Université #
Joseph Fourier

Linear Algebra

Linear Algebra

Brigitte Bidégaray-Fesquet

Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble

LABORATOIRE
JEAN KUNTZMANN

MSIAM, 23-24 September 2015

Université

Joseph Fourier ¥ Overview

Linear Algebra

@ Vectors and matrices
@ Elementary operations
@ Gram—Schmidt orthonormalization
@ Matrix norm
o Conditioning
@ Specific matrices
o Tridiagonalisation
e LU and QR factorizations
© Eigenvalues and eigenvectors
@ Power iteration algorithm
@ Deflation
o Galerkin
@ Jacobi
o QR
© Numerical solution of linear systems
@ Direct methods
o |terative methods
@ Preconditioning
© Storage
@ Band storage
@ Sparse storage
© Bandwidth reduction

Université _ # .
Joseph Fourier I Flementary operations on vectors

C" resp. R": linear space of vectors with n entries in C resp. R.
Generically: F", where F is a field.

Linear Algebra

Elementary operations
Gram-Schmidt
orthonormalization

Linear combination of vectors

Matrix norm w=ai+ vV, a,8€CorR.

Conditioning

Specic mtrces for 1 = 1 6@ @

‘[jm";”;fw w(i) = alpha % u(i) + beta * v(i)

factorizations end for

2% norm of a vector
Scalar product of 2 vectors

n
n —
TJ"V:ZU,‘V,‘ ||UH2: Z;U?

i=1 =
uv = 0 uu = 0
for i =1 to n for i =1 to n

uv = uv + u(i) * v(i) uu = uu + u(i) % u(i)
end for end for
) norm = sqrt(uu)

Université _ # . .
Joseph Fourier I Flementary operations on matrices

Mnp(F): linear space of matrices with n X p entries in F.
Linear Algebra

Linear combination of matrices
Elementary operations C _ aA + BB, a,ﬁ c F

Gram-Schmidt

orthonormalization

Matrix norm for i =1 ton

Conditioning for j =1 to p

Specific matrices C(i,j) = alpha = A(i,j) + beta * B(i,j)
Tri slisation end for

LU and QR end for

factorizations

. Matrix—matrix product
Matrix—vector product

p
. ~ P C=AB, CGj =3 AikBy
w = Ald, w; = > Aju; =i
j=1
for i =1 ton
for i =1 to n for j =1 to q
wi =0 cij =0
for j =1 to p for k =1 to p
wi = wi +A(i,j) * u(j) cij = cij + A(i,k) * B(k,j)
end for end for
w(i) = wi C(i,j) = cij
end for end for
end for

Université 1 . . .
Joseph Fourier i Gram—=Schmidt orthonormalization

Let {V4,...,V,} be a free family of vectors.
Linear Algebra . . .
It generates the vector space E, with dimension p.
We want to construct {&i,..., &}, an orthonormal basis of E,.
Elementary operations
Gram—Schmidt 5 o
orthonormalization Gram—Schmldt a|g0r|thm
Matrix norm
Conditioning N
SRR - ~ - !
Specific matrices U1 = Vi €1 = =T
Tridiagonalisation ||U1H2
LU and QR o
factorizations = _ — — -\ = - _ ur
us = Vo — (Vz . 61)61 € = W
2|2
. I . iy
p = Vo= (Vp-&)é & = =
k=1 (A

1

Université 7
Joge:I';SFourier¥ Matrix norms

e Al Definition
Al = 0, VA € Mu(F), F=C orR.
e Al =04 A=0.
arnorm A = [AJIAL VA € Mu(F), YA€ F.
Pl P JA+ Bl < ||All + ||Bll, VA, B € Mgun(F) (triangle inequality).
e \ IAB]| < [|A[lIB]|, VA, B € Mn(F) (specific for matrix norms).

4

Subordinate matrix norms

A n
|Allp = max L Xlp = max ||Ax||p, Vx € F", where ||X||, = x,.p.
Ixlp#0 [[x]lp lIxllp=1 =

in particular: ||All1 = max)_ |Aj| and ||Allcc = max > |Aj].
J 7 iy

A\

Matrix-vector product estimate

[Allo >

and hence ||Ax||, < [|A]lp||x]|p for all x € F".

A\

Université 7 . e o
soseph Fourier ¥ \[3trix conditioning

Linear Algebra

Elementary operations

Gram-Schmidt
orthonormalization

Definition

Matrix norm
Conditioning

Specific matrices

Cond(A) = [A"[[[|A]l

Tridiagonalisation
LU and QR

factorizations

Properties

Cond(A) > 1,
Cond(A™1) = Cond(A),
Cond(aA) = Cond(A).

For the Euclidian norm

|)\max|

Condz(A) =

|)\min‘

Université #

Joseph Fourier I Conditioning and linear systems

Linear Algebra

Problem
e (So) AR=B, (Sper) (A+0A)(% + 6%) = (B+ 0b).
ol bnormalization
Condioning (Sper)—(So): ASK + SA(X + 0X) = b,
B 6% = A~ (0B — 6A(% + %)),

LU and QR

I16%] < 1A7Y| H(sB _ AR+ 52)” (for a subordinate matrix norm),
1651 < A1 (155 + I5ANI% + 631,

1951 4oy (_19BI
< = .
<IA I g gy + 104

IX + oX]|

[[6X]]
[IX + 6x]]

1550, oAl
< .
= Cond(4) <|A||||>?-|—6>‘<'|| Al

relative error on x = Cond(A) (relative error on b + relative error on A).

Université
Joseph Fourier

Linear Algebra

Elementary operations
Gram-Schmidt
orthonormalization

Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU 1 QR

factorizations

¥ Hermitian, orthogonal. ..

Transposed matrix: (‘A); = A
Adjoint matrix: (A*); = Aj.

A=A

Hermitian matrix

A* = A and hence A = A.

Orthogonal matrix (in Mpn(R))
FAA = I.

Unitary matrix (in M,(C))
A*A=1.

Similar matrices ("semblables” in French)

A and B are similar if 3P/B = P~AP.

Université # o
Joseph Fourier I Profiles

Linear Algebra

Specific matrices

Lower triangular Upper triangular Tridiagonal

Lower Hessenberg Upper Hessenberg

Université 1 .
Joseph Fourier i Householder matrices

Linear Algebra Definition

vt
Hy=1-2-"1
’ [1V[13

.

@ Hy is orthogonal.
@ If7=3—b#0and |32 = | B

Elementary operations
Gram-Schmidt

2,

\

Application
Let 3 € K", we look for Hy such that H;3 = (,0,...,0).
Solution: take b = (v, 0,...,0) with o = ||3||2, and V = 3 — b. Then

Hza = b.

A\

Université
Joseph Fourier

Linear Algebra

Tridiagonalisation

¥ Householder tridiagonalisation

Aim

A: symmetric matrix.

Construct a sequence AD = A, ... A" tridiagonal and Al p = HA'H.
e N

First step

1) ex)
o= (A a o= (1
A (41) ;\(112>> H™ = (6

Choose H® such that H()3(11 =,0,...,0)p—1 = (&)n-1-
a = H321 |

tdl') A0 = ~A(111) ~:(,:{(1)'—3»(21%)) _
1) H(l)g,'(zll) FHO A F)

I

P U1—321 —a(@)n 1, Hl)_Ha1

Complexity

N
» -
A\

Order gn products.

<

Université #
Joseph Fourier

Linear Algebra

Elementary operations
Gram—Schmidt
orthonormalization
Matrix norm
Conditioning

Specific matrices
Tridiagonalisation
LU and QR

factorizations

Givens tridiagonalization

Let Gpq(c,s) = 1 with 2 + % = 1.

'GAG =
If A is symmetric: else: leads to Hessenberg matrix
0 00 * x
0 *
0 0
0 00 0 00

Order gn3 products.

Université _ # .. . o
Joseph Fourier I Principles of LU factorization

Linear Algebra

LU and QR
factorizations

@ Some regular matrix (with non-zero determinant) are not
LU-transformable, e.g. ([0 1;1 1]) is not.

o If it exists, the LU decomposition of A is not unique.
It is unique if A is non-singular.

@ A is non-singular and LU-transformable
<= all the determinants of the fundamental principal minors are
non zero (and in this case the decomposition is unique).

Université

sosepn Fourier ¥ Doolittle LU factorization — principle

Linear Algebra

It proceeds line by line.

LU and QR
factorizations

As2
As3

A3n

An = LuUn Lin=1
A = LuUn
= {Uij}j=1,...n

Aln = Lll Uln

= LaUn = Ln

= LnUn+ Ux

= {Us}j=2,...n

= LnUnn+ U
= LaaUn = La;
= LU+ LU = L3
= L31Ui3 + L32Uz3 + Uss

= {Usj}j=3,...n

L31Uip + Lo Usy + Usp

Université
Joseph Fourier

¥ Doolittle LU factorization — algorithm

Linear Algebra

Doolittle algorithm

j—1
Elementary operations Aj kzjl LixUy i—1
S o Ly = Un Uj = Aj = 3. LUy
Matrix norm b k=1
gm“ﬂmmm Gor [= 1 6o &
pecific matrices N
Tridiagonalisation for j =1 to i-1
LU and QR sum = 0
factorizations for k=1 to j—1
sum = sum + L(i,k)*xU(k,])
end for
L(i.j) = (AG . j)—sum) /UG,)
end for
L(i,i) =1
for j =i ton
sum = 0
for k =1 to i—1
sum = sum + L(i,k)*U(k,])
end for
U(i,j) =A(i,j) — sum
end for
end for

Order n® products

Université #
Joseph Fourier

Linear Algebra

Elementary operations
Gram-Schmidt

orthonormalization

Matrix norm
Conditioning
Specific matrices
Tridiagonalisation

LU and QR
factorizations

Cholesky factorization for an Hermitian matrix

A=C'C

Cholesky algorithm

f=i
Aj — > CikCik
k=1

i—1
Gi = [Aii = 2 Cix Cix Gj =
k=1

C(1,1) = sqrt(A(1,1))
for i =2 to n
for j =1 to i—1
sum = 0
for k =1 to j—1
= sum + C(i, k)*C(j, k)

(AGi, §)—sum)/C(j .])

sum=0
for k =
sum =
end for
C(i,i) =
end for

1 to i—1
sum + C(i,k)*C(i, k)

sqrt (A(i,i) — sum)

G

Order

S F

n® products

Université . . o
Joseph Fourier " LU factorization — profiles

Linear Algebra

Elementary operations

Gram—=Schmidt
orthonormalization

Matrix norm
Conditioning
Specific matrices
Tridiagonalisation

LU and QR
factorizations

Non-zero elements

In blue: A
In red: superposition of L and U

The interior of the profile is filled!

Université #
Joseph Fourier

Linear Algebra

Elementary operations

Gram-Schmidt

LU and QR
factorizations

QR factorization — principle

Gm...G2G1A: R,
A='G'G..."Gn R
—_———

A = QR, where Q orthogonal and R right (upper) triangular.

Q
1 0
1
c
Let Gj(c,s) = 1 with ¢ + 5% = 1.
—s
1
0 1
x _ GA)j = —sAjj + cAj
X \ c = Ajj s = AU
; > a2 2 a2
y _ (.9 \/AU + A2 \/A,.j + A

Université

soseph Fourier I QR factorization — algorithm

Linear Algebra

Elementary operations
Gram-Schmidt
orthonormalization

Matrix norm
Conditioning
Specific matrices
Tridiagonalisation
LU and QR
factorizations

Algorithm

R =
Q=1d // ze of A
for i 2

si
on

e
-
(<]

end if
Construct Gji
R = GjixR // matrix product
Q = Q«transpose(Gji) // matrix product
end for
end for

Order n® products

Université

soseph Fourier I QR factorization — Python example

Linear Algebra

Elementary oper
Gram-S
orthonor

Matrix norm
Conditioning
Specific matrices
Tridiagonalisation

LU and QR
factorizations

11.619
3.437 107 1°
4.476 10~Y

—6.488 1071°

—6.671 107 1°

0.2582
0.3443
0.4303
0.5164
0.6025

>
Il
~No oA~ W

9.467
6.086 10~
1.989 1018
1.082 10~

—2.548 10~ Y7

—0.7303

—0.4260

—0.1217
0.1826
0.4869

[o) NG F NN CVIN)
g wWN =
W NRHR O

7.316
1.217
2.324 107 1°
0.000
0.000

—0.3775
—0.0062

0.5407
0.4472

—0.6042

0
0
1
2
3
5.164 3.271
1.826 1.704
3.768 107 3775107 %
1.618 1071 —6.764 10~ %
—3.082107* —5.029 10~ %
—0.0676 —0.5029
—0.1589 0.821
0.7050 —0.1030
—0.6627 —0.2466

0.1842 0.0311

Université 1 . . 0 .
soseph Fourier ¥ Poer iteration algorithm — Python experiment

10 0
=(59)

Eigenvalues and eigenvectors:

Linear Algebra

Power iteration
algorithm

M=1) =107 = ((1)) s <—11) '

Construct the series

—k ok—1
X = AX

o (2) a_ (20 2_ (200 .o (2000
1) T \e1r) 7 T \b1e7) 0 T \ 21007)

X tends to the direction of the eigenvector associated to the higher
modulus eigenvalue.

"Xk /%=1 tends to the higher modulus eigenvalue.

Université 1 . . 0 .
soseph Fourier ¥ Poer iteration algorithm — Algorithm

Linear Algebra
Computation of the eigenvalue with higher modulus.
R st A may be diagonalizable or not, the dominant eigenvalue can be unique
Igorith
Defiation or not.
Galerkin
Lenestf Algorithm

QR

choose q(0)
for k = 1 to convergence
x(k) = A x q(k—-1)
q(k) = x(k) / norm(x(k))
end for
lambdamax = x(k)(j)/a(k=1)(j)

Attention: good choice of component j.

Université

soseph Fourier ¥ Power iteration algorithm — Python example

Linear Algebra 10 0 O
A=10 5 0
0 0 2
e peration Rotations:
cos(l) 0 sin(1) 1 0 0
R = 0 1 0 ,Ro=10 cos(2) sin(2)
—sin(1) 0 cos(1) 0 —sin(2) cos(2)

4.33541265 —3.30728724 1.51360499
B=RRAR R, = | —3.30728724 7.20313893 —1.00828318

1.51360499 —1.00828318 5.46144841

Eigenvalues and eigenvectors:
A1 =2,X =5, =10,

—0.8415 1.365 10716 —0.5403
= | —-04913 | ,% = 0.4161 5= | 0.7651

k]

0.2248 0.9093 —0.3502

1

Université 1 . . 0
soseph Fourier ¥ Power iteration algorithm — Remarks

Linear Algebra

Power iteration
algorithm
© Convergence results depend on the fact that
o the matrix is diagonalizable or not
o the dominant eigenvalue is multiple or not
@ The choice of the norm is not explicit: usually max norm or

euclidian norm

© go should not be orthogonal to the eigen-subspace associated to
the dominant eigenvalue.

Université #

Joseph Fourier I |nverse iteration algorithm — Algorithm

Linear Algebra

Computation of the eigenvalue with smallest modulus.

A may be diagonalizable or not, the dominant eigenvalue can be unique
Power iteration or not.
algorithm Based on the fact that

Deflation

Galerkin 1

i Muin(A) = (Amax(A™))

Algorithm

choose q(0)
for k = 1 to convergence
solve A % x(k) = q(k—1)
q(k) = x(k) / norm(x(k))
end for
lambdamin = q(k=1)(j) / x(k)(j)

Université 1 . . o
soseph Fourier ¥ |yerse iteration algorithm — Python example

Linear Algebra

10 0 O
A=|10 5 0
0 0 2
e peration Rotations:
cos(l) 0 sin(1) 1 0 0
R = 0 1 0 ,Ro=10 cos(2) sin(2)
—sin(1) 0 cos(1) 0 —sin(2) cos(2)

4.33541265 —3.30728724 1.51360499
B=RRAR R, = | —3.30728724 7.20313893 —1.00828318
1.51360499 —1.00828318 5.46144841

Eigenvalues and eigenvectors:
A1 =2,X =5, =10,

—0.8415 1.365 10716 —0.5403
= | —04913 |, = 0.4161 ,vs= | 0.7651
0.2248 0.9093 —0.3502

1

Université 1 3 . . i i i
soseph Fourier ¥ Generalized inverse iteration algorithm — Algorithm

Linear Algebra

Computation of the closest eigenvalue to a given pu.
R foEE The eigenvalues of A — ul are the A\; — p,
eorithm where \; are the eigenvalues of A.
ELI = apply the inverse iteration algorithm to A — ul.

Jacobi

QR

Algorithm

choose q(0)

for k = 1 to convergence
solve (A—muxl) * x(k) = q(k—1)
q(k) = x(k) / norm(x(k))

end for

lambda = q(k—=1)(j) / x(k)(j) + mu

Université 1 . . . o 0
sosepn Fourier ¥ Generalized inverse iteration algorithm — Python example

Linear Algebra

10 0 O
A= 0 5 0 n= 4
0 0 2
et reration Rotations:
cos(l) 0 sin(1) 1 0 0
R = 0 1 0 ,Ro=10 cos(2) sin(2)
—sin(1) 0 cos(1) 0 —sin(2) cos(2)

4.33541265 —3.30728724 1.51360499
B=RRAR R, = | —3.30728724 7.20313893 —1.00828318
1.51360499 —1.00828318 5.46144841

Eigenvalues and eigenvectors:
A1 =2,X =5, =10,

—0.8415 1.365 1071¢ —0.5403
= | -04913], % = 0.4161 vs = | 0.7651

k]

0.2248 0.9093 —0.3502

niversité 1
soseph Fourier ¥ Deflation — Algorithm and Python example

Linear Algebra
Computation of all the eigenvalues in modulus decreasing order.

When an eigenelement (1, g) is found, it is removed from further

Fiower fteraton computation by replacing A — A — AG‘g.
Deflation
i Algorithm
QR
for i = 1 to n
choose q(0)
for k = 1 to convergence

x(k) = A % q(k—1)
q(k) = x(k) / norm(x(k))
end for
lambda = x(K)(J) / a(k—1)(j)
A=A — lambda * q % transpose(q)
// eliminates direction q
end for

Joseph Fourier Galerkin method — Algorithm

Linear Algebra Let H be a subspace of dimension m, generated by the orthonormal
basis (i, ..., Gm)-
Construct the rectangular matrix Q = (G1, - - ., Gm)-

Remark: Q*Q = Id,,
Power iteration

algorithm
Deflation

Galerkin

Jacobi Look for eigenvectors in H.

QR

If G € H, dd=> a;g; (unique).

i=1
i=QU, where U =" (v,...,om).

Ai=Xie AQU=XQU.
Project on H: Q*AQU = \Q*QU = \U.

= We look for eigenelements of B = Q*AQ.

Vocabulary:
e {)\;, Ui} are the Ritz elements,
e B is the Rayleigh matrix.

soseph Fourier ¥ J3cobi method — Algorithm

Linear Algebra

Power iteration
algorithm

Diagonalize the (real symmetric) matrix.

Until a "reasonably diagonal” matrix is obtained:
@ Choose the largest off-diagonal element (largest modulus)

o Construct a rotation matrix that annihilates this term

In the end, the eigenvalues are the diagonal elements.)

Université

Joseph Fourier# QR method — Algorithm

Linear Algebra

Algorithm

A(l) = A

for k = 1 to convergence
[Q(k),R(k)] = QR_factor(A(k))

; A(k+1) = R(k)*Q(k)

QR end for

The eigenvalues are the diagonal elements of the last matrix Axt1.

Properties

0 Ait1 = RiQx = Qf QuRkQr = Qr Ak Qx
= Ak+1 and Ag are similar.

o If Ak is tridiagonal or Hessenberg, Ax41 also is
= First restrict to this case keeping similar matrices.

niversité 1
soseph Fourier I QR method — Convergence and Python example

Linear Algebra

Let V* be the matrix of left eigenvectors of A (A" = Ai™).

If

e the principal minors of V are non-zero.

o the eigen-values of A are such that [A1] > - > |Ag).

Then the QR method converges Ax+1 tends to an upper triangular form
and (Ax)ii tends to A;.

Université _ # .
Joseph Fourier I Figenvalues — Summary

Linear Algebra

We want to know all the eigenvalues

@ QR method — better than Jacobi
Preprocessing: find a similar tridiagonal or Heisenberg matrix
(Householder or Givens algorithm).

We only want one eigenvector whose eigenvalue is known (or an
approximation)

@ Power iteration algorithm and variants. . .

We only want a sub-set of eigenelements

o We know the eigenvalues and look for eigenvectors: deflation and
variants

@ We know the subspace for eigenvectors: Galerkin and variants

Université
Joseph Fourier

Linear Algebra

Direct methods
Iterative methods

Preconditioning

¥ Principles

AR =b

Elimination methods

The solution to the system remains unchanged if

@ lines are permuted,

@ line i is replaced by a linear combination
n
Li — > ik, with p;i # 0.
k=1

Factorisation methods

A=LU

LUX =b

We solve two triangular systems
Ly =
UX =

| A

< Tl

Université

Joseph Fourier

Linear Algebra

Direct methods

¥ Lower triangular matrix

i—1
bi — > Ax
k=1
Aii

X =

Algorithm

if A(1,1)==0 then stop
x(1) = b(1)/A(1,1)

for i =2 to n
if A(i,i)==0 then stop
ax = 0

for k =1 to i—1

ax = ax + A(i, k)xx(k)
end for
x(i) = (b(i)—ax)/A(i,i)

end for

Order n?/2 products.

Université _ # . .
Joseph Fourier I |Jpper triangular matrix

Linear Algebra "
bi— Y Ak

k=i+1

Aii

Algorithm

if A(n,n)==0 then stop
x(n) = b(n)/A(n,n)
for i = n-1 to 1
if A(i,i)==0 then stop
ax = 0
for k = i+1 to n
ax = ax + A(i, k)xx(k)
end for
x(i) = (b(i)—ax)/A(i, i)

end for

Xi =

Direct methods

Order n?/2 products.

Université 1 .. . 0 o
sosepn Fourier ¥ Gauss elimination — Principle

Linear Algebra

Transform A to upper triangular matrix.

At rank p — 1:

Direct methods

Iterative methods AU =0

if i >j, j<p.

for p =1 to n
pivot = A(p,p)

if pivot = 0 stop
line(p) = line(p)/pivot
for i = p+1 to n
Aip = A(i,p)
line (i) line(i) — Aip * line(p)
end for
end for

x = solve(A,b) // upper triangular

Still order n® products.

Université 1 L.) L.
soseph Fourier ¥ Gauss—Jordan elimination — Principle

Linear Algebra

Transform A to identity.

At rank p — 1:

Ai=1 ifi <p,
prec s A= 0

if i #J, J<p.

for p =1 to n
pivot = A(p,p)

if pivot =— 0 stop
line(p) = line(p)/pivot
for i =1 to n, il=p
Aip = A(i,p)
line(i) = line(i) — Aip * line(p)
end for
end for
x = b

o take into account le right-hand side in the "line".
o what if Ay, =07

Université
Joseph Fourier

Linear Algebra

Direct methods

Iterative methods

econditioning

// unknown entries numbering
for i =1 ton

num(i) =i
end for

for p=1 to n
// maximal pivot
pmax = abs(A(p.p))

imax = p
jmax = p
for i = p to n

for j = p ton

if abs(A(i,j)) > pmax then

pmax = abs(A(i,j))
imax i
jmax
end if
end for
end for
// line permutation
for j = p to n
permute (A(p,j) A(imax,j)
end for
permute(b(p),b(imax))
// column permutation
for i = p to n
permute (A(i,p),A(i,jmax)
end for
permute (num(p),num(jmax))

i

¥ Gauss—Jordan elimination — Algorithm

pivot = A(p,p)
if pivot = 0 stop, rank(A) = p—1
for j = p ton

A(p.j) = A(p.j)/pivot

end for
b(p) = b(p)/pivot
for i =1 ton, il=
Aip = A(i .p)
for j = p to n
A(ij) =A(i . j) — Aip = A(p.j)
end for
b(i) = b(i) — Aipxb(p)
end for

end for // loop on p

for i =1 ton
x(num(i)) = b(i)
end for

Order n® products.

Also computes the rank of the
matrix.

Université # . . o 0 o
Joseph Fourler I Factorization methods — Thomas algorithm — principle

LU decomposition for tridiagonal matrices.

Linear Algebra
1 1)
1 1
1) (1)
[[
1 1
| [|
Direct methods .Em
= X
A L U
We suppose that L; and Uj; are known for i < p. Then
Ap,pfl = Lp,pflupflypflv
Ap,p = Lp,pfl Upflyp + Up,p7
Ap¢p+1 = UPA,P+1-
=
Lp,pfl = Ap,pfl/Upfhpfh
UP,P = Ap,p - Lp,p—l Up—l,p = Ap,p - APA,P—l Up—l,p/Up—l,p—l,

Up7p+1 = Ap,p+1~

Université ; o) _
Joseph Fourier if Factorization methods — Thomas algorithm — algorithm

Linear Algebra

Algorithmm

// factorization
U(1,1) = A(1,1)
U(l,2) = A(1,2)

Direct methods

Iterative methods for i = 2 to n
iz if U(i—1,i—1) = 0 then stop
L(i,i—1) = A(i,i—-1)/U(i—-1,i-1)
U(i,i) =A(i,i) — L(i,i—=1)xU(i-1,i)
U(i,i+1) = A(i,i+1)
end for

// construction of the solution
y = solve(L,b) // lower triangular
x = solve(U,y) // upper triangular

V.

Order 5n products.

Université _ # . o 2
Joseph Fourier I Factorization methods — general matrices

Linear Algebra

Direct methods For general matrices:
o Factorize the matrix

o LU algorithm
o Choleski algorithm

@ Solve upper triangular system

@ Solve lower triangular system.

Université 1 . 2 o
sosepn Fourier ¥ |terative methods — Principle

+ D + F

To solve AR = b, write A = M— N B
and iterate Mx ™! — Nx* = b, i.e. X*t' = MINZK + M~ 1h.

Linear Algebra

Iterative methods

A= E

@ M should be easy to invert.
@ M~1N should lead to a stable algorithm.

Jacobi M =D, N=—(E +F),
Gauss—Seidel M=D + E, N = —F,

Successive Over Relaxation M = g +E, N= (% — 1) D—F.

Jggg:ﬂsggurier# Jacobi method

Linear Algebra Algorlthm

choose x(k=0)

for k = 0 to convergence
for i =1 to n
rhs = b(i)

et e for j =1 to n, jl=i
Iterative methods rhs = rhs — A(I !J)*X(J 'k)
Preconditionin end for
x(i,k+1) = rhs / A(i, i)
end for
test = norm(x(k+1)—x(k))<epsilon
end for (while not test)

v

1 .
k+1 @ simple,
% A Z Aixf = L okt
" j=1,j#i @ two copies of the variable X
ok
1 = DNb - (E+ F)3Y) Il
i, @ insensible to permutations,
D7 (b+ (D — A)X) . . :
1 o @ converges if the diagonal is
= Db+ (I-D AKX strictly dominant.

sosoph Fourier I Gauss—Seidel method

i—1 n
1 k+1 1 k+1 k
Linear Algebra Algorlthm X; = A <bl - g AIJXJ - § AIJXJ>
ii -
Jj=1

j=i+1

choose x(k=0)

for k = 0 to convergence
for i =1 to n
rhs = b(i)

for j =1 to i—1
rhs = rhs — A(i,j)*x(j,k+1)

Iterative methods

end for
for j = i4+1 to n
rhs = rhs — A(i,j)*x(]j.k)
end for
x(i,k+1) = rhs / A(i, i)
end for

test = norm(x(k+1)—x(k))<epsilon
end for (while not test)

<

@ sensible to permutations,

o still simple,
@ often converges better than

@ one copy of the variable X, .
Jacobi.)

Université

Joseph Fourier # SOR method

Linear Algebra

i—1 n
w
s = A (bi = ;Aijxfk“ - Z Ainjk> + (1 — w)xf

j=i+1

Direct methods v

—1 —1
zk+1:<9+5> B+<9+E> [(1—1>D—F]zk
w w w

o still simple,

Iterative methods

Preconditioning

@ one copy of the variable X,

@ Necessary condition for convergence: 0 < w < 2.

Université 7 g 5
soseph Fourier ¥ Descent method — general principle

For A symmetric definite positive!l
Linear Algebra

Construct a series of approximations of the solution to the system

okl ok k =k
R =3+ o P,

Direct methods Sk . . k .

Iterative methods where p° descent direction and o to be determined.

Preconditioning

The solution X minimizes the functional J(X) = ‘XAX — 2'bX.

ng, x) = 861,- jZkaAkak - 2/2_ bjxj
= Z Aixic + Z xjAji — 2b;
k J
- 2 (A)? _ B) ,
aJ

ox; ®) =0

Université ; ..
Joseph Fourier ¥ Descent method — determining a

Linear Algebra -
’ X also minimizes the functional E(X) = (X — X)A(X —X), and E(X) = 0.

For a given B*, which a minimizes E(X**!)?
E(K+ap") = 'F+ap —)AFE +ap" — %),
0 - ok o ko = ok s
St —E(X+ap) = BAF+ap—2)+ (X + b’ — X)AP

Iterative methods 804

Preconditioning — 2t()?k + aﬁk _ X)Aﬁk

t()—(»k + ak,—)»k _ X)Aﬁk _ O
"% APk + au B ABY — RABF =0
tl—)»kA)—(»k + aktﬁkAﬁk _ tﬁkAX —0.

ak B t[—)»kA)—(»k _ tﬁkAX
tﬁkAp‘k

sosoph rourier ¥ Descent method — functional profiles (good cases)

Université

Linear Algebra

Direct methods

Iterative methods

Preconditioning

sosoph rourier ¥ Descent method — functional profiles (bad cases)

Université

N
AN
N—
<
I
o 1Q
]
Q -
N
Yoo N
2
=}
gue
o
s |
2 <
N
AN
N——
<
Il
Y 1
o]
S -
0
57w
7]
IS
EAN ™
SNe——
Z
s
=2 <

Linear Algebra
Iterative methods
Preconditioning

Direct methods

Université _ # . ..
Joseph Fourier &' Descent method — optimal parameter (principle)

Li Algeb - 5
fnear Algebra Principle

@ Choose gk = 7¥ = b — A%k

@ Choose o is such that 7™ is orthogonal to B*.
”
Direct methods
Iterative methods
Preconditioning — —
: k1 k1 Sk Ky ok Kk p =k
P = b AXM = b — AR+ apf) = 7 — AP,
tok okl _ tokok Kt =k q =k
0 = BT =T — o' prAB".
”
t 2k ok
kK_ PT
Ttk ABk”
P*Ap

E(X) = (1 —+)E(X)
with v* = (‘p*7)° > L [P 7| .
(tp*Ap*)(trcA=1r%) = Cond(A) ||p*|[I7*|l

Université _ # . .
Joseph Fourier &' Descent method — optimal parameter (algorithm)

Linear Algebra

Direct methods

Algorithm
Iterative methods

Preconditioning choose x(k=1)

for k = 1 to convergence
r(k) = b — A % x(k)
p(k) = r(k)

alpha (k) = r(k) . p(k) / p(k) . A % p(k)
x(k+1) = x(k) + Ph (k) * p(k)
end for //r(k) small

Université _ # . . .
Joseph Fourier &' Descent method — conjugate gradient (principle)

Linear Algebra

o Choose p* = ¥ + g<p<1.

@ Choose ﬂk to minimize the error, i.e. maximize the factor 'yk

Direct methods

Iterative methods

Preconditioning

| \

Properties
o PP =0V <k,
o Span(F*, 72, ...,) = Span(F*, AP, ..., AFTIF)
e Span(p', B°,...,B") = Span(#', AP, ..., AK71F
o ‘BKAF =0V < k
o 'FYAP =0 V) < k
@ The algorithm converges in at most n iterations.

Université _ # . . .
Joseph Fourier &' Descent method — conjugate gradient (algorithm)

Linear Algebra

Algorithm

Direct methods

Iterative methods choose x (k:].)
Preconditioning p(]) = r(]_) = b — A*X(l)
for k = 1 to convergence

alpha (k) = r(k) . p(k) / p(k)

x(k+1) = x(k) + alpha(k) * p(

r(k+1) = r(k) — alpha(k) =

beta(k+1) = r(k+1) . r(k+1) /

p(k+1) = r(k+1) + beta(k+1) =
end for //r(k) small

Université #
Joseph Fourier

Descent method — GMRES

For generic matrices A
Linear Algebra GMRES: General Minimal RESidual method
o Take a "fair” approximation X* of the solution

@ Construct the m-dimensional set of free vectors

{F AP, AT

Iterative methods

This spans the Krylov space HX.

o Construct an orthonormal basis for HX — e.g. via Gram-Schmidt
{,...,Vm}

Look for a new approximation Xt € HX:

=30 x5 = [VIX

Jj=1

We obtain a system of n equations with m unknowns

AR = A[V]X = b.

Université

sosoph Fourier ¥ Descent method — GMRES (cont'd)

Linear Algebra

o Project on HX = .
[FV]IA[V]X = ['V]b.

@ Solve this system of m equations with m unknowns

Direct methods

Iterative methods —k+1 =
Preconditioning @ X = [V]X

@ and so on...

To work well GMRES should be preconditioned!

Université " .. g 5 .
soseph Fourier I Preconditioning — principle

Linear Algebra

Replace system AX = b by C"'AX = C b
R where Cond(C~'A) < Cond(A).

Iterative methods

Preconditioning

C should be easily invertible, typically the product of two triangular
matrices.

e C = diag(A), simplest but well. ..

@ incomplete Cholesky or LU factorization

Université
Joseph Fourier

Linear Algebra

Direct methods
Iterati methods

Preconditioning

¥ Preconditioning — symmetry issues

Symmetry

Even if A and C are symmetric, C"'A may not be symmetric.
What if symmetry is needed?

Let C~'/2 such that C~Y/2C~¥/2 = c~L.
Then C2AC~/? is similar to C'A.

We consider the system
C+1/2(C71A)C71/2 Cct/2g — ct1/2¢c-1p

(Cfl/zAcfl/z)CH/z)-(. — Cc Y2}

Solve
(('-71/2/4(:71/2)}7 — c?g

and then
}—/* _ C+1/2)_(',

Université] e
soseph Fourier I Preconditioning — preconditioned conjugate gradient

Linear Algebra

Algorithm

choose x(k=1)
r(l) = b — Axx(1)

Direct methods SOIVe CZ(].) — r(l)
Preitiing. p(1) = r(1)
for k = 1 to convergence

alpha(k) = r(k) . z(k) / p(k) . A x p(k)
x(k+1) = x(k) + alpha(k) = p(k)
r(k+1) = r(k) — alpha(k) = A % p(k)
solve C z(k+1) = r(k+1)
beta(k+1) = r(k+1) . z(k+1) / r(k) . z(k)
p(k+1) = z(k+1) + beta(k+1) * p(k)

end for

At each iteration a system CZ = 7 is solved. J

Université _ # L.
Joseph Fourier ¥ Storage — main issues

Linear Algebra

@ Problems involve often a large number of variables, of degrees of
freedom, say 10°.

o To store a full matrix for a 10°-order system, 10'? real numbers (if
real) are needed... In simple precision this necessitates 4 To of
memory.

@ But high order problems are often very sparse.

@ We therefore use a storage structure which consists in only storing
relevant, non-zero, data.

@ Access to one element Aj; should be very efficient.

Joseph Fourier CDS: Compressed Diagonal Storage

Linear Algebra

L(A) = max Li(A)

where
Li(A) = max i =]
Band storage
O ||
L
H R
H BN
L
HE BN
HE BN

Joseph Fourier i CRS: Compressed Row Storage

Linear Algebra

tabi
tabj |
oo [N |
Band storage . .
S stof;ge @ All the non-zero values of the matrix are stored in a table tab; they

are stored line by line in the increasing order of columns.

@ A table tabj, with same size than tab stores the column number
of the values in tabv.

o A table tabi with size n + 1 stores the indices in tabj of the first
element of each line. The last entry is the size of tabv.

CCS: Compressed Column Storage = Harwell Boeing

Generalization to symmetric matrices

soseph Fourier ¥ CRS: Com pressed Row Storage — exercise

Linear Algebra

A—

o © o &

6
0
0
8

oo N o
w N o=

Band storage
Sparse storage

CRS storage?

4

tabi = {1,4,6,8,10}
tabj = {2,3,4,1,3,2,3,3,4}
tabv = {4,1,6,2,5,9,7,3,8}

Université

soseph Fourier ¥ Cithill-McKee algorithm — construction of a graph

Linear Algebra

Reduce the bandwidth of a large sparse matrix by renumbering the
unknowns.

Cuthill-McKee
algorithm

e A1)

Ly

i1 e Aio)

The nodes of the graph are the unknowns of
the system. They are labelled with a number
from 1 to n.

The edges are the relations between the
unknowns. Two unknowns i and j are linked if
Aj # 0.

The distance d(i, j) between two nodes is the
minimal number of edges to follow to join both
nodes.

The excentricity E(i) = max; d(i, j)

Far neighbors are \(i) = {j/d(i,j) = E(i)}
Graph diameter D = max; E(/)

Peripheral nodes P = {j/E(j) = D}.

Joseph Fourier Cuthill-McKee algorithm — bandwidth reduction

Linear Algebra

Guthil Mkee This graph is used to renumber the unknonws.
@ Choose a first node and label it with 1.

o Attribute the new numbers (2,3,...) to the neighbors of node 1
with have the less non-labelled neighbors.

o Label the neighbors of node 2
@ and so on...

@ until all nodes are labelled.

once this is done the numbering is reversed: the first become the
last.

sosoph Fourier ¥ Cyythill-McKee algorithm — example 1

Linear Algebra

G

- Fxemple-
Rouge :sans renumérotation
DBleu anumcruldLum Cuthill-Mac Kee

Cuthill-McKee
algorithm

Linear Algebra

Cuthill-McKee
algorithm

Université

Joseph Fourier ¥ Bibliography

Linear Algebra

B P. Lascaux, R. Théodor, Analyse numérique matricielle appliquée a
I'art de I'ingénieur Volumes 1 and 2, 2eme édition, Masson (1997).

B Gene H. Golub, Charles F. van Loan, Matrix Computations, 3rd
edition, Johns Hopkins University Press (1996).

UUUUUUUUU
loseph Fourier

Linear Algebra

	Vectors and matrices
	Elementary operations
	Gram–Schmidt orthonormalization
	Matrix norm
	Conditioning
	Specific matrices
	Tridiagonalisation
	LU and QR factorizations

	Eigenvalues and eigenvectors
	Power iteration algorithm
	Deflation
	Galerkin
	Jacobi
	QR

	Numerical solution of linear systems
	Direct methods
	Iterative methods
	Preconditioning

	Storage
	Band storage
	Sparse storage

	Bandwidth reduction
	Cuthill–McKee algorithm

	References

