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Abstract — Today signal processing systems uniformly sample
analog signals without taking advantage of their intrinsic
properties. For instance, temperature, pressure,
electrocardiograms, speech signals significantly vary only
during short moments. The digitizing system does not take into
account this specificity and furthermore is highly constrained by
the Shannon theory which fixes the sampling frequency at least
twice the input signal frequency bandwidth. It has been proved
that Analog-to-digital Converters (ADCs) using a non equi-
repartition in time of samples leads to interesting power savings
compared to Nyquist ADCs. A new class of ADCs called A-
ADCs (for Asynchronous ADCs) based on level-crossing
sampling (which produces non-uniform samples in time) and
asynchronous technology has been developed. This article will
present a fully non-uniform filtering technique associated to
such an ADC which is able to drastically reduce the power
consumption.

L INTRODUCTION

Reducing the power consumption of mobile systems - such
as sensor networks and many others electronic devices - by
one to two orders of magnitude is extremely challenging but
will be very useful to increase the system autonomy and
reduce the equipment size and weight. This is particularly
important for medical equipments such as pacemakers or
mobile ECG recording systems. In order to reach this goal,
this paper proposes a solution — based on non-uniform
sampling - applicable to FIR filtering which completely
rethinks the signal processing theory and the associated
system architectures.

Signal processing systems uniformly sample analog
signals at Nyquist rate without taking advantage of their
intrinsic properties; this is a fact. Due to the Shannon theory,
which fixes the sampling frequency at least twice the input
signal frequency bandwidth, the digitizing system is highly
constrained. Nevertheless, for many signals such as biological
or medical signals (and many others), it will be useful to take
into account their specific properties in order to determine the
appropriate sampling scheme. For instance, a level-crossing
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sampling scheme will be more adapted to a sporadic signal
than to a modulated RF signal. Indeed, the sporadic signal will
produce a very limited sample number contrarily to the RF
signal. This low number of samples can be beneficial for
limiting the consumed power. It has been proved in [1] and
[2] that Analog-to-digital Converters (ADCs) using a non
equi-repartition in time of samples can lead to interesting
power savings compared to Nyquist ADCs. A new class of
ADCs called A-ADCs (for Asynchronous ADCs) based on
level-crossing sampling [3][4] and related signal processing
techniques [5][6] have been developed.

After presenting the level-crossing sampling techniques
and the associated A-ADC, which has been designed and
fabricated in STMicroelectronics 130 nm CMOS technology,
this paper suggests an important change in designing FIR
filters. Like analog signals which are usually sampled
uniformly in time, the filter transfer function is also regularly
sampled with a constant frequency step. Nevertheless, non-
uniformly sampling this transfer function leads to an important
decrease of the weight-function coefficient numbers.
Combined with a non-uniform level-crossing sampling
technique performed by an A-ADC, this approach drastically
reduces the computation load by minimizing the number of
samples and operations.

II.  ASYNCHRONOUS ANALOG TO DIGITAL CONVERTERS

This new class of converters named A-ADCs is based on
two essential principles: a non-uniform sampling scheme of
the continuous time signal and an asynchronous
implementation.

A.  Non uniform sampling

The principle of regular sampling is presented in Fig. la:
samples are equi-spaced in time because sampling is ordered
by an external clock of a fixed period T, For non-uniform
sampling (cf. Fig. 1b), 2”-1 quantization levels are regularly
set along the amplitude range of the signal (M defines the
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hardware resolution of the converter). A sample is captured
only when the analog input signal V;, crosses one of these
levels. J.W. Mark et al. named this principle “level crossing
sampling scheme” [1]. Contrary to the classical Nyquist
sampling, samples are not regularly spaced out in time,
because it depends on the signal variations: the sharper the
signal, the closer the samples. Thus, together with the value of
the sample b;, the time Dt; elapsed since the previous sample
b;.; must also be recorded, according to the resolution 7¢ of a
time basis.
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Fig. 1: Regular sampling (a) vs. non uniform sampling (b).

Uniform sampling (cf. Fig. 1a) is always implemented in
classical A/D conversion systems: samples are taken by the
Sample and Hold (S/H), respecting the Shannon theorem, then
quantized by the ADC. Considering an ideal clock and an
ideal S/H, time instants are perfectly known, the only
imprecision is due to the quantization noise added during the
A/D operation. It is characterized by the Signal-to-Noise Ratio
(SNR), which only depends on the resolution N of the
converter. The classical formula of the SNR for the Nyquist

sampling scheme is: SNR; =10. log(12.0'§1 / q]Zqu) , Where g;,

is the standard deviation of the input signal V;, and gy, is the
quantum. For a non-uniform sampling A/D Converter, the
conversion of samples is triggered when a reference level is
crossed by the signal. The amplitude of the sample is then
precise, but the time elapsed since the previous sample is
quantized according to the time resolution 7. Dt; is known
with an error &, which belongs to the interval [0,T]. The
SNR relation must be re-determined. First, the error & in time
can be translated into an error in amplitude 6V according to:

oV =(dV,,/dt)ot, where dV,,/dt is the input signal slope.
Then dV,,/dt and & can be considered as independent

random processes, thus this quantization noise power
becomes:
P(oV)= P(ddﬁ}P(&) (1)
t

Jt is a random variable uniformly distributed across /0,T¢/,
thus:

P(d)=-* )

Like in the synchronous case, the SNR is always defined as:

SNR 5 = 10.105._{ ﬁ EZV;] (€)

Using (1) and (2), we get:

SNR,; =10.log m + 20.1og{Ti] @)
P de C
dt

The first term of (4) is only determined by the statistical
properties of the input signal V;,. The SNR depends on the
timer period 7¢, and not on the number of quantization levels.
Thus, for a given implementation of the non-uniform sam%ling
A/D converter (a fixed number of quantization levels: 2-1),
the SNR can be externally tuned by only changing the period
Tc of the timer. For example, if the SNR has to be improved
by 6,02dB i.e. must have one more bit of effective resolution
(or ENOB — Equivalent Number Of Bit), 7 has to be divided
by 2. Equation (4) can be used to determine the theoretical
SNR of a pure sine wave, a speech signal, an ECG signal...
The main differences of regular vs. non-uniform sampling are
summarized in TABLE I.

TABLE L. CHARACTERISTICS OF BOTH TYPES OF SAMPLING.
Regular Non-uniform
sampling sampling
Conversion trigger clock level crossing
Amplitude quantized exact value
Time exact value quantized
SNR dependency number of bit timer period
Converter output amplitude (amplitude, time)

Theoretically for the non-uniform sampling, the SNR can
be improved as far as it is needed, by reducing 7¢. The limit is
in fact the accuracy of the analog blocks: they determine the
precision of the quantization levels position in Fig. 1b. If these
levels are known with an incertitude ov, this error must be
added in the quantization noise in (1), and the SNR is
therefore degraded. If an ENOB-bit resolution is targeted for
the asynchronous converter, each analog block must be
designed to reach the ENOB-bit accuracy when used in the
circuit.

B.  Asynchronous conversion

Many hardware strategies can be used to implement the
level crossing sampling scheme described in the previous
paragraph. The chosen one is a tracking loop enslaved on the
analog signal to convert. For the crossing detection, the
instantaneous comparison of the input analog signal V;, is
restricted to the two nearest levels: the one just above, and the
one just below. Every time a level is crossed, the two
comparison levels are down or up shifted. The conversion
loop, shown in Fig. 2, is composed of four blocks: a difference
quantificator, a state variable (an up/down counter), a Digital-
to-Analog Converter (DAC), and a timer delivering the time
intervals Dt; between samples. This choice is very interesting
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for a minimization of the hardware. Moreover, only one cycle
of the loop is needed to convert a sample. As it is explained
before, no external signal as a clock is used to trigger the
conversion of samples. To preserve the same state of mind, an
asynchronous structure has been chosen for the circuit. The
information transfer between each block is locally managed
with a bi-directional control signalling: a request and an
acknowledgement. This explains the name of Asynchronous

ADC. This architecture has been implemented in
STMicroelectronics 130 nm CMOS technology.
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Fig. 2: Block diagram of the A-ADC.

III. FILTERING PRINCIPLES

As mentioned above, non-uniform sampling leads to a
reduced number of samples, compared to the classical Nyquist
sampling. This feature has already been used in [5][6] to
design FIR filters. These techniques are based on interpolation
and/or resampling. In these works, the authors however used a
classical filter that follows the usual uniform discretization in
frequency of the impulse response. Here we want to go further
and take advantage of the fact that the filter transfer function
(the Fourier transform of the impulse response) is a very
smooth function with respect to frequency. Indeed, it can
therefore be well approximated by a linear interpolation of
quite few samples.

The signal which we want to filter is given in the time
domain and is denoted by x(z). The filter transfer function is
given in the frequency domain and is denoted by H(w). The
result of the filtering process y(z) is then theoretically the
convolution of x(z) with the impulse response /(¢) which is the
inverse Fourier transform of H(w):

y(t) = fh(t - T)x(7)dT (5)

The signal x(z) is sampled using a level crossing scheme in
the time domain. This scheme is also applied to the filter
transfer function H(w) in the frequency domain. As the
transfer function is complex valued, we can choose to sample
either when the amplitude crosses some predefined values, or
the phase, or both. The samples read (s,, ot,) for the signal and
(Hy, dwy) for the filter transfer function. These samples are
formed of a value and the (time or frequency) interval length
"elapsed" since the last sample. To give results or describe
algorithms we will use the sample times or frequencies
defined as:

t,=t,+ ) 4, (6)
i=l

k
w, =, + 0w,
j=1

@)

Notice that the computations will be performed only using the
time and frequency intervals ot, and dw,. As mentioned above,
the transfer function — thanks to its smoothness - can be well
approximated by a piecewise linear function H(w). The
corresponding impulse response /(z) can easily be split in
several contributions /#,(¢) corresponding to each frequency
sample:

h(t)=> h(t) ®)

This leads to a summation formula [7], as in the classical FIR
filtering case, which takes the form of a convolution product.

PO =D %, h, () ©)

The effective formula directly depends on the type of
interpolation which has been used (piecewise constant, linear,
spline ...). In the sequel, we will use a piecewise constant
interpolation.

IV. A DEMONSTRATIVE EXAMPLE!

In order to demonstrate the relevance of the approach, we
choose a particularly simple formulation: the ideal low-pass
filter which is 1 on the frequency interval [-o©., ®.] and zero
elsewhere. Indeed, this yields a single sample (1,2w.)! This
case is simple due to its minimal number of samples in the
frequency domain, but it displays all the difficulties of the
general case, i.e. the need to evaluate special functions. The
computation of the filter coefficients and the determination of
these special functions is not addressed in this paper but is
presented in [7]. These functions are built in many libraries in
view of a numerical implementation. This feature makes
possible the construction of efficient lookup tables for a
hardware implementation. We also can notice that this
approach is able to provide an implementation of an ideal
filter.

V. NUMERICAL RESULTS

To illustrate this simple example, we filter the signal
x(t) = 0.45 sin(2r t) + 0.45 sin(10xt) + 0.9 with our ideal low
pass filter with the cutoff frequency . = 4n rad/s. The
theoretical — result is  therefore  supposed to be
y(t) = 0.45 sin(2xt) + 0.9. Even if this signal is not a typically
sporadic (more samples are taken), we perform the
computations within the Matlab SPASS (Signal Processing for
ASynchronous Systems) framework [8]. This signal is
sampled with a 3-bit Asynchronous A/D Converter (AADC)
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which leads to a level crossing sampling over the amplitude
range [0V, 1.8V].

We can choose as we want the times at which the filtered
signal is computed. To display the results we choose the
sequence of times #,=./7m where m is an integer to have
sampling points dispatched irregularly over the obtained
solution. On Figure 3, you can see the result for a linear
interpolation of the signal non-uniform samples and a 3-bit
AADC. We plot continuous functions with lines: the initial
signal x(?) (dashed line) and the theoretical filtered signal y(z)
(solid line). We plot the sampled results with markers: the
non-uniformly sampled initial signal x, (asterisk markers) and
the computed filtered samples yy, (circle markers) at times t,,.
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Fig 3: Initial signal (dashed line), theoretical filtered signal (solid line), non-
uniformly sampled initial signal (asterisk markers) and computed filtered
samples (circle markers)

This very simple test case has quite a low number of
parameters compared to the full problem for which we can
finely tune the filter transfer function sampling for example.
We compare here the results obtained for a zeroth and a first
order interpolation of the signal and for different values (2, 3,
4 and 5) of the AADC resolution. On Table II, we give the
relative error between the computed filtered samples y,, at
times f,,=.01m (m integer) and the theoretical values y(%,,).

TABLE IL Error of the filtering method for the Oth and first order
interpolation of the signal and different resolutions (M) of the AADC.

0™ order 1™ order
M=2 6.08% 5.84%
M=3 0.76% 0.48%
M=4 0.52% 0.45%
M=5 0.46% 0.45%

than 1% of relative error. This is usually enough accurate for
most of the mobile and autonomous applications requiring a
digital filtering.

VL

This article has presented the principles of the level
crossing sampling scheme and an architecture of A-ADC able
to implement it. This technique is especially well-suited for
processing sporadic signal such as many medical or biological
signals (ECG, EEC ...). Indeed, these signals are favorable to
drastically reduce the number of samples and thus the global
power consumption for processing these signals. Then we
have presented a novel approach to FIR filtering based on the
non-uniform sampling (in time) of the signal and the non-
uniform sampling (in frequency) of the filter transfer function.
This non-conventional sampling of the transfer function leads
to an important reduction of the filter coefficient number.
Even if the computation of these coefficients is more complex,
the filtering process only requires very few operations for
calculating the output signal. This low computation load result
s in a drastic power saving compared to the classical signal
processing approach.

CONCLUSION

Previous works have demonstrated the feasibility of an
ADC based on a level sampling scheme. The theoretical study
for developing new filtering techniques has been evaluated
using Matlab simulations. We now are currently working on a
hardware implementation. This approach is very promising to
achieve ultra-low power consumption in mobile and
autonomous systems, especially with biological signals which
often display a sporadic nature.
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