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Abstract:

We propose a FIR filtering technique which takes advan-
tage of the possibility of using a very low number of sam-
ples for both the signal and the filter transfer function
thanks to non-uniform sampling. This approach leads to
a summation formula which plays the role of the discrete
convolution for usual FIR filters. Here the formula is much
more complicated but it can be implemented and the eval-
uation of more elaborate expressions is compensated by
the very low number of samples to process.

1. Introduction

Reducing the power consumption of mobile systems –
such as cell phones, sensor networks and many others
electronic devices – by one to two orders of magnitude is
extremely challenging but will be very useful to increase
the system autonomy and reduce the equipment size and
weight. In order to reach such a goal, this paper proposes
a solution applicable to FIR filtering which completely re-
thinks the signal processing theory and the associated sys-
tem architectures.
Today the signal processing systems uniformly sample
analog signals (at Nyquist rate) without taking advantage
of their intrinsic properties. For instance, temperature,
pressure, electro-cardiograms, speech signals significantly
vary only during short moments. Thus the digitizing sys-
tem part is highly constrained due to the Shannon theory,
which fixes the sampling frequency at least twice the in-
put signal frequency bandwidth. It has been proved in [4]
and [6] that Analog-to-digital Converters (ADCs) using a
non equi-repartition in time of samples leads to interesting
power savings compared to Nyquist ADCs. A new class
of ADCs called A-ADCs (for Asynchronous ADCs) based
on level-crossing sampling (which produces non-uniform
samples in time) [2, 3] and related signal processing tech-
niques [1, 5] have been developed.
This work suggests an important change in the FIR filter
design. As sampling analog signals is usually performed
uniformly in time, sampling the filter transfer function is
also done in a regular way with a constant frequency step.
Non-uniform sampling leads to an important reduction of
the weight-function coefficients. Combined with a non-
uniform level-crossing sampling technique performed by
an A-ADC, this approach drastically reduces the compu-

tation load by minimizing the number of samples and op-
erations, even if they are more complex.

2. Principle and notations

For a large class of signal, non-uniform sampling leads
to a reduced number of samples, compared to a Nyquist
sampling. This feature has already been used in [1] to
design non-uniform filtering techniques based on interpo-
lation. In this work the authors however used a classical
(uniform) filter, that is a usual discretization in time of the
impulse response.
Here we want to go further and take advantage of the fact
that the filter transfer function (the Fourier transform of
the impulse response) is a very smooth function with re-
spect to frequency. It can therefore be well approximated
by the linear interpolation of quite few samples.

2.1 Level crossing sampling
The initial signals are supposed to be analog ones. The
signal which we want to filter is given in the time domain
and is denoted by s(t). The filter transfer function is given
in the frequency domain and is denoted by H(ω). The
result of the filtering process x(t) is then theoretically the
convolution of s(t) with the impulse response h(t) which
is the inverse Fourier transform of H(ω):

x(t) =
∫ +∞

−∞
h(t− τ)s(τ)dτ,

h(t) =
1
2π

∫ +∞

−∞
H(ω)e−iωtdω.

These signal are sampled in their initial domain using a
level crossing scheme. This technique has to be adapted
for the filter transfer function. Indeed level crossing has
a sense if an order can be defined, for example for a real
valued function. The filter transfer function is complex
valued, therefore we can choose to sample either when the
amplitude crosses some predefined values, or the phase,
or both. The samples read (sn, δtn) for the signal and
(Hk, δωk) for the filter transfer function. These samples
are formed of a value and the (time or frequency) inter-
val length ”elapsed” since the last sample. To give re-
sults or describe algorithms we will use the sample times
or frequencies defined as tn = t0 +

∑n
1 δtn′ and ωk =

ω0 +
∑k

1 δωk′ but computations will be performed using



only the time and frequency intervals δtn and δωk. We
will also denote by In = [tn−1, tn] and Jk = [ωk−1, ωk]
the time and frequency intervals.

2.2 Linear interpolation

To derive the FIR algorithm and approximate the theoret-
ical integral formula, we form new analog functions from
the previously described samples. To this aim we choose
linear interpolation and we have

s̄(t) =
∑

n

[an + bnt]χIn ,

H̄(ω) =
∑

k

(αk + βkω)ei(γk+δkω)χJk
,

where χ denotes the indicator function of the set given
in index. The coefficients an and bn can be expressed in
terms of sn, sn−1, tn and δtn. The coefficients αk, βk,
γk and δk can be expressed in terms of Hk, Hk−1, ωk and
δωk.

In fact these formulae cover the piecewise constant case
(only take bn = βk = δk = 0) in three possible forms:
constant on intervals In or nearest neighbor interpolation,
with a possible need to modify the definition of tn and δtn
in the algorithms. They also cover two ways to linearly in-
terpolate the complex valued filter transfer function: either
interpolate separately the amplitude and the phase (αk and
βk are real) or interpolate in the complex plane (αk and βk

are complex, γk and δk are zero).

The digital filter then consists in computing (possibly) for
all time

x̄(t) =
∫ +∞

−∞
h̄(t− τ)s̄(τ)dτ,

h̄(t) =
1
2π

∫ +∞

−∞
H̄(ω)e−iωtdω.

3. Deriving a filtering formula in the general
context

3.1 A summation formula

The impulse response h̄(t) can be split in contributions for
each frequency sample h̄(t) =

∑
k hk(t) with

hk(t) =
1
2π

∫ ωk

ωk−1

(αk + βkω)ei(γk+δkω)e−iωtdω

for which we will give an explicit expression in Section
3.2. Although the piecewise linear function H̄(ω) has a
compact support (we only have a finite number of sam-
ples), the functions hk(t) have an infinite support. This
is not a problem since the convolution will involve s̄(t)

which has a compact support. The convolution reads

x̄(t) =
∫ +∞

−∞
h̄(t− τ)s̄(τ)dτ

=
∑

n

∫ tn

tn−1

h(t− τ)sn(τ)dτ

=
∑

n

∑
k

∫ tn

tn−1

hk(t− τ)(an + bnτ)dτ

=
∑

n

(
an

∑
k

h0
nk(t) + bn

∑
k

h1
nk(t)

)

where

h0
nk(t) =

∫ tn

tn−1

hk(t− τ)dτ,

h1
nk(t) =

∫ tn

tn−1

hk(t− τ)τdτ.

We obtain a summation formula as in the classical FIR
filtering case where it takes the form of a discrete convo-
lution. To be closer to this classical case, we should write
this as

x̄(t) =
∑

n

sn

∑
k

hnk(t),

which is possible but the effective expression depends on
the type of interpolation used (piecewise constant or lin-
ear).
There remains to make explicit these two types of elemen-
tary contributions.

3.2 Elementary impulse responses

A straightforward computation of the integral formulation
for hk(t) yields

hk(t) =
αkeiγk

2π

∫ ωk

ωk−1

ei(δk−t)ωdω

+
βkeiγk

2π

∫ ωk

ωk−1

ei(δk−t)ωωdω

=
αkeiγk

(
ei(δk−t)ωk − ei(δk−t)ωk−1

)
2πi(δk − t)

+
βkeiγk

(
ωkei(δk−t)ωk − ωk−1e

i(δk−t)ωk−1
)

2πi(δk − t)

+
βkeiγk

(
ei(δk−t)ωk − ei(δk−t)ωk−1

)
2π(δk − t)2

.

These formulae seem singular when t = δk. This is not
the case and has no reason to be since the function we in-
tegrate is smooth with respect to all parameters and vari-
ables. The limiting value for t = δk is clearly

hk(δk) =
αkeiγk

2π

∫ ωk

ωk−1

dω +
βkeiγk

2π

∫ ωk

ωk−1

ωdω

=
eiγk

2π
δωk(αk + βk

1
2
(ωk−1 + ωk)).



3.3 Elementary summation coefficients
A quick glance at the explicit expression of hk(t) clearly
provides the impression that the explicit formulae for
h0

nk(t) and h0
nk(t) will not fit in the columns here. We

will give only their flavor. Indeed we want to compute the
time integrals of of hk(t− τ) and hk(t− τ)τ for τ ∈ In.
This leads to integrate the product of a rational function
with a complex exponential function. The results cannot
be given in terms of simple functions but only in terms of
the exponential integral function

Ei(ix) = −
∫ ∞

x

eiy dy

y
+ i

π

2
.

We give in the next section a simple example of elemen-
tary summation coefficient calculation in the piecewise
linear context.

4. A simple and ideal example

4.1 Computation of the coefficients
Our sampling for the filter transfer function yields a par-
ticularly simple formulation for the ideal low-pass filter
which is 1 on the frequency interval [−ωc, ωc] and zero
elsewhere. This yields a single sample (1, 2ωc) and lin-
early interpolated coefficients α1 = 1, β1 = 0, γ1 = 0
and δ1 = 0. The expression for the elementary impulse
response is

h1(t) =

(
e−iωct − eiωct

)
−2πit

=
ωc

π
sinc(ωct).

Then we have to compute

h0
n1(t) =

∫ tn

tn−1

h1(t− τ)dτ = −
∫ t−tn

t−tn−1

h1(τ)dτ

= − 1
π

(Si(ωc(t− tn))− Si(ωc(t− tn−1)),

where Si is the special function known as sine integral and
defined by

Si(x) =
∫ x

0

sin(y)
dy

y
=

1
2i

(Ei(ix)− Ei(−ix)) +
π

2
,

and

h1
n1(t) =

∫ tn

tn−1

h1(t− τ)τdτ

= −
∫ t−tn

t−tn−1

h1(τ)(t− τ)dτ

= t h0
n1(t) +

1
π

∫ t−tn−1

t−tn

sin(ωcτ)dτ

= t h0
n1(t)−

1
πωc

(cos(ωc(t− tn))

− cos(ωc(t− tn−1))).

This case is simple due to its minimal number of samples
in the frequency domain, but it displays all the difficulties
of the general case, i.e. the need to evaluate special func-
tions. These functions are built in many libraries in view

of a numerical implementation of these algorithms. More-
over these functions are however very smooth: the Si func-
tion for example is almost linear in the neighborhood of 0
and tends to ±π/2 at ±∞ with very gentle oscillations.
This feature makes possible the construction of efficient
lookup tables in view of a hardware implementation.

4.2 Numerical results
To illustrate this simple example we filter the signal

s(t) = 0.45 sin(2πt) + 0.45 sin(10πt) + 0.9

with the ideal low pass filter with the cutoff frequency
ωc = 4π. The theoretical result is therefore supposed to
be

x(t) = 0.45 sin(2πt) + 0.9.

This is not the typical sort of signal which is sup-
posed to be addressed by our technique since it
is not a sporadic one and a relatively large num-
ber of samples are taken. We perform the com-
putations within the MATLAB SPASS (Signal Pro-
cessing for ASynchronous Systems) framework
(http://ljk.imag.fr/membres/Brigitte.Bidegaray/SPASS/).
This signal is sampled with a M -bit Asynchronous A/D
Converter (AADC) which leads to a level crossing sam-
pling over the amplitude range [0, 1.8].
We can choose as we want the times at which the filtered
signal is computed. To display the results we choose the
sequence of times tm = .17m (m integer) to have sam-
pling points dispatched irregularly over the obtained solu-
tion.
On Figure 1, you can see the result for a linear interpola-
tion of the signal non-uniform samples and a 3-bit AADC.
We plot continuous functions with lines: the initial signal
s(t) (dashed line) and the theoretical filtered signal x(t)
(solid line). We plot the sampled results with markers: the
non-uniformly sampled initial signal sn (asterisk markers)
and the computed filtered samples xm (circle markers) at
times tm.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 
s(t)
x(t)
s

n
x

m

Figure 1: Filtering result. Initial signal (dashed line),
theoretical filtered signal (solid line), non-uniformly sam-
pled initial signal (asterisk markers) and computed filtered
samples (circle markers).



This very simple test case has quite a low number of pa-
rameters compared to the full problem for which we can
finely tune the filter transfer function sampling for exam-
ple. We compare here the results obtained for a zeroth and
a first order interpolation of the signal and for different
values (2, 3, 4 and 5) of the AADC resolution. On Table
1 we give the relative l1 error between computed filtered
samples xm at times tm = .01m (m integer) and the the-
oretical values x(tm).

0th order 1st order
M = 2 0.0608 0.0584
M = 3 0.0076 0.0046
M = 4 0.0052 0.0045
M = 5 0.0046 0.0045

Table 1: l1 error of the filtering method for 0th and first
order interpolation of the signal and and M bit resolution
of the AADC (M = 2, 3, 4, 5).

In the case of the 2-bit AADC, there are 2.8 points per
wavelength for the highest frequency part of the signal.
This is a very low rate, and we are however able to have
only 6% error on the filtered result which is quite suffi-
cient for a large range of applications. The other results
all show less than 1% error. The values displayed on Ta-
ble 1 are very dependent on the choice of the function to
filter. Finer results (allowing less than .45% error) should
certainly be obtained by using a higher order interpolation
for the signal.

5. Conclusions

We have presented a novel approach to FIR filtering based
on the non-uniform sampling of the signal but also the
non-uniform sampling in frequency of the filter transfer
function. The final result is complex but is nonetheless
possible to implement in hardware devices and of course
in numerical codes. This complexity is balanced by the
very low number of samples and the relatively low number
of operations needed for each evaluation. This approach
is very promising to achieve a lower power consumption
in mobile systems.
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