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Abstract—There are many ways to nonuniformly sample a
signal, the most widely used, but not only, way to perform
it being level crossing. The targeted application, and also the
characteristics of the signal, can lead to various choices of
samplings, to ensure a good representation of the input signal
or robustness with respect to noise.

I. INTRODUCTION

Nonuniform samples can stem from an external source, and
in this situation it is usually considered as a drawback for the
subsequent processing. It is so when then sampler is not always
available, or when it is perturbed (jitter, missing samples. . . ).

Here we consider the case when nonuniformity is wanted,
first as a way to compress the signal. This reduction is
an effective way to reduce power consumption in electronic
systems since there exists a direct relation between activ-
ity and dynamic power. Considering today’s system power
requirements, mitigating the system activity is becoming an
important issue for autonomous communicating objects or
mobile systems. Indeed, less data to process, store and transmit
is the way to decrease power consumption. It can be processed
on systems that are event-based and naturally produce and treat
nonuniform samples. Another characteristics of such a setting
for embedded systems can also be a lower electromagnetic
emission and also a stronger protection to spying attacks since
the signature of asynchronous operations is less clear than
synchronous ones.

Once uniformity is discarded, they are many ways to be
nonuniform, more than ways to be uniform. Apart from the less
regular mathematical structure, this variety is one reason why
it is more difficult to give general results and propose generic
algorithms for nonuniform samples, since the way samples
have been captured also carries information.

We explore here a few classical techniques to do this,
assuming we know the application and general features of the
signal (eg. bandwidth, range, or statistical regularity), but no
more. We do not address here the case when the system could
fix levels or bounds from a deeper knowledge of the signal, or
adapt them during the processing through a learning procedure.
An already well studied sampling from the point of view of
applications is level crossing sampling [1]–[3] but a lot remains
to do from a theoretical point of view [4]. We can use instead
peak sampling, or combine both [5]. Other systems do not
focus on values of the system but on their variations. This is the
case of derivative level-crossing sampling which is described
in [6]. Here we explore what we call slope sampling, for which

the sampling criterion is some Lebesgue norm distance to an
oversampled signal and for which samples are taken when the
slope varies significantly.

II. VARIOUS TYPES OF SAMPLING

In this section we discuss various types of samplings and
fix the notations. To show the samples, we first choose a short
fragment of an ECG signal, which is a sporadic and noisy
signal.

A. Level crossing

Since we do not want to adapt here the sampling to
the signal, we only suppose that we know the range of the
signal and consider a predefined set of levels that encompasses
this range. Each time the continuous signal crosses one of
these levels, a sample is taken together with the time elapsed
since the previous sample was taken. It forms the couple
(xn, δtxn), where xn and δtxn are respectively the amplitude
of the signal at the nth sampling time and the time delay
(see Figure 1). In fact, this approach is dual to the classical
sampling that captures uniformly in time the samples. Indeed,
in the classical case, the instants are perfectly known and
the amplitudes are quantized, while, in nonuniform sampling,
the instants are quantized and the amplitudes are perfectly
known. This has been studied for several years from the
theoretical point of view [7]–[9] and practical implementations
have been proposed several years later [10]–[12]. Note that all
the discussion in this paper about level crossing sampling will
also apply to send-on-delta sampling which only differs in a
global shift of the levels (when they are uniformly distributed)
and a decimation of successive samples of equal amplitude.

The main advantage of such a sampling scheme is its
ability to adapt the number of samples to the signal variations.
In the active signal parts, the signal often crosses the levels
inducing a lot of samples, whereas, in the silence parts, the
signal stays for a while between two levels and no sample
is taken. Therefore, for smoothly varying or sporadic signals,
the number of samples can drastically be reduced compared
to the classical sampling technique [7], [13], [14]. This is
demonstrated on our ECG fragment in Figure 2.

The next step after sampling is often an interpolation to
provide (at least theoretically, for algorithm construction) a
continuous-time signal. It has been noticed that for many ap-
plications zeroth- or first-order hold reconstruction is sufficient
and that no practical gain is obtained by using a higher-order
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Fig. 1. Principle and notations for level crossing sampling.

Fig. 2. Demonstration of level crossing sampling on a small ECG fragment.

interpolation of samples [15]. We see in Figure 2 that there are
many consecutive samples with the same amplitude. In each
series of such samples only one or two samples are needed to
lead to exactly the same zeroth- or first-order reconstruction
and therefore subsequent processing. The samples of Figure
2 can thus be further decimated to remove unneeded same
amplitude consecutive samples.

A possible way to capture less samples, and thus decrease
as much as possible the activity, is to reduce the number
of levels. Nevertheless, applications need to fulfill conditions
such as accuracy and relevance of the data, which limits
the reduction of the level number. But it is also corollated
to the level position and an appropriate positioning of the
thresholds can drastically reduce their number. It has been
demonstrated by [16], [17]. In this work, the signal and the
application are first studied. Then a method is proposed where
a classifier is used for extracting the optimal threshold number
and placement. The paper demonstrated that, with only four
thresholds optimally placed, it is possible to reduce by two
orders of magnitude the number of samples. This shows the
potential of such an approach where the level positioning is
not necessarily uniform and accurately chosen with an a priori
knowledge of the signal and the application.

Fig. 3. Demonstration of peak sampling on a small ECG fragment.

B. Peak detection

Peak detection consists in taking a sample each time a
local minimum or maximum is detected. On the same model
as for level crossing, it leads to samples of the form of couples,
(yn, δtyn), yn denoting the amplitude of the signal at the nth
sampling time and δtyn the time delay. This is demonstrated
on our ECG fragment in Figure 3.

The analysis of an ECG diagramme is typically the de-
tection of characteristic points and among them peaks, but
clearly peak sampling is not well adapted to noisy signals.
Although it is not designed as a filter, level crossing sampling
naturally filters high frequency components of the signal which
have a small amplitude (it is typically the case of noise). Peak
sampling does exactly the contrary and it exacerbates noise.
Moreover a monotonous signal, even with a large variation,
would lead to no sample, since there would be no local
extremum.

One advantage of this sampling is however that it only
depends on the signal and not on a set of predefined levels
like in level crossing sampling or quantum like in send-on-
delta sampling.

C. Levels and peaks

Apart from successive equal amplitude samples, we see
another feature on the samples of Figure 2: in the very rapid
large amplitude peak (named as QRS complex) there is a
number of unnecessary samples in the rapidly increasing and
rapidly decreasing parts, when keeping the lower and higher
samples would lead to a very similar first-order reconstruction.
Following [5] we can combine the advantages of level crossing
and peak samplings. We first sample with level crossing. It
already yields a first compact and denoised version of the
signal. Then we detect local maxima and minima in the level
crossing samples and keep only these samples. This once more
yields (zn, δtzn) amplitude–delay couples, that are depicted in
Figure 4.

We keep the main drawback of peak detection: if there is
no peak in the original signal (monotonous signal, or small



Fig. 4. Demonstration of level and peak sampling on a small ECG fragment.

peaks that are not detected with the chosen levels) there still
is no sample with this technique. But there are some gains,
in particular in the relevance of the captured data. Indeed,
level crossing is limited in the number of levels in order to be
competitive with Nyquist sampling. If it is coupled with peak
sampling, we can relax this constraint. For a regular signal, in
parts that are predominantly linear, adding more levels would
not lead to more samples since linear parts will be decimated.
To that, we have more chance to catch the real value of the
peaks, since more levels (in the same range) means less peak
clipping.

In the three previous types of sampling, for example in the
case of a constant signal, no sample can be taken for a long
time, inducing a large cumulative error between the real signal
and the sampled one. In particular in level crossing sampling,
the error which is considered is mainly a L∞-error. In the
sequel, we propose a sampling type that takes into account
other Lebesgue-norm errors.

In the previous samplings the samples are taken when some
event occurs (level-crossing and/or change of slope sign). It
could be performed on a continuous-time signal, or on a finely
sampled signal that mimics a continuous signal for the purpose
of numerical experiments.

D. Slopes

Slope sampling supposes that there exists a pre-existing
sampling (regular or not), but original samples are not neces-
sarily stored, they can just be captured and kept or not by the
nonuniform slope sampler. As for level-crossing where levels
should be predefined, there is also an external parameter to
the input signal, which is a tolerance ε, and the choice of a
norm. The principle is shown in Figure 5. The point labelled
1 is the first sample of the input signal (or the last sample that
has been kept during the process). Then the two following
points (labelled 2 and 3 are explored). If the distance between
the signal described by points (1,2,3) is ε-close to the signal
described only by poins (1,3), then point 2 is discarded. For
the L1-norm this corresponds to measuring the surface of the
dark gray triangle. Then point 4 is explored and if the signal
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Fig. 5. Principle and notations for ”slope sampling”.

Fig. 6. Demonstration of slope sampling on a small ECG fragment.

described by points (1,2,3,4) is ε-close to the signal described
only by points (1,4), point 3 is also discarded, and so on. When
the distance is too big, the last but one point is kept and plays
the role of point 1 in the subsequent processing.

This type of sampling, as level crossing, has a tendency to
filter small amplitude noise. Depending on the type of input
signal it can lead to a drastic reduction of the number of
samples. Contrarily to level-crossing, it ensures that even if
the signal has only small variations, samples will eventually be
taken since small errors accumulate. We denote by (wn, δtwn)
the induced amplitude–delay couples. The samples obtained
for the ECG fragment are depicted in Figure 6 for a 3 10−2

tolerance on the L1-norm.

III. NUMBER OF SAMPLES

In regular sampling, the number of samples depends only
on the sampling frequency and the total duration of the signal.
One of the goals of nonuniform sampling is the reduction of the
number of samples, but this number is much less predictable
from simple parameters and features of the signal.

The example chosen above is a noisy biological signal,
which is obviously not the target of peak sampling. The initial
signal is regularly sampled with a ts = 5 10−4 s period,



signal number of samples compression
xn 141 95%
yn 1179 58%
zn 14 99.5%
wn 86 97%

TABLE I. NUMBER OF SAMPLES AND COMPRESSION FOR AN ECG
FRAGMENT.

leading to 2801 samples on the fragment of interest. The num-
ber of samples and compression percentages corresponding to
Figures 2, 3, 4, and 6, are given in Table I.

In [4], theoretical results are obtained on the number of
samples that can be obtained through a level crossing sampling
procedure with an assumption on the Hölder regularity of the
input signal, leading to an upper bound of the number of sam-
ples in the worst case. Such an analysis would be impossible
for peak sampling, for which there is no compression at all in
the worst case. The level and peak sampling is always better
in terms of compression than simple level crossing sampling.
The worst case in level crossing sampling is obtained when
all levels are crossed successively and it is typically the case
when the subsequent peak sampling will cancel samples.

For samplings which add extra parameters to the signal
itself —i.e. all but peak sampling— the impact of the variation
of the parameters can be studied. For example level crossing
leads to peak clipping and a small variation in the position of
the levels (offset) can make samples appear or disappear. This
is one of the reasons why the problem of the right placement
of levels is an important issue.

The impact of noise is another issue. We would want the
sampling, and especially the number of samples not to depend
too much on noise. The case of additive noise for level crossing
sampling has been studied in [18]. As it can also be seen in
Figure 2 a noisy system can cross many times levels with no
special information carried by all these nonuniform samples.
They can of course be decimated a posteriori. Level and peak
sampling does not share this drawback since the decimation
is part of the sampling process. We can therefore expect the
number of samples to be very stable with respect to noise, if
of course it is zero mean and its standard deviation remains
below the quantum threshold used for the levels.

We explore further the impact of an additive noise in the
next section.

IV. IMPACT OF NOISE ON THE NUMBER OF SAMPLES

To test the impact of noise, we perform the following test
on the input signal

f(t) =
1

2
+

1

2
sin(2πt).

This type of signal is not the one targeted by nonuniform
sampling, since it is not sporadic and uniform sampling at
a Nyquist rate would suit more here. Our aim is to compare
the nonuniform methods with respect to noise and to mimic a
continuous signal by starting with an oversampled uniform sig-
nal. We therefore consider 100 periods of this signal, uniformly
sampled at 100 Hz, thus yielding 10000 original samples. We
then compare the four sampling methods described in this
paper and also add a noise with zero mean and a standard

Fig. 7. Number of samples in terms of noise standard deviation (in q units:
σ = αq).

deviation σ. We take the quantum q used for level crossing
(with 8 levels) as a unit for σ and explore values of σ = αq
for α ∈ [0, 1]. The first test case consists in comparing the
number of samples yield by the various types of nonuniform
sampling. The results are given in Figure 7. The fact that we
use 100 periods of the signal provides some averaged results
which are quite similar from one run to another. Thus Figure
7 is quite generic and not specific to a given run.

We see that the number of samples is very constant with
slope sampling. At least for σ > .1q, the number of samples is
linear for level crossing and level and peak sampling. Of course
the number of samples for level and peak sampling is lower
than for level crossing sampling since it is a decimation of the
later. Peak sampling seems to saturate for high values of σ. For
σ = 0 it yields exactly the same number of samples as level
and peak sampling, namely 198 samples. It increases rapidly
for peak sampling since noise, whatever its standard deviation,
induces peaks. Let us notice that no genuine compression of
the signal is obtained for level crossing and peak sampling
for large values of σ since the number of samples have to be
compared with the original value of 10000.

V. IMPACT OF NOISE ON THE RECONSTRUCTION

The same test-case as in the previous section is carried out
to study the quality of reconstruction. We now plot the mean
over one period L1-error between the noisy input signal and
the nonuniform signal. To compute this the nonuniform signal
is linearly interpolated at the times of the input signal. The
results are given in Figure 8, which is once more generic due
to the number of studied periods.

For large values of σ all the methods are more or less
equivalent in terms of error. Level crossing, peak and slope
sampling have a linear behavior away from σ = 0. We expect
slope sampling to saturate for even larger values of σ since its
criterion is indeed the L1 error. A little noise is quite favorable
for peak sampling, since it gives the opportunity to capture
a few samples away from the minima and maxima of the
sinusoid. Level and peak sampling does not give very good
results for small values of σ.



Fig. 8. L1 error in terms of noise standard deviation (in q units: σ = αq).

If we now take into account both criteria, quality of
reconstruction and number of samples, we see that slope
sampling outperforms the others (of course it also depends
of the number of levels for level crossing and the tolerance
for slope sampling). Indeed we obtain very comparable errors
but with much fewer samples for slope sampling.

VI. APPLICATIONS

The above criteria are natural from a mathematical point of
view but not always for applications. The number of samples is
very important for applications since it triggers the energy that
will be necessary to use the samples for subsequent processing.
The quality of the reconstruction may not be so important
because accuracy is not always the goal of the applications.

In [16], [17], the nonuniform samples are used for pattern
recognition. Then accuracy in the samples is not necessary if
the pattern is correctly analyzed. These works show that the
main issue is the good placement of the levels for the specific
application.

In [19] nonuniform samples are only used to detect the ac-
tivity of the system. The input signal is sampled nonuniformly.
It allows to collect data on time delays. From this information,
a classical sampler yielding uniform samples is switched on
during the time-windows when time delays in the nonuniform
samples are small. These uniform samples are then processed
classically. Clearly this application does not need to be very
precise in terms of signal reconstruction from the non-uniform
signal.

Slope sampling has been introduced to test for the main
frequency of a signal. After the capture of the samples an
evaluation of this frequency was computed. It is a very costly
procedure for nonuniform samples since there is no FFT-like
algorithm at hand. The very low number of samples given by
slope sampling even in the presence of noise was necessary to
make this tractable.

This last type of application is not designed for embedded
systems but for off-line computations. In the case of embedded
systems that really need a low number of samples for power

saving reasons, another criterion is the capability of imple-
menting the sampling in the systems.

VII. CONCLUSION

We have explored four different ways to nonuniformly
sample signals. We have compared them from the point of view
of the number of samples and the robustness of this criterion
when noise is added, as well as the reconstruction error. We
demonstrated the potentiality for reducing the amount of data
with level-crossing sampling but also using slopes, peaks and
a combination of peak and level-crossing techniques. We also
indicated their limitations to be practically employed.

Another point of view can be taken when considering
the integration of these sampling schemes in an electronic
system. Some of these sampling techniques have already been
implemented in hardware [5], [17], [20] and dedicated analog-
to-digital converters have also been designed, fabricated and
tested by Allier [11], Shell [21] and Akopyan [10]. Level-
crossing sampling can benefit from the architecture of the
existing classical analog-to-digital converters. Even if all the
others sampling schemes have not been completely demon-
strated in hardware, the implementation of peak detection or
slope-crossing is not a real issue and we can have no doubt,
that if these sampling techniques are adequate, a circuit will
be designed accordingly.

Today’s challenge is clearly to develop a framework able
to help designers and practitioners to choose the appropriate
sampling scheme for their applications. Indeed, it exists plenty
of ways of sampling and that can enhance the integrated system
quality by reducing their activity and power consumption but
also the amount of data to store and to exchange through
the internet. Sampling differently offers several supplementary
degrees of freedom to the designers and is probably the key for
smart autonomous systems requiring extremely low-power as
Le Pelleter [17] demonstrated in his proof of concept applied to
a sub-block of a medical implant. Moreover, if we go further,
sampling techniques can also be devised for other purposes
such as mitigating the circuit electromagnetic emission or
security issues.
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