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ABSTRACT
This article deals with the Cauchy problem for a nonlocal Zakharov equation. We
will first recall the physical motivation (due to V.E. Zakharov) of this system.
Then we will study the local Cauchy problem for certain initial data, and will
identify the limit of the solutions when the ion velocity tends to infinity.

1 Origin of the nonlocal Zakharov system

The Physical theory which follows has been developped by V.E. Zakharov5,6 to de-
scribe the Langmuir Oscillations in Plasma Physics.
We assume that:

1. the plasma is sufficiently uniform,

2. the magnetic field is sufficiently weak,

3. the nonlinearity level is not too high,

4. there are no transverse high frequency electromagnetic waves.
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We consider the following equations that modelise the phenomena:
Linearised hydrodynamical equations

∂

∂t
δne + div(n0 + δn)~Ve = 0, (1)

∂

∂t
δ~Ve +

3V 2
Te

n
~∇δn =

e

me

~E. (2)

Maxwell’s equation

1

c2
∂2 ~E

∂t2
+ curlcurl ~E +

4πe

c2
(n0 + δn)

∂

∂t
δ~Ve = 0. (3)

Vlasov’s equation
∂fi

∂t
+ (V.~∇)fi − n

e

mi

~∇ϕel
∂fi

∂V
= 0, (4)

δni =
en0

Te

(ϕel − ϕ). (5)

We moreover set
~E =

1

2

(
~̃E exp(−iωplt) + ~̃E

∗
exp(iωplt)

)
, (6)

and
~̃E = ~∇ψ. (7)

Eq. 1-7 imply that

∆(2iωplψt + 3V 2
Te

∆ψ) = ω2
pldiv(

δn

n0

∇ψ). (8)

Two different hypothesis can be made:
First hypothesis
The nonlinear phenomena have such a long period that the ions have enough time to
reach the Boltzmann distribution law in a low frequency field:

δn

n0

= −eϕel

Ti

. (9)

After some computations and a change of scale, Eq. 8 and 9 lead to

∆(iψt + ∆ψ) = div(|∇ψ|2∇ψ). (10)

This equation has been widely studied by T. Colin1,2.
Second hypothesis
The ions do not have the time to reach this distribution:(

∂2

∂t2
+ 2γs

∂

∂t
− c2s∆

)
δn =

1

16πmi

∆|E|2. (11)
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We will suppose that the damping rate is zero, i.e. we neglect 2γs
∂
∂t

.
After a change of scale, Eq. 11 and 8 become ∆(iψt + ∆ψ) = div(n∇ψ),

1

c2
ntt −∆n = ∆(|∇ψ|2). (12)

In what follows, we will not give any complete proof. They may be found in an
article which is to appear7.

2 Existence and uniqueness for the Cauchy Problem

We first consider the system 12 with c = 1:{
∆(iψt + ∆ψ) = div(n∇ψ),
ntt −∆n = ∆(|∇ψ|2). (13)

We set B = ∇(−∆)−1∇. and ϕ = ∇ψ. Eq. 13 is equivalent to

{
iϕt + ∆ϕ = −B(nϕ),
ntt −∆n = ∆(|ϕ|2). (14)

B is homogeneous of order 0 in the Fourier variables. Thanks to Calderón-Zygmund’s
theorem we have the following result:
For all 1 < p <∞, there exists Cs,p such that

‖Bf‖W s,p ≤ Cs,p ‖f‖W s,p . (15)

2.1 Theorem for the Cauchy Problem

Theorem 1 Let us consider the problem on RN , N = 1, 2, 3.

iϕ̇+ ∆ϕ = ∇∆−1∇.(nϕ),
n̈−∆n = ∆|ϕ|2,
n(x, 0) = n0(x),
∂tn(x, 0) = n1(x),
ϕ(x, 0) = ϕ0(x),

(16)

with n0 ∈ H1, n1 ∈ L2 and ϕ0 ∈ H2.
Then there exists a time T > 0 depending only on ‖n0‖H1, ‖n1‖L2, ‖ϕ0‖H2 and N
and a unique solution (ϕ(t), n(t)) to Eq. 16 which satisfies

ϕ(t) ∈ C0([0, T ];H2) ∩ C1([0, T ];L2),
ϕ(t) ∈ W 1,8/N(0, T ;L4),
n(t) ∈ C0([0, T ];H1) ∩ C1([0, T ];L2) ∩ C2([0, T ];H−1).

(17)
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Thanks to Eq. 15, we have been inspired for the idea of the proof by the work of
Ozawa and Tsutsumi3. We first make a change of variables (in order not to loose regu-
larity at each step). We then use a fixed point method to find existence and uniqueness
in a subset of the original functional space. To conclude, we prove uniqueness in the
whole space and return to the initial variables.

2.2 Setting of the fixed point method

Setting F = ∂tϕ, we formally get
iFt + ∆F = −B(∂tn(ϕ0 +

∫ t

0
Fds) + nF ),

ntt −∆n = ∆(|ϕ|2),
ϕ = (−∆ + 1)−1{iF +B(n(ϕ0 +

∫ t

0
Fds)) + (ϕ0 +

∫ t

0
Fds)},

(18)

with F (0) = F0, n(0) = n0, ∂tn(0) = n1.
We work in RN with 1 ≤ N ≤ 3. We use the following functional space:

X = [L∞(I;L2) ∩ L8/N(I;L4)]⊕ [L∞(I;H1) ∩W 1,∞(I;L2)], (19)

where I = [0, T ].
We set N = (N1, N2) with

N1[F, n](t) = U(t)F0 + i
∫ t

0
U(t− s){B(∂sn(ϕ0 +

∫ s

0
Fdτ) + nF )}ds,

N2[F, n](t) = cos(ωt)n0 + ω−1 sin(ωt)n1 +
∫ t

0
ω−1 sin(ω(t− s))∆|ϕ(s)|2ds,

(−∆ + 1)ϕ = {iF +B(n(ϕ0 +
∫ t

0
Fds)) + (ϕ0 +

∫ t

0
Fds)},

(20)

where U(t) is the group generated by the Schrödinger operator and ω denotes
√
−∆

(multiplication by |ξ| in Fourier variables).
We set

a = max{‖ϕ0‖L2 , ‖ϕ0‖L4 , ‖∆ϕ0 +B(n0ϕ0)‖L2 , ‖n0‖H1 + ‖n1‖L2}, (21)

Y = {(F (t), n(t)) ∈ X/ ‖F‖L∞(I;L2) ≤ 2a, ‖F‖L8/N (I;L4) ≤ 2δa,

‖n‖L∞(I;H1) ≤ 2,

∥∥∥∥∥dndt
∥∥∥∥∥

L∞(I;L2)

≤ 2a}. (22)

The fixed point method will consist in solving{
N1[F, n] = F,
N2[F, n] = n.

(23)

N : Y → Y is a contraction if T is sufficiently small, thus we may find a fixed point.
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2.3 Return to the initial problem

The fixed point method yields:

F (t) ∈

 1⋂
j=0

Cj([0, T ];H−2j)

⋂L8/N(0, T ;L4),

n(t) ∈
2⋂

j=0

Cj([0, T ];H1−j),

ϕ(t) ∈ C([0, T ];H2).

(24)

This regularity enables us to return to the initial variables; we get the desired regu-
larity and two conservation laws:∫

|ϕ(t)|2 =
∫
|ϕ0|2, (25)∫

(|∇ϕ(t)|2+n(t)|ϕ(t)|2+1

2
(∇Φ(t))2+

1

2
n2(t)) =

∫
(|∇ϕ0|2+n0|ϕ0|2+

1

2
(∇Φ0)

2+
1

2
n2

0),

(26)

where −∆Φ =
∂n

∂t
.

3 Limit as c tends to ∞

We now consider the problem
1

c2
ntt −∆(n+ |E|2) = 0,

iEt + ∆E +B(nE) = 0.
(27)

The result obtained in Section 2 still holds but T depends on c.

We shall work with variables in Hs with s >

[
k

2

]
+ 3.

There is no need to prove uniqueness since this has been already done in some larger
space.
The formal limit of the solution is the couple (−|Ẽ|2, Ẽ) solution of

iẼt + ∆Ẽ −B(|Ẽ|2Ẽ) = 0. (28)

3.1 The Theorem for the Limit

Theorem 2 When c tends to ∞,
nc + |Ec|2 → 0 in C0([0, T ]×Rk),
∇(nc + |Ec|2) → 0 in C0([0, T ];Hs−2),
Ec → Ẽ in C1([0, T ]×Rk) ∩ C([0, T ]; C2),

where Ẽ is the unique solution of

iẼt + ∆Ẽ −B(|Ẽ|2Ẽ) = 0. (29)
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This time we adapt the method of Schochet and Weinstein4. We first carry out a
transformation of the system into a dispersive perturbation of a symmetric hyperbolic
one. Then we prove the existence of a regular solution for a time independent of c
and pass to the limit when c tends to ∞.

3.2 Transformation of the system

We set  V = −1

c
∆−1∇nt,

Q = n+ |E|2,
(30)

√
2E = F + iG et

√
2∇E = H + iL, (31)

and
U =t (Q, V, F,G,H, L), (32)

then the system may be rewritten as

Ut +
k∑

j=1

{R(Aj(U)Uxj
) + cCjUxj

}+ S(B̃(U)U) = K∆U. (33)

R and S are Calderón-Zygmund’s operators.
B̃ is a nonlocal operator.
K is an antisymmetric matrix.
Cj and Aj(U) are symmetric matrices.
These properties will be very useful to make estimation in Sobolev spaces and to use
the classical theory of hyperbolic equations.

3.3 Existence of a regular solution for a time independent of c

To this end, we use the following iteration scheme:

U0(x, t) = U0(x), (34)

∂Up+1

∂t
+

k∑
j=1

{R(Aj(Up)Up+1
xj

) + cCjUp+1
xj

}+ S(B̃(Up)Up+1) = K∆Up+1, (35)

Up+1(x, 0) = U0(x). (36)

One can show the following estimates.

• ∀p ≥ 0 ‖|Up‖|s,T ≤ δ,

• ∀p ≥ 0 ‖|Up+1 − Up‖|0,T ≤ C‖|Up − Up−1‖|0,T ,
with C < 1.
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• Then
Up → U in L∞(0, T ;L2),
Up is bounded in L∞(0, T ;Hs).

(37)

Then U ∈ C([0, T ]; C1) and the solution is a classical one.
Moreover we have

U ∈ Lip([0, T ];Hs−2),
U ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2).

(38)

The time T is independent of c (because Cj is symmetric).
To gain some regularity we use the theory of commutators.
There is no problem in returning to the initial variables and we get

Theorem 3 Let s ≥
[
k

2

]
+ 3. For n0 ∈ Hs, n1 ∈ Hs−1 and E0 ∈ Hs+1, there exists

a unique solution to system 27 endowed with the following initial data:
n(0, x) = n0(x),

∂tn(0, x) = n1(x),
E(0, x) = E0(x),

(39)

on a time interval [0, T ], T not depending on c but only on ‖n0‖Hs, ‖n1‖Hs−1 and
‖E0‖Hs+1.
Moreover, for all t ∈ [0, T ] we have the estimate

‖Ec‖Hs+1 + ‖Ec
t ‖Hs−1 + ‖nc‖Hs +

1

c
‖nc

t‖Hs−1 +
1

c2
‖nc

tt‖Hs−2 ≤ Cst (40)

Thanks to the two conservation laws Eq. 25 and 26 we can, as for the classical
Zakharov equation (B = −I), show that the solutions are global in time in the
1-dimensional case and also in the 2-dimensional case when the initial data are suffi-
ciently small.
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