods Preconditioning

$$
x_{i}^{k+1}=\frac{\omega}{A_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)+(1-\omega) x_{i}^{k}
$$

$$
\vec{x}^{k+1}=\left(\frac{D}{\omega}+E\right)^{-1} \vec{b}+\left(\frac{D}{\omega}+E\right)^{-1}\left[\left(\frac{1}{\omega}-1\right) D-F\right] \vec{x}^{k}
$$

Remarks

- still simple,

\section*{Université}
 Joseph Fourier ${ }^{\text {If }} \mathrm{SOR}$ method

UFRIM²AG

$$
x_{i}^{k+1}=\frac{\omega}{A_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)+(1-\omega) x_{i}^{k}
$$

$$
\vec{x}^{k+1}=\left(\frac{D}{\omega}+E\right)^{-1} \vec{b}+\left(\frac{D}{\omega}+E\right)^{-1}\left[\left(\frac{1}{\omega}-1\right) D-F\right] \vec{x}^{k}
$$

Remarks

- still simple,
- one copy of the variable \vec{x},

$$
x_{i}^{k+1}=\frac{\omega}{A_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} A_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} A_{i j} x_{j}^{k}\right)+(1-\omega) x_{i}^{k}
$$

$$
\vec{x}^{k+1}=\left(\frac{D}{\omega}+E\right)^{-1} \vec{b}+\left(\frac{D}{\omega}+E\right)^{-1}\left[\left(\frac{1}{\omega}-1\right) D-F\right] \vec{x}^{k}
$$

Remarks

- still simple,
- one copy of the variable \vec{x},
- Necessary condition for convergence: $0<\omega<2$.

Descent method - general principle

For A symmetric definite positive!!

Principle

Construct a series of approximations of the solution to the system

$$
\vec{x}^{k+1}=\vec{x}^{k}+\alpha^{k} \vec{p}^{k}
$$

where \vec{p}^{k} descent direction and α^{k} to be determined.
The solution $\underline{\vec{x}}$ minimizes the functional $J(\vec{x})={ }^{t} \vec{x} A \vec{x}-2^{t} \vec{b} \vec{x}$.

$$
\begin{aligned}
\frac{\partial J}{\partial x_{i}}(\vec{x}) & =\frac{\partial}{\partial x_{i}}\left(\sum_{j, k} x_{j} A_{j k} x_{k}-2 \sum_{j} b_{j} x_{j}\right) \\
& =\sum_{k} A_{i k} x_{k}+\sum_{j} x_{j} A_{j i}-2 b_{i} \\
& =2(A \vec{x}-\vec{b})_{i} \\
\frac{\partial J}{\partial x_{i}}(\underline{\vec{x}}) & =0
\end{aligned}
$$

$\underline{\vec{x}}$ also minimizes the functional $E(\vec{x})={ }^{t}(\vec{x}-\underline{\vec{x}}) A(\vec{x}-\underline{\vec{x}})$, and $E(\underline{\vec{x}})=0$. For a given \vec{p}^{k}, which α minimizes $E\left(\vec{x}^{k+1}\right)$?

$$
\begin{aligned}
E\left(\vec{x}^{k}+\alpha \vec{p}^{k}\right) & ={ }^{t}\left(\vec{x}^{k}+\alpha \vec{p}^{k}-\underline{\vec{x}}\right) A\left(\vec{x}^{k}+\alpha \vec{p}^{k}-\underline{\vec{x}}\right), \\
\frac{\partial}{\partial \alpha} E\left(\vec{x}^{k}+\alpha \vec{p}^{k}\right) & ={ }^{t} \vec{p}^{k} A\left(\vec{x}^{k}+\alpha \vec{p}^{k}-\underline{\vec{x}}\right)+{ }^{t}\left(\vec{x}^{k}+\alpha \vec{p}^{k}-\overrightarrow{\vec{x}}\right) A \vec{p}^{k} \\
& =2^{t}\left(\vec{x}^{k}+\alpha \vec{p}^{k}-\overrightarrow{\vec{x}}\right) A \vec{p}^{k} . \\
& { }^{t}\left(\vec{x}^{k}+\alpha^{k} \vec{p}^{k}-\overrightarrow{\vec{x}}\right) A \vec{p}^{k}=0 \\
& { }^{t} \vec{x}_{k} A \vec{p}_{k}+\alpha_{k}{ }^{t} \vec{p}_{k} A \vec{p}^{k}-{ }^{t} \overrightarrow{\underline{x}} A \vec{p}^{k}=0 \\
& { }^{t} \vec{p}^{k} A \vec{x}^{k}+\alpha^{k t} \vec{p}_{k} A \vec{p}^{k}-{ }^{t} \vec{p}^{k} A \underline{\vec{x}}=0 .
\end{aligned}
$$

$$
\alpha^{k}=\frac{{ }^{t} \vec{p}^{k} A \vec{x}^{k}-{ }^{t} \vec{p}^{k} A \underline{\vec{x}}}{{ }^{t} \vec{p}^{k} A \vec{p}^{k}}
$$

Université

UFRIM ${ }^{2}$ AG

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \vec{b}=A\binom{2}{1}
$$

$$
\operatorname{Cond}(A)=1
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
2 & 1.5 \\
1.5 & 2
\end{array}\right), \vec{b}=A\binom{2}{1} \\
& \operatorname{Cond}(A)=7
\end{aligned}
$$

Université

UFRIM ${ }^{2}$ AG

Nonsymmetric case

$$
A=\left(\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right), \vec{b}=A\binom{2}{1}
$$

Nonpositive case

$$
A=\left(\begin{array}{ll}
2 & 8 \\
8 & 2
\end{array}\right), \vec{b}=A\binom{2}{1}
$$

Université

Descent method — optimal parameter (principle)

Université

Descent method — optimal parameter (principle)

Principle

- Choose $\vec{p}^{k}=\vec{r}^{k} \equiv \vec{b}-A \vec{x}^{k}$.

Université

UFRIM²G

Linear Algebra
Descent method - optimal parameter (principle)

Principle

- Choose $\vec{p}^{k}=\vec{r}^{k} \equiv \vec{b}-A \vec{x}^{k}$.
- Choose α^{k} is such that \vec{r}^{k+1} is orthogonal to \vec{p}^{k}.

Principle

- Choose $\vec{p}^{k}=\vec{r}^{k} \equiv \vec{b}-A \vec{x}^{k}$.
- Choose α^{k} is such that \vec{r}^{k+1} is orthogonal to \vec{p}^{k}.

$$
\begin{aligned}
\vec{r}^{k+1} & =\vec{b}-A \vec{x}^{k+1}=\vec{b}-A\left(\vec{x}^{k}+\alpha \vec{p}^{k}\right)=\vec{r}^{k}-\alpha^{k} A \vec{p}^{k} \\
0 & ={ }^{t} \vec{p}^{k} \vec{r}^{k+1}={ }^{t} \vec{p}^{k} \vec{r}^{k}-\alpha^{k t} \vec{p}^{k} A \vec{p}^{k} .
\end{aligned}
$$

Principle

- Choose $\vec{p}^{k}=\vec{r}^{k} \equiv \vec{b}-A \vec{x}^{k}$.
- Choose α^{k} is such that \vec{r}^{k+1} is orthogonal to \vec{p}^{k}.

$$
\begin{aligned}
\vec{r}^{k+1} & =\vec{b}-A \vec{x}^{k+1}=\vec{b}-A\left(\vec{x}^{k}+\alpha \vec{p}^{k}\right)=\vec{r}^{k}-\alpha^{k} A \vec{p}^{k} \\
0 & ={ }^{t} \vec{p}^{k} \vec{r}^{k+1}={ }^{t} \vec{p}^{k} \vec{r}^{k}-\alpha^{k t} \vec{p}^{k} A \vec{p}^{k} .
\end{aligned}
$$

$$
\alpha^{k}=\frac{{ }^{t} \vec{p}^{k} \vec{r}^{k}}{{ }^{t} \vec{p}^{k} A \vec{p}^{k}}
$$

Université

Descent method — optimal parameter (principle)

Principle

- Choose $\vec{p}^{k}=\vec{r}^{k} \equiv \vec{b}-A \vec{x}^{k}$.
- Choose α^{k} is such that \vec{r}^{k+1} is orthogonal to \vec{p}^{k}.

$$
\begin{aligned}
\vec{r}^{k+1} & =\vec{b}-A \vec{x}^{k+1}=\vec{b}-A\left(\vec{x}^{k}+\alpha \vec{p}^{k}\right)=\vec{r}^{k}-\alpha^{k} A \vec{p}^{k} \\
0 & ={ }^{t} \vec{p}^{k} \vec{r}^{k+1}={ }^{t} \vec{p}^{k} \vec{r}^{k}-\alpha^{k t} \vec{p}^{k} A \vec{p}^{k} .
\end{aligned}
$$

$$
\alpha^{k}=\frac{{ }^{t} \vec{p}^{k} \vec{r}^{k}}{{ }^{t} \vec{p}^{k} A \vec{p}^{k}}
$$

$$
\begin{gathered}
E\left(\vec{x}^{k+1}\right)=\left(1-\gamma^{k}\right) E\left(\vec{x}^{k}\right) \\
\text { with } \gamma^{k}=\frac{\left({ }^{t} \vec{p}^{k} \vec{r}^{k}\right)^{2}}{\left({ }^{t} \vec{p}^{k} A \vec{p}^{k}\right)\left({ }^{t} \vec{r}^{k} A^{-1} \vec{r}^{k}\right)} \geq \frac{1}{\operatorname{Cond}(A)} \frac{\left|{ }^{t} \vec{p}^{k} \vec{r}^{k}\right|}{\left\|\vec{p}^{k}\right\|\left\|\vec{r}^{k}\right\|} .
\end{gathered}
$$

Université

UFRIM ${ }^{2}$ AG

Algorithm

```
choose x(k=1)
for k = 1 to convergence
    r(k) = b - A * x (k)
    p(k) = r(k)
    alpha(k) = r(k) . p(k) / p(k) . A * p(k)
    x(k+1) = x(k) + alpha(k) * p(k)
end for //r(k) small
```


Principle

- Choose $\vec{p}^{k}=\vec{r}^{k}+\beta^{k} \vec{p}^{k-1}$.
- Choose β^{k} to minimize the error, i.e. maximize the factor γ^{k}

Properties

- ${ }^{t} \vec{r}^{k} \vec{p}^{j}=0 \forall j<k$,
- $\operatorname{Span}\left(\vec{r}^{1}, \vec{r}^{2}, \ldots, \vec{r}^{k}\right)=\operatorname{Span}\left(\vec{r}^{1}, A \vec{r}^{1}, \ldots, A^{k-1} \vec{r}^{1}\right)$
- $\operatorname{Span}\left(\vec{p}^{1}, \vec{p}^{2}, \ldots, \vec{p}^{k}\right)=\operatorname{Span}\left(\vec{r}^{1}, A \vec{r}^{1}, \ldots, A^{k-1} \vec{r}^{1}\right)$
- ${ }^{t} \vec{p}^{k} A \vec{p}^{j}=0 \forall j<k$
- ${ }^{t} \vec{r}^{k} A \vec{p}^{j}=0 \forall j<k$
- The algorithm converges in at most n iterations.

Université

UFRIM2AG

Algorithm

```
choose x(k=1)
```

choose x(k=1)
p(1) = r(1) = b - A*x(1)
p(1) = r(1) = b - A*x(1)
for k = 1 to convergence
for k = 1 to convergence
alpha(k) = r(k).p(k) / p(k) \& A * p(k)
alpha(k) = r(k).p(k) / p(k) \& A * p(k)
x(k+1) = x (k) + alpha(k) * p(k)
x(k+1) = x (k) + alpha(k) * p(k)
r(k+1) =r(k) - alpha(k) * A * p(k)
r(k+1) =r(k) - alpha(k) * A * p(k)
beta(k+1) = r(k+1). r(k+1) / r(k).r(k)
beta(k+1) = r(k+1). r(k+1) / r(k).r(k)
p(k+1) = r(k+1) + beta(k+1) * p(k)
p(k+1) = r(k+1) + beta(k+1) * p(k)
end for //r(k) small

```
end for //r(k) small
```

For generic matrices A
GMRES: General Minimal RESidual method

For generic matrices A
GMRES: General Minimal RESidual method

- Take a "fair" approximation \vec{x}^{k} of the solution

Université

For generic matrices A
GMRES: General Minimal RESidual method

- Take a "fair" approximation \vec{x}^{k} of the solution
- Construct the m-dimensional set of free vectors

$$
\left\{\vec{r}^{k}, A \vec{r}^{k}, \ldots, A^{m-1} \vec{r}^{k}\right\}
$$

This spans the Krylov space H_{m}^{k}.

For generic matrices A
GMRES: General Minimal RESidual method

- Take a "fair" approximation \vec{x}^{k} of the solution
- Construct the m-dimensional set of free vectors

$$
\left\{\vec{r}^{k}, A \vec{r}^{k}, \ldots, A^{m-1} \vec{r}^{k}\right\}
$$

This spans the Krylov space H_{m}^{k}.

- Construct an orthonormal basis for H_{m}^{k} - e.g. via Gram-Schmidt

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

Université

For generic matrices A
GMRES: General Minimal RESidual method

- Take a "fair" approximation \vec{x}^{k} of the solution
- Construct the m-dimensional set of free vectors

$$
\left\{\vec{r}^{k}, A \vec{r}^{k}, \ldots, A^{m-1} \vec{r}^{k}\right\}
$$

This spans the Krylov space H_{m}^{k}.

- Construct an orthonormal basis for H_{m}^{k} - e.g. via Gram-Schmidt

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

- Look for a new approximation $\vec{x}^{k+1} \in H_{m}^{k}$:

$$
\vec{x}^{k+1}=\sum_{j=1}^{m} X_{j} \vec{v}_{j}=[V] \vec{X}
$$

For generic matrices A
GMRES: General Minimal RESidual method

- Take a "fair" approximation \vec{x}^{k} of the solution
- Construct the m-dimensional set of free vectors

$$
\left\{\vec{r}^{k}, A \vec{r}^{k}, \ldots, A^{m-1} \vec{r}^{k}\right\}
$$

This spans the Krylov space H_{m}^{k}.

- Construct an orthonormal basis for H_{m}^{k} - e.g. via Gram-Schmidt

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

- Look for a new approximation $\vec{x}^{k+1} \in H_{m}^{k}$:

$$
\vec{x}^{k+1}=\sum_{j=1}^{m} X_{j} \vec{v}_{j}=[V] \vec{X}
$$

- We obtain a system of n equations with m unknowns

$$
A \vec{x}^{k+1}=A[V] \vec{X}=\vec{b}
$$

Université

Linear Algebra

\section*{Université}
 Joseph Fourier $\$$
 UFR IM ${ }^{2}$ AG
 Descent method - GMRES (cont'd)

Linear Algebra

- Project on H_{m}^{k}

$$
\left.\left[^{t} V\right] A[V] \vec{X}={ }^{t} V\right] \vec{b} .
$$

Université

Descent method — GMRES (cont'd)

- Project on H_{m}^{k}

$$
\left.\left[^{t} V\right] A[V] \vec{X}={ }^{t} V\right] \vec{b} .
$$

- Solve this system of m equations with m unknowns

Université

UFRIM²AG
Descent method - GMRES (cont'd)

- Project on H_{m}^{k}

$$
\left.\left[{ }^{t} V\right] A[V] \vec{X}={ }^{t} V\right] \vec{b} .
$$

- Solve this system of m equations with m unknowns
- $\vec{x}^{k+1}=[V] \vec{X}$.

Université

UFR IM²AG
Descent method — GMRES (cont'd)

- Project on H_{m}^{k}

$$
\left.\left[{ }^{t} V\right] A[V] \vec{X}={ }^{t} V\right] \vec{b} .
$$

- Solve this system of m equations with m unknowns
- $\vec{x}^{k+1}=[V] \vec{X}$.
- and so on...

Université

UFRIM²AG

- Project on H_{m}^{k}

$$
\left[^{t} V\right] A[V] \vec{X}=\left[{ }^{t} V\right] \vec{b} .
$$

- Solve this system of m equations with m unknowns
- $\vec{x}^{k+1}=[V] \vec{X}$.
- and so on...

To work well GMRES should be preconditioned!

Université

Preconditioning - principle

```
Principle
Replace system \(A \vec{x}=\vec{b}\) by \(C^{-1} A \vec{x}=C^{-1} \vec{b}\) where \(\operatorname{Cond}\left(C^{-1} A\right) \ll \operatorname{Cond}(A)\).
```

Preconditioning - principle

$$
\begin{aligned}
& \text { Principle } \\
& \text { Replace system } A \vec{x}=\vec{b} \text { by } C^{-1} A \vec{x}=C^{-1} \vec{b} \\
& \text { where } \operatorname{Cond}\left(C^{-1} A\right) \ll \operatorname{Cond}(A)
\end{aligned}
$$

Which matrix C?

C should be easily invertible, typically the product of two triangular matrices.

Preconditioning - principle

$$
\begin{aligned}
& \text { Principle } \\
& \text { Replace system } A \vec{x}=\vec{b} \text { by } C^{-1} A \vec{x}=C^{-1} \vec{b} \\
& \text { where Cond }\left(C^{-1} A\right) \ll \operatorname{Cond}(A)
\end{aligned}
$$

Which matrix C?

C should be easily invertible, typically the product of two triangular matrices.

- $C=\operatorname{diag}(A)$, simplest but well...

Preconditioning - principle

Principle

Replace system $A \vec{x}=\vec{b}$ by $C^{-1} A \vec{x}=C^{-1} \vec{b}$ where $\operatorname{Cond}\left(C^{-1} A\right) \ll \operatorname{Cond}(A)$.

Which matrix C?

C should be easily invertible, typically the product of two triangular matrices.

- $C=\operatorname{diag}(A)$, simplest but well. .
- incomplete Cholesky or LU factorization

Preconditioning - principle

Principle

Replace system $A \vec{x}=\vec{b}$ by $C^{-1} A \vec{x}=C^{-1} \vec{b}$ where $\operatorname{Cond}\left(C^{-1} A\right) \ll \operatorname{Cond}(A)$.

Which matrix C?

C should be easily invertible, typically the product of two triangular matrices.

- $C=\operatorname{diag}(A)$, simplest but well...
- incomplete Cholesky or LU factorization
- ...

Preconditioning - symmetry issues

Symmetry

Even if A and C are symmetric, $C^{-1} A$ may not be symmetric.
What if symmetry is needed?
Let $C^{-1 / 2}$ such that $C^{-1 / 2} C^{-1 / 2}=C^{-1}$.
Then $C^{-1 / 2} A C^{-1 / 2}$ is similar to $C^{-1} A$.
We consider the system

$$
\begin{aligned}
C^{+1 / 2}\left(C^{-1} A\right) C^{-1 / 2} C^{+1 / 2} \vec{x} & =C^{+1 / 2} C^{-1} \vec{b} \\
\left(C^{-1 / 2} A C^{-1 / 2}\right) C^{+1 / 2} \vec{x} & =C^{-1 / 2} \vec{b}
\end{aligned}
$$

Preconditioning - symmetry issues

Symmetry

Even if A and C are symmetric, $C^{-1} A$ may not be symmetric.
What if symmetry is needed?
Let $C^{-1 / 2}$ such that $C^{-1 / 2} C^{-1 / 2}=C^{-1}$.
Then $C^{-1 / 2} A C^{-1 / 2}$ is similar to $C^{-1} A$.
We consider the system

$$
\begin{aligned}
C^{+1 / 2}\left(C^{-1} A\right) C^{-1 / 2} C^{+1 / 2} \vec{x} & =C^{+1 / 2} C^{-1} \vec{b} \\
\left(C^{-1 / 2} A C^{-1 / 2}\right) C^{+1 / 2} \vec{x} & =C^{-1 / 2} \vec{b}
\end{aligned}
$$

Solve

$$
\left(C^{-1 / 2} A C^{-1 / 2}\right) \vec{y}=C^{-1 / 2} \vec{b}
$$

and then

$$
\vec{y}=C^{+1 / 2} \vec{x}
$$

Université

UFRIM²G
Preconditioning - preconditioned conjugate gradient

Algorithm

$$
\begin{aligned}
& \text { choose } \times(k=1) \\
& r(1)=b-A * x(1) \\
& \text { solve } \mathrm{Cz}(1)=r(1) \\
& p(1)=r(1) \\
& \text { for } k=1 \text { to convergence } \\
& \text { alpha(k) }=r(k) \cdot z(k) / p(k) \cdot A * p(k) \\
& x(k+1)=x(k)+\text { alpha(k) * } p(k) \\
& r(k+1)=r(k)-\operatorname{alpha}(k) * A * p(k) \\
& \text { solve C } z(k+1)=r(k+1) \\
& \text { beta }(k+1)=r(k+1) \cdot z(k+1) / r(k) \cdot z(k) \\
& p(k+1)=z(k+1)+\operatorname{beta}(k+1) * p(k) \\
& \text { end for }
\end{aligned}
$$

At each iteration a system $C \vec{z}=\vec{r}$ is solved.

Université

Joseph Fourier $\$$ O Overview

UFRIMAG

Linear Algebra

Band storage
Sparse storage
(1) Vectors and matrices

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR
(3) Numerical solution of linear systems
- Direct methods
- Iterative methods
- Preconditioning
(4) Storage
- Band storage
- Sparse storage
(5) Bandwidth reduction

Université

Storage - main issues

- Problems involve often a large number of variables, of degrees of freedom, say 10^{6}.

Université Joseph Fourier

UFR M^{2} AG

- Problems involve often a large number of variables, of degrees of freedom, say 10^{6}.
- To store a full matrix for a 10^{6}-order system, 10^{12} real numbers (if real) are needed... In simple precision this necessitates 4 To of memory.

Université Joseph Fourier

UFRIM2AG

Linear Algebra

- Problems involve often a large number of variables, of degrees of freedom, say 10^{6}.
- To store a full matrix for a 10^{6}-order system, 10^{12} real numbers (if real) are needed... In simple precision this necessitates 4 To of memory.
- But high order problems are often very sparse.
- Problems involve often a large number of variables, of degrees of freedom, say 10^{6}.
- To store a full matrix for a 10^{6}-order system, 10^{12} real numbers (if real) are needed... In simple precision this necessitates 4 To of memory.
- But high order problems are often very sparse.
- We therefore use a storage structure which consists in only storing relevant, non-zero, data.
- Problems involve often a large number of variables, of degrees of freedom, say 10^{6}.
- To store a full matrix for a 10^{6}-order system, 10^{12} real numbers (if real) are needed... In simple precision this necessitates 4 To of memory.
- But high order problems are often very sparse.
- We therefore use a storage structure which consists in only storing relevant, non-zero, data.
- Access to one element $A_{i j}$ should be very efficient.

Université

Université

UFR IM ${ }^{2}$ AG

Linear Algebra

CRS: Compressed Row Storage

- All the non-zero values of the matrix are stored in a table tab; they are stored line by line in the increasing order of columns.

Université

CRS: Compressed Row Storage

- All the non-zero values of the matrix are stored in a table tab; they are stored line by line in the increasing order of columns.
- A table tabj, with same size than tab stores the column number of the values in tabv.

Université

CRS: Compressed Row Storage

- All the non-zero values of the matrix are stored in a table tab; they are stored line by line in the increasing order of columns.
- A table tabj, with same size than tab stores the column number of the values in tabv.
- A table tabi with size $n+1$ stores the indices in tabj of the first element of each line. The last entry is the size of tabv.

Université

CRS: Compressed Row Storage

- All the non-zero values of the matrix are stored in a table tab; they are stored line by line in the increasing order of columns.
- A table tabj, with same size than tab stores the column number of the values in tabv.
- A table tabi with size $n+1$ stores the indices in tabj of the first element of each line. The last entry is the size of tabv.

CCS: Compressed Column Storage $=$ Harwell Boeing

CRS: Compressed Row Storage

- All the non-zero values of the matrix are stored in a table tab; they are stored line by line in the increasing order of columns.
- A table tabj, with same size than tab stores the column number of the values in tabv.
- A table tabi with size $n+1$ stores the indices in tabj of the first element of each line. The last entry is the size of tabv.

CCS: Compressed Column Storage $=$ Harwell Boeing

Generalization to symmetric matrices

Université

UFRIM ${ }^{2}$ AG

$$
A=\left(\begin{array}{llll}
0 & 4 & 1 & 6 \\
2 & 0 & 5 & 0 \\
0 & 9 & 7 & 0 \\
0 & 0 & 3 & 8
\end{array}\right)
$$

CRS storage?

Université

UFRIM²AG

CRS: Compressed Row Storage - exercise

Linear Algebra

Question

$$
A=\left(\begin{array}{llll}
0 & 4 & 1 & 6 \\
2 & 0 & 5 & 0 \\
0 & 9 & 7 & 0 \\
0 & 0 & 3 & 8
\end{array}\right)
$$

CRS storage?

Solution

$$
\begin{aligned}
\text { tabi } & =\{1,4,6,8,10\} \\
\text { tabj } & =\{2,3,4,1,3,2,3,3,4\} \\
\text { tabv } & =\{4,1,6,2,5,9,7,3,8\}
\end{aligned}
$$

Université

Joseph Fourier 2 Overview

UFR IM ${ }^{2}$ AG

Linear Algebra
(1) Vectors and matrices

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR
(3) Numerical solution of linear systems
- Direct methods
- Iterative methods
- Preconditioning

4 Storage

- Band storage
- Sparse storage
(5) Bandwidth reduction

Université

UFR IM ${ }^{2}$ AG

Linear Algebra

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.
Cuthill-McKee algorithm - construction of a graph

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.

Université

Cuthill-McKee algorithm - construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.
- The edges are the relations between the unknowns. Two unknowns i and j are linked if $A_{i j} \neq 0$.

Université

Cuthill-McKee algorithm - construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.
- The edges are the relations between the unknowns. Two unknowns i and j are linked if $A_{i j} \neq 0$.
- The distance $d(i, j)$ between two nodes is the minimal number of edges to follow to join both nodes.

Université

Cuthill-McKee algorithm - construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.
- The edges are the relations between the unknowns. Two unknowns i and j are linked if $A_{i j} \neq 0$.
- The distance $d(i, j)$ between two nodes is the minimal number of edges to follow to join both nodes.
- The excentricity $E(i)=\max _{j} d(i, j)$

Université

Cuthill-McKee algorithm - construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.
- The edges are the relations between the unknowns. Two unknowns i and j are linked if $A_{i j} \neq 0$.
- The distance $d(i, j)$ between two nodes is the minimal number of edges to follow to join both nodes.
- The excentricity $E(i)=\max _{j} d(i, j)$
- Far neighbors are $\lambda(i)=\{j / d(i, j)=E(i)\}$

Université

Cuthill-McKee algorithm - construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.
- The edges are the relations between the unknowns. Two unknowns i and j are linked if $A_{i j} \neq 0$.
- The distance $d(i, j)$ between two nodes is the minimal number of edges to follow to join both nodes.
- The excentricity $E(i)=\max _{j} d(i, j)$
- Far neighbors are $\lambda(i)=\{j / d(i, j)=E(i)\}$
- Graph diameter $D=\max _{i} E(i)$

Université

Cuthill-McKee algorithm - construction of a graph

Goal

Reduce the bandwidth of a large sparse matrix by renumbering the unknowns.

Construction

- The nodes of the graph are the unknowns of the system. They are labelled with a number from 1 to n.
- The edges are the relations between the unknowns. Two unknowns i and j are linked if $A_{i j} \neq 0$.
- The distance $d(i, j)$ between two nodes is the minimal number of edges to follow to join both nodes.
- The excentricity $E(i)=\max _{j} d(i, j)$
- Far neighbors are $\lambda(i)=\{j / d(i, j)=E(i)\}$
- Graph diameter $D=\max _{i} E(i)$
- Peripheral nodes $P=\{j / E(j)=D\}$.

Université

UFRIM²G

Linear Algebra

This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.

Université

UFRIM²G

Linear Algebra

This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.
- Attribute the new numbers $(2,3, \ldots)$ to the neighbors of node 1 with have the less non-labelled neighbors.

UFR M^{2} AG

Linear Algebra

Cuthill-McKee algorithm - bandwidth reduction

This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.
- Attribute the new numbers $(2,3, \ldots)$ to the neighbors of node 1 with have the less non-labelled neighbors.
- Label the neighbors of node 2

UFR M^{2} AG

Linear Algebra

Cuthill-McKee algorithm - bandwidth reduction

This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.
- Attribute the new numbers $(2,3, \ldots)$ to the neighbors of node 1 with have the less non-labelled neighbors.
- Label the neighbors of node 2
- and so on...

Cuthill-McKee algorithm - bandwidth reduction

This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.
- Attribute the new numbers $(2,3, \ldots)$ to the neighbors of node 1 with have the less non-labelled neighbors.
- Label the neighbors of node 2
- and so on...
- until all nodes are labelled.

Cuthill-McKee algorithm - bandwidth reduction

This graph is used to renumber the unknonws.

- Choose a first node and label it with 1.
- Attribute the new numbers $(2,3, \ldots)$ to the neighbors of node 1 with have the less non-labelled neighbors.
- Label the neighbors of node 2
- and so on...
- until all nodes are labelled.
- once this is done the numbering is reversed: the first become the last.

Université Joseph Fourier 7

UFRIM2AG
Cuthill-McKee algorithm - example 1

Linear Algebra

Université

Université

Joseph Fourier ${ }^{2}$ Overview

UFRIM2AG

Linear Algebra
(1) Vectors and matrices

- Elementary operations
- Gram-Schmidt orthonormalization
- Matrix norm
- Conditioning
- Specific matrices
- Tridiagonalisation
- LU and QR factorizations
(2) Eigenvalues and eigenvectors
- Power iteration algorithm
- Deflation
- Galerkin
- Jacobi
- QR
(3) Numerical solution of linear systems
- Direct methods
- Iterative methods
- Preconditioning

4 Storage

- Band storage
- Sparse storage
(5) Bandwidth reduction

R- P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur Volumes 1 and 2, 2ème édition, Masson (1997).

Université

P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur Volumes 1 and 2, 2ème édition, Masson (1997).
國 Gene H. Golub, Charles F. van Loan, Matrix Computations, 3rd edition, Johns Hopkins University Press (1996).

