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1 Introduction

The nonstandard finite difference (NSFD) method was created to overcome
the numerical instabilities that exist in the construction of finite difference
schemes for ordinary differential equations (ODE). The numerical instabilit-
ies indicate that the discrete equations are not able to model correctly the
qualitative properties of the solutions to the differential equations [Mic94].
The rules for constructing NSFD models were derived from the construc-
tion of exact schemes for certain equations. These rules were then applied
to many types of ODEs and to partial derivatives in order to obtain stable
schemes which preserve the qualitative properties of the equations. The ref-
erence [Pat16] reviews many recent developments and applications of NSFD
schemes.

In this paper, we propose to revisit some of Mickens’ rules in the light of
recent works [Cie13, CR10, CR11, QT18, SBF18, SBF21] to be able to treat
properly the case of systems of ODEs. Especially the second rule, that relates
to the renormalization of the discretization step-size, does not a priori take
into account coupling factors between the equations in a differential system.
Indeed the renormalization of the time-step derived in [Mic94], and with
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which we will compare the method we derive, is a scalar one, that can take
carefully into account the time evolution of at most one of the equations in
a system of ODEs.

The paper is organized as follows: we present Mickens’ basic rules in
Section 2. Section 3 displays the construction and the analysis of NSFD
schemes for systems of ODEs, from a matrix formulation to scalar forms.
This leads to define two correctors, the effect of which we explore on two
examples in Section 4. The discussion then sets out the possible difficulties
in developing this strategy and the way to overcome them.

2 The Nonstandard Finite Difference Con-

text

2.1 Nonstandard Finite Difference Rules

In this section, we first give the rules for the construction of NSFD schemes
as proposed by Mickens [Mic94].

Rule 1. The order of the discrete derivatives must be exactly equal to the
order of the corresponding derivatives of the differential equations.

Rule 2. Denominator functions for the discrete derivatives must, in general,
be expressed in terms of more complicated functions of the step-sizes than
those conventionally used.

Rule 3. Nonlinear terms must, in general, be modeled non-locally on the
computational grid or lattice.

Rule 4. Special solutions of the differential equations should also be special
(discrete) solutions of the finite difference models.

Rule 5. The finite difference equations should not have solutions that do not
correspond exactly to solutions of the differential equations.

These rules initially apply to single differential equations. Already in
[Mic94] the case of Hamiltonian equations treated as systems of two first
order equations makes use of a slightly modified version of Rule 2. Indeed,
the derivatives are approximated by

dx

dt
' xk+1 − ψ(∆t)xk

φ(∆t)
, (1)

where ψ and φ are the functions of the step-size ∆t and the parameters of
the equations. As suggested by Rule 2, the denominator φ(∆t) plays the role
of the step size and is such that

φ(∆t) = ∆t+O(∆t2) as ∆t→ 0.

There is an additional function ψ, which is not mentioned in Rule 2 and is
close to identity, namely

ψ(∆t) = 1 +O(∆t2) as ∆t→ 0.
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2.2 Nonstandard, Exact, and Best Finite Difference
Schemes

Definition 1 (Nonstandard finite difference scheme [Mic00]). A nonstandard
finite difference scheme is any discrete representation of a system of differ-
ential equations that is constructed based on the above rules.

This was the definition of a best finite difference scheme in [Mic94]. Ori-
ginally, a best scheme referred to an exact scheme in [Pot82a]. An exact
scheme has the same general solutions as the associated differential equa-
tions [Pot82a, Mic94]. The Mickens’ rules have been defined to have exact
finite difference schemes thus avoiding the usual questions about consist-
ency, stability and convergence. This more or less involves that we know
exact solutions of the equations (see Rules 4 and 5), which is of course not
the case in general. It is however expected that schemes constructed with
these rules would lead to the ”best” schemes.

As in [AL01], we will study the stability of nonstandard finite difference
schemes in the light of elementary stability. This concept combines classical
stability with the fact that the fixed point solutions of the continuous and
the discretized equations should coincide.

3 Nonstandard Finite Difference Schemes for

systems

We address systems of ordinary differential equations which we split in a
linear and a nonlinear part:

X ′(t) = AX(t) +B(X(t)), (2)

where t ∈ [0, T ], X(t) ∈ Rn, A ∈Mn×n(R), and B ∈ C0(Rn,Rn).
For the linear system X ′(t) = AX(t), it is known that exact finite differ-

ence methods may exist depending on the chosen step-size [Pot82b, RM13].
In what follows, we will suppose that A is invertible (see however Section
5.3).

We describe the method in the autonomous case, but this can be extended
to non autonomous systems as the example in Section 4.4. Of course to
ensure the well-posedness of the system, we suppose that B is Lipschitz, at
least locally.

The analytical solution to system (2) can be expressed in integral form
by

X(t+ ∆t) = e∆tAX(t) +

∫ t+∆t

t

e(t+∆t−s)AB(X(s))ds. (3)

To go further in the explicit computations, we approximate B(X(s)) on the
time interval [t, t+ ∆t] by a function of X(t) and X(t+ ∆t):

B(X(s)) ' B(X(t), X(t+ ∆t)).
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Inserting this in (3)

X(t+ ∆t) ' e∆tAX(t) +

∫ t+∆t

t

e(t+∆t−s)Ads B(X(t), X(t+ ∆t))

= e∆tAX(t) + (e∆tA − I)A−1B(X(t), X(t+ ∆t)),

where I is the identity matrix inMn×n(R). The simplest numerical method
obtained by this formula is the exponential Euler approximation for which
B(X(t), X(t+ ∆t)) = B(X(t)):

Xk+1 = e∆tAXk + (e∆tA − I)A−1B(Xk),

where Xk is approximating X(tk), tk = k∆t for k ∈ N. This method makes
use of a matrix exponential and is hence called exponential integrator [HO10].
Such an approximation for the nonlinear part does however not fulfill Rule 3
which advocates for a nonlocal discretization of the nonlinear part. We will
therefore prefer the more general form

Xk+1 = e∆tAXk + (e∆tA − I)A−1B(Xk, Xk+1). (4)

The Exponential integrator method has many advantages. Indeed, it is ex-
plicit, accurate and possesses good stability properties, even for large time
steps. The basic idea of the exponential integrator method is to integrate
exactly the linear part of the problem (which can be a stiff term), and then
to use an appropriate approximation of the nonlinear part [HO10]. Thus, we
can highlight a similarity between the NSFD method and the Exponential
Integrator method, in the sense that the form of the denominator function
for the discrete derivatives, given in the second Mickens rule, aims at obtain-
ing an exact scheme for the linear term in the equation, while the non-local
discretization of the nonlinear term, given in the third Mickens rule, is a way
to obtain an adequate discretization for the nonlinear term. Besides, the
Exponential Integrator method involves the computation of a matrix expo-
nential or an exponential function of a matrix. So, the difficulties for the
computation of the matrix exponential are largely responsible for the lack of
interest in this method, especially for large systems.

3.1 Matrix formulation

In view of (4), we define the renormalisation matrix Φ(∆t) = (e∆tA− I)A−1,
and we can replace the exponential e∆tA by I + Φ(∆t)A in (4) to obtain

Xk+1 = (I + Φ(∆t)A)Xk + Φ(∆t)B(Xk, Xk+1),

or equivalently (if Φ(∆t) is invertible, which could be false for some excep-
tional values of ∆t even if A is invertible, see the example of Section 4.1.1)

Φ−1(∆t) (Xk+1 −Xk) = AXk + B(Xk, Xk+1), (5)

where the renormalization matrix verifies the property

Φ(∆t) = ∆tI +O(∆t2) as ∆t→ 0.
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Let us generalize (1) and hence Rule 2 to systems of ordinary differential
equations. The scalar functions φ and ψ are then replaced by matrix-valued
functions Φ and Ψ.

Rule 2’. The first order derivatives in a nonstandard scheme for a system
of ordinary differential equations should be approximated as

dX

dt
' Φ(∆t)−1(Xk+1 −Ψ(∆t)Xk),

where
Φ(∆t) = ∆tI +O(∆t2) as ∆t→ 0,

and
Ψ(∆t) = I +O(∆t2) as ∆t→ 0.

Scheme (5) is nonstandard. In particular, the discretization of the first
order derivative corresponds to the above generalized rule, with Ψ ≡ I. The
fact that we are able to write an exact or only a best scheme depends on the
nonlinearity.

The major drawback of such a scheme is that we have to evaluate the
exponential of matrix ∆tA. This can prove to be an expensive computa-
tion [MV03]. To overcome this difficulty we propose in the next section to
reformulate scheme (5) in a scalar way.

3.2 Scalar formulation

3.2.1 Construction

To reformulate scheme (5), we consider the Cayley–Hamilton theorem, which
implies that the exponential matrix can be rewritten as a finite expansion in
powers of A:

e∆tA = α0(∆t)I + α1(∆t)A+ α2(∆t)A2 + · · ·+ αn−1(∆t)An−1, (6)

where α0(∆t), α1(∆t), . . . , αn−1(∆t) ∈ R. The construction of these coeffi-
cients in the general case can be found in [MV03].

Introducing expansion (6) in the exponential integration scheme (4) yields

Xk+1 = α0(∆t)Xk + α1(∆t)[AXk + B(Xk, Xk+1)]

+
n−1∑
j=2

αj(∆t)A
j−1[AXk + B(Xk, Xk+1)]

+ (α0(∆t)− 1)A−1B(Xk, Xk+1),

which also reads

Xk+1 − α0(∆t)Xk

α1(∆t)
= [I +R1(∆t, A)][AXk + B(Xk, Xk+1)]

+R0(∆t, A)B(Xk, Xk+1),
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where we define the two correction factors

R0(∆t, A) =
α0(∆t)− 1

α1(∆t)
A−1, R1(∆t, A) =

n−1∑
j=2

αj(∆t)

α1(∆t)
Aj−1. (7)

In addition, we also introduce the notion of correction vectors,

T0(∆t, A,Xk, Xk+1) = R0(∆t, A)B(Xk, Xk+1),

T1(∆t, A,Xk, Xk+1) = R1(∆t, A) [AXk + B(Xk, Xk+1)] ,

to write the NSFD scheme as

Xk+1 − α0(∆t)Xk

α1(∆t)
= AXk + B(Xk, Xk+1)

+ T0(∆t, A,Xk, Xk+1) + T1(∆t, A,Xk, Xk+1).

(8)

With regard to Mickens’ second rule, we identify ψ(∆t) = α0(∆t) and
φ(∆t) = α1(∆t).

Remark 1. If the system dimension is n = 2, R1(∆t, A) = 0. In the case of
a single equation (n = 1), the above formulation is not valid since α1 ≡ 0.
For linear systems, the correction T0(∆t, A,Xk, Xk+1) vanishes.

3.2.2 Order estimate

Proposition 1. The coefficients αj(∆t) occurring in (6) verify

αj(∆t) =
∆tj

j!
+O(∆tn).

Proof. Let Sn−1(∆tA) be the truncated expansion of exp(∆tA) in terms of
powers of ∆tA:

Sn−1(∆tA) =
n−1∑
j=0

∆tj

j!
Aj.

Then

exp(∆tA)− Sn−1(∆tA) =
+∞∑
k=n

∆tk

k!
Ak = ∆tnAn

+∞∑
k=0

∆tk

(n+ k)!
Ak,

‖ exp(∆tA)− Sn−1(∆tA)‖ ≤ ∆tn‖A‖n
+∞∑
k=0

∆tk

k!
‖A‖k = ∆tn‖A‖n exp(∆t‖A‖).

For ∆t ∈]0,∆t0], setting C = ‖A‖n exp(∆t0‖A‖),

‖ exp(∆tA)− Sn−1(∆tA)‖ ≤ C∆tn.

The construction in [MV03] is based on the Cayley–Hamilton theorem. Mat-
rix An can be written as a finite expansion in lower powers of A, defining
coefficients cj, j = 0, . . . , n− 1:

An =
n−1∑
j=0

cjA
j.
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This allows to define coefficients βkj, k ≥ 0, j = 0, . . . , n− 1, such that

Ak =
n−1∑
j=0

βkjA
j,

and the βkj can be computed iteratively

βkj =


δkj k < n,

cj k = n,

c0βk−1,n−1 k > n, j = 0,

cjβk−1,n−1 + βk−1,j−1 k > n, j > 0.

Plugging this in the expansion of exp(∆tA) in terms of powers of ∆tA, we
obtain coefficients αj:

αj(∆t) =
n−1∑
k=0

∆tk

k!
βkj+

∆tn

n!
βnj+

∞∑
k=n+1

∆tk

k!
βkj =

∆tj

j!
+

∆tn

n!
cj+

∞∑
k=n+1

∆tk

k!
βkj.

This implies that the expansion (6) is exactly Sn−1(∆tA) at the precision
O(∆tn).

Proposition 2. The correction factors R0 and R1 have the following series
expansion

R0(∆t, A) =
∆tn−1

n!
(−1)n−1 det(A)A−1 +O(∆tn),

R1(∆t, A) =
n−1∑
j=2

∆tj−1

j!
Aj−1 +O(∆tn−1).

Proof. We compute

α0(∆t)− 1

α1(∆t)
=

∆tn

n!
c0 +O(∆tn+1)

∆t+O(∆tn)
=

∆tn−1

n!
c0 +O(∆tn).

Besides c0 = (−1)n−1 det(A). For j ≥ 2,

αj(∆t)

α1(∆t)
=

∆tj

j!
+O(∆tn+1)

∆t+O(∆tn)
=

∆tj−1

j!
+O(∆tn−1).

Remark 2. In the same way that nothing ensures a priori that Φ(∆t) is
invertible for all times, α1(∆t) can vanish for some values of ∆t. However
the above expansions, and in particular the fact that α1(∆t) ' ∆t, ensure
that this is not the case for at least small enough values of ∆t.
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3.2.3 Correction of the right-hand side

In Equation (8), Rule 2 in its generalized scalar form (1) is untouched, but
now the discretization of the right-hand side is modified.

Rule 3’. In an NSFD scheme for the nonlinear system (2) satisfying the
classical Rule 2 (1), the usual nonlocal discretization of the right-hand side
AXk + B(Xk, Xk+1) should be supplemented with correction terms:

AXk+B(Xk, Xk+1)+R1(∆t, A) [AXk + B(Xk, Xk+1)]+R0(∆t, A)B(Xk, Xk+1),

where R0 and R1 are given by (7).

3.3 Stability issues

We follow here the same sketch of proof as in [AL01] adapting it to systems.
They consider nonstandard schemes that derive from standard linear multi-
step methods. On the one hand we consider here a simpler case since we
only consider one-step methods, but on the other hand we extend the time
difference operator to functions Φ(∆t) which are more general than ϕ(∆t)I.

The condition for a classical linear one-step method to be consistent with
equation Y ′(t) = F (Y ) and stable is that it is a θ-scheme, i.e. there exists θ
such that

Yk+1 − Yk = ∆t (θF (Yk+1) + (1− θ)F (Yk)) ≡ ∆tF∆t(Yk). (9)

The corresponding nonstandard scheme is

Xk+1 −Xk = Φ(∆t)F̃∆t(Xk), (10)

where F̃∆t(Xk) can be nonlocal but is also an approximation of F (X(tk)).

3.3.1 Consistency and zero-stability

The first issue is that both schemes have similar properties as ∆t→ 0. More
precisely we have the following theorem.

Theorem 1. Equation (10) is consistent with equation Y ′(t) = F (Y ). It
is moreover stable if F̃∆t = F∆t and is Lipschitz independently of ∆t for
bounded sequences of Yk: for any M there exists L such that for all Y 1

k , Y 2
k

such that ‖Y 1
k ‖ ≤M and ‖Y 2

k ‖ ≤M

sup
k
‖F∆t(Y

1
k )− F∆t(Y

2
k )‖ ≤ L sup

k
‖Y 1

k − Y 2
k ‖.

Proof. Consistency. Let t∗ > 0 a fixed time such that tk = t∗ (which means
that k →∞ as ∆t→ 0). We compute

Φ(∆t)−1
(
Y (t∗ + ∆t)− Y (t∗)

)
− F̃∆t(Y (t∗))

= Φ(∆t)−1∆t

(
Y (t∗ + ∆t)− Y (t∗)

∆t
− F∆t(Y (t∗))

)
+ Φ(∆t)−1∆tF∆t(Y (t∗))− F̃∆t(Y (t∗)).
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As ∆t → 0, Φ(∆t)−1∆t → I. Hence the first term in the right-hand side
goes to zero due to the fact that the standard scheme is consistent, and
Φ(∆t)−1∆tF∆t(Y (t∗)) and F̃∆t(Y (t∗)) both tend to F (Y (t∗)), which proves
the consistency of the nonstandard scheme.
Stability. Let δk and δ̃k be two perturbations of the nonstandard scheme:

Xk+1 −Xk = Φ(∆t)
(
F∆t(Xk) + δk),

X̃k+1 − X̃k = Φ(∆t)
(
F∆t(X̃k) + δ̃k).

We can write

Xk+1 −Xk = ∆tF∆t(Xk) +

(
Φ(∆t)

∆t
− I
)
F∆t(Xk) +

Φ(∆t)

∆t
δk

≡ ∆tF∆t(Xk) + γk.

In the same way, we can cast the equation for X̃k as

X̃k+1 − X̃k = ∆tF∆t(X̃k) + γ̃k.

Since the standard scheme is stable, for ∆t sufficiently small, there exists K
such that for γk and γ̃k such that ‖γk − γ̃k‖ ≤ ε, then ‖Xk+1 −Xk‖ ≤ Kε.
There remains to estimate ‖γk − γ̃k‖:

γk − γ̃k =

(
Φ(∆t)

∆t
− I
)(

F∆t(Xk)− F∆t(X̃k)
)

+
Φ(∆t)

∆t
(δk − δ̃k).

To estimate the first term in the right-hand side, we use the Lipschitz prop-
erty (where the supremum is useful because F∆t can be nonlocal) and the
fact that Φ(∆t) = ∆tI + O(∆t2), i.e. that there exists C such that for all
X ∈ Rn, ‖Φ(∆t)X −∆tX‖ ≤ C∆t2‖X‖. Hence∥∥∥∥(Φ(∆t)

∆t
− I
)(

F∆t(Xk)− F∆t(X̃k)
)∥∥∥∥ ≤ C∆t‖F∆t(Xk)− F∆t(X̃k)‖

≤ CL∆t sup
j
‖Xj − X̃j‖.

For ∆t sufficiently small, we can also ensure that the second term in the
right-hand side is bounded:∥∥∥∥Φ(∆t)

∆t
(δk − δ̃k)

∥∥∥∥ ≤ 2ε.

We now take ∆t sufficiently small to have CL∆t ≤ 1/2K where K is anew
the constant for the stability of the standard scheme. Eventually we have

sup
k
‖Xk − X̃k‖ ≤ K

(
1

2K
sup
j
‖Xj − X̃j‖+ 2ε

)
,

and hence
sup
k
‖Xk − X̃k‖ ≤ 4Kε,

which mean that 4K is a stability constant for the nonstandard scheme.
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3.3.2 Elementary stability

Although the standard and nonstandard schemes have the same properties
as ∆t→ 0, we moreover expect the nonstandard scheme to behave better for
larger values of ∆t, which is described by elementary stability.

Definition 2. A scheme is elementary stable, if the fixed points of the scheme
are those of the continuous equation and their linear stability is the same.

We hence denote by Ỹ ∈ Rn a fixed point of the continuous equation,
i.e. F (Ỹ ) = 0. Fixed points X̃ of the non-standard scheme (10) should be
solution to Φ(∆t)F̃∆t(X̃) = 0. Provided Φ(∆t) is invertible (which is true
at least for small values of ∆t) and the zeros of F̃∆t are those of F (∆t), the
continuous equation and the nonstandard scheme have the same fixed points.

4 Numerical tests

We will now study the impact of the corrections in various situations. Ac-
cording to Remark 1 we can find contexts where one or the other correction
vanishes.

4.1 Impact of R0

4.1.1 A quadratic nonlinear oscillator

We first study the impact of R0. According to Remark 1, we therefore con-
sider a system of two differential equations (n = 2), so that R1 ≡ 0. In
[Hu06] the quadratic nonlinear differential equation is presented as a good
benchmark for numerical schemes

x′′ + x+ x2 = 0,

x(0) = x0 > 0,

x′(0) = 0.

(11)

This equation occurs for example in human eardrum oscillation modeling. It
has the significant advantage to have a known exact solution for x0 < 1/2,
namely

x(t) = x0 + a sn2(ωt,m),

where

a =
−12x0(1 + x0)√

3(1− 2x0)(3 + 2x0) + 3(1 + 2x0)
,

ω =
1

2

√
1

2
+ x0 +

1

6

√
3(1− 2x0)(3 + 2x0),

m =
1

2
+

3(2x2
0 + 2x0 − 1)

3 + (1 + 2x0)
√

3(1− 2x0)(3 + 2x0)
,
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and sn is the Jacobi sine fonction. We write the second order equation (11)
in the Hamiltonian form {

x′ = y,

y′ = −x− x2.
(12)

We thus obtain a system of the form (2), with matrices

A =

(
0 1
−1 0

)
, B(X) =

(
0
b(x)

)
,

where b(x) = −x2 and with initial data x(0) = x0 and y(0) = 0.
Besides the comparison with an exact solution, two properties can be

used to evaluate the quality of numerical methods. First the exact solutions
to (11) are periodic with period

P = 4

∫ π/2

0

dθ√
1−m2 sin2 θ

.

Second, the differential equation (11) satisfies a conservation law:

E(t) ≡ 1

2
(x′(t))2 +

1

2
x(t)2 +

1

3
x(t)3 =

1

2
x2

0 +
1

3
x3

0. (13)

Several methods exist to obtain efficient schemes (called best schemes by
Mickens [Mic94]) for a harmonic oscillator. We can cite the Gautschi type
method [HL99], the exponential integration method [HO10], the gradient
method [Cie11, Cie13, CR10, CR11], the NSFD method [Mic94, MOR05,
MR94, Roe08]. Here, we are interested in the NSFD method, and the Potts
method [Pot82b]. In [SBF18] the computation of α0 and α1 is made explicit
for two-dimensional matrices in terms of the eigenvalues, namely ±i for the
matrix involved in (12), leading to α0(∆t) = cos(∆t) and α1(∆t) = sin(∆t).
This is coherent with the predictions of Proposition 1. Indeed, we have here
c0 = −1 and c1 = 0, and this yields α0(∆t) = 1 − ∆t2/2 + O(∆t3) and
α1(∆t) = ∆t + O(∆t3). We are in a typical situation where α1(∆t) can
vanish for some values of ∆t.

4.1.2 Mickens’ scheme for Hamiltonian systems

In [Mic94], Mickens discretized Equation (12) as
xk+1 − cos(∆t)xk

sin(∆t)
= yk,

yk+1 − cos(∆t)yk
sin(∆t)

= −xk − (xk+1)2 .

This scheme has the form (8), with B(Xk, Xk+1) = B(Xk+1) and no
correction term. Eliminating yk leads to a discretization of (11):

xk+1 − 2xk + xk−1

sin2(∆t)
+

2 [1− cos(∆t)]xk
sin2(∆t)

+ x2
k = 0. (14)
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The quantity
2 [1− cos(∆t)]

sin2(∆t)
tends to 1 as ∆t → 0, but we want to have

exactly 1 to have an exact computation of the linear term of Equation (11).
To this aim, we notice that we can also cast (14) as

xk+1 − 2xk + xk−1

[2 sin(∆t/2)]2
+ xk + cos2(∆t/2)x2

k = 0. (15)

One of the consequences of the conservation law (13) is that any periodic
solution oscillates with a constant amplitude. The Mickens scheme (15) has
this property. It suffices to note that it is invariant for any transformation
which swaps xk+1 and xk−1.

However, in the case of a harmonic oscillator, it must also be shown that
there is a constant first integral. Moreover it was established in [Mic94]
that the discretization of the nonlinear term used in (15) does not make it
possible to obtain a constant (discrete) integral. It is then advisable [Mic94]
to discretize the non-linear term as

b(x) ≈ −xk
(
xk+1 + xk−1

2

)
and the new scheme is

xk+1 − 2xk + xk−1

[2 sin(∆t/2)]2
+ xk + cos2(∆t/2)xk

xk+1 + xk−1

2
= 0. (16)

This would necessitate to take

yk+1 − cos(∆t)yk
sin(∆t)

= −xk − xk+1
xk+2 + xk

2

as a discretization for the second equation of the Hamiltonian form. The
system is then highly implicit and uses time t + 2∆t when approximating
B(X(s)) on the time interval [t, t+ ∆t] in the integral of Equation (3).

4.1.3 Adding a correction term

Let us now see how the NSFD scheme of Section 3.2 reads for Equation (12).
Recall that for n = 2, R1(∆t, A) ≡ 0. We also have already computed α0(∆t)
and α1(∆t). The scalar NSFD schemes reads

Xk+1 − cos(∆t)Xk

sin(∆t)
= AXk+B(Xk, Xk+1)−tan(∆t/2)A−1B(Xk, Xk+1). (17)

Up to possible choices for B(Xk, Xk+1), and noticing that −A−1 = A, we
find the same scheme as Mickens’ but with a correction factor tan(∆t/2)AB.
We follow the same steps as in the previous paragraph to obtain a scheme
for the initial second order equation.

The scalar NSFD scheme for equation (12) reads
xk+1 − cos(∆t)xk

sin(∆t)
= yk + tan(∆t/2)b(xk, xk+1),

yk+1 − cos(∆t)yk
sin(∆t)

= −xk + b(xk, xk+1).

12



Combining these two equations in the same way than for Mickens’ scheme
first yields

xk+1 − 2xk + xk−1

sin2(∆t)
=

2 [cos(∆t)− 1]xk
sin2(∆t)

+ b(xk−1, xk)

+
tan(∆t/2)

sin(∆t)
[b(xk, xk+1)− cos(∆t)b(xk−1, xk)] .

With the same transformation that led to (15), we find

xk+1 − 2xk + xk−1

[2 sin(∆t/2)]2
+ xk =

1

2
[b(xk−1, xk) + b(xk, xk+1)]. (18)

The cos2(∆t/2) coefficient of Equations (15) or (16) has disappeared.

Besides to obtain −xk
xk−1 + xk+1

2
in the right-hand side, one has simply

to choose b(xk, xk+1) = −xkxk+1, which is a nonlocal discretization of the
nonlinearity (and therefore complies to Rule 3) and is only semi-implicit. It
only involves the present and the past but not the future, contrarily to what
has been observed for Mickens’ scheme (16).

In this test case the fixed points are not necessarily of first interest since
we look for periodic solutions. However we can notice that the fixed points
of the continuous equations are x = 0 and x = −1. These are also the fixed
points of our scheme (18) (and also of both Euler methods that are used in
the simulations). The Mickens’ schemes (15) and (16) both also have x = 0
as fixed point, but the second one is −1/ cos2(∆t/2) which is different from
−1 in general.

4.1.4 Numerical results

We now compare the previous numerical methods for x0 = 0.25 which lies
in the valid interval for initial data, namely [0, 1/2[. The exact solution is
given by x(t) = x0 + a sn2(ωt,m) with a ' −0.55, ω ' 0.53, and m ' 0.33.
Its time evolution over the time interval [0, 35] is displayed in Figure 1.

0 5 10 15 20 25 30 35
time

0.3

0.2

0.1

0.0

0.1

0.2
x(t)

Figure 1: Time evolution of the exact solution of Equation (11) for x0 = 0.25.

As already mentioned, this solution is periodic in time. For the tests we
use different values of ∆t and compute solutions via

13



• the explicit Euler scheme,

• the implicit Euler scheme,

• Mickens’ scheme (15),

• Mickens’ scheme (16),

• the scalar scheme with correction R0 (18) with b(xk, xk+1) = −xkxk+1.

The advantage of comparing the methods with a quadratic nonlinearity
is that we are able to compute explicitly the iterates for all these meth-
ods without adding methods to solve nonlinear systems such as predictor–
correctors or fixed points. The time evolution of the relative error between
the exact solution xek and the computed solution xk,

Ek =
|xk − xek|

xek
, (19)

is shown in Figure 2 for two values of the time-step.
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∆t = 0.05 ∆t = 0.001

Figure 2: Time evolution of the relative errors for ∆t = 0.05 and 0.001 for
Equation (11) and x0 = 0.25.

Of course, the three NSFD schemes, (15), (16), and (18), outperform the
Euler schemes, in particular they do not show a deterioration of the error as
time evolves.

The correction R0 does indeed improve Mickens’ original schemes, gaining
more than two errors of magnitude for small ∆t. For large ∆t, the gain is not
so clear, but this is due to the approximation of the nonlinearity, which is the
only source of approximation in (18), and which is dominant for ∆t = 0.05.

In Figure 3, we show the convergence of the five methods, plotting maxk Ek
with respect to ∆t, and the corresponding numerical orders are given in the
adjacent Table. The result is clear in this test case, the additional term R0

allows to gain one order of convergence.

14



10 3 10 2

t
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100

Explicit Euler
Implicit Euler
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Mickens (2nd order)
NSFD with R0

Explicit Euler 1.18
Implicit Euler 0.88
Mickens (Hamiltonian) 1.00
Mickens (2nd order) 1.01
NSFD with R0 2.00

Figure 3: Numerical order of the five methods for the quadratic non linear
oscillator.

In Figure 4 we illustrate qualitative properties for a relatively large value
of ∆t. Left, the trajectory of the solution in the (x, y) phase space is plotted.
We only plot the trajectories for the methods that use these variables and
for which y has not to be reconstructed. The two nonstandard method do
preserve periodic trajectories, which as expected Euler methods do not. On
the right figure, we plot a numeric analogous of the conserved quantity E(t)
given by (13): 1

2
y2
k + 1

2
x2
k + 1

3
x3
k. We only compare the Mickens’ scheme in

Hamiltonian form and our scheme. Once more our approach yields better
results, and this is even more obvious for smaller values of ∆t.
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x
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time

0.0363
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0.0367

NSFD with R0
Mickens (Hamiltonian)

Figure 4: Qualitative properties for ∆t = 0.05. Phase space (left); Time
evolution of E(t) (right).

4.2 Impact of R1

4.2.1 A forest biomass model

To test the impact of R1 only, we now consider a linear system with dimension
greater than 2, namely n = 3. Again, according to Remark 1, T0 ≡ 0 in this
linear example. We use a simple example found in [GW98] dealing with the
evolution of the forest biomass. More precisely, we denote x(t) the biomass
decayed into humus, y(t) the biomass of dead trees, and z(t) the biomass of
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living trees. The corresponding evolution equations are
x′(t) = −x(t) + 3y(t),

y′(t) = −3y(t) + 5z(t),

z′(t) = −5z(t),

(20)

with an initial data where there are no dead trees and no humus at t = 0,
namely x(0) = 0, y(0) = 0, and z(0) = z0. The corresponding matrix A is

A =

−1 3 0
0 −3 5
0 0 −5

 , (21)

yielding the exact solution
x(t) =

15

8
(e−t − 2e−3t + e−5t) z0,

y(t) =
5

2
(e−3t − e−5t) z0,

z(t) = e−5tz0.

4.2.2 Derivation of correction terms

For the matrix A given by Equation (21), we have A3 = −15I − 23A− 9A2,
i.e. c0 = −15, c1 = −23, and c2 = −9. We therefore predict that α0(∆t) =
1 − 5

2
∆t3 +O(∆t4), α1(∆t) = ∆t − 23

6
∆t3 +O(∆t4), and α2(∆t) = 1

2
∆t2 −

3
2
∆t3 +O(∆t4). Writing

(α0(∆t)I + α1(∆t)A+ α2(∆t)A2)

 0
0
z0

 =

x(∆t)
y(∆t)
z(∆t)


yields

α0(∆t) =
15

8
e−∆t − 5

4
e−3∆t +

3

8
e−5∆t,

α1(∆t) = e−∆t − 3

2
e−3∆t +

1

2
e−5∆t,

α2(∆t) =
1

8
e−∆t − 1

4
e−3∆t +

1

8
e−5∆t.

These values do agree with the predicted expansions at order 3. Since there
is no nonlinear part,

Xk+1 = α0(∆t)Xk + α1(∆t)AXk + α1(∆t)T1(∆t, A,Xk)

= α0(∆t)Xk + α1(∆t)AXk + α2(∆t)A2Xk. (22)
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4.2.3 Numerical results

For the numerical test case, we compare our method (22), which should be
exact since no approximation has been done in its derivation, with the Euler
explicit and implicit methods. We also compute

Xk+1 = γ0(∆t)Xk + γ1(∆t)AXk + γ2(∆t)A2Xk,

where the γj are the order 3 approximations of αj, namely γ0(∆t) = 1− 5
2
∆t3,

γ1(∆t) = ∆t− 23
6

∆t3, and γ2(∆t) = 1
2
∆t2− 3

2
∆t3. Finally we derive a NSFD

scheme on the above principles but for each equation separately, leading to

xk+1 − xk
1− e−∆t

= −xk + 3yk,

yk+1 − yk
(1− e−3∆t)/3

= −3yk + 5zk,

zk+1 − zk
(1− e−5∆t)/5

= −5zk.

(23)

The exact solution is computed over the time interval [0, 10], correspond-
ing to ten years of time evolution, and the result is displayed on Figure 5.

0 2 4 6 8 10
time (year)

0.0

0.2

0.4

0.6

0.8

1.0 x (humus)
y (dead trees)
z (living trees)

Figure 5: Time evolution of the exact solution of Equation (20) for z0 = 1.

The biomass decayed into humus (corresponding to x) has the slowest
time evolution and the errors accumulated on x are greater than on the
other variables. This is why we will show the relative errors computed as
(19) on this variable. Figure 6 shows the relative errors for the five different
methods.
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Figure 6: Time evolution of the relative errors for ∆t = 0.1 and 0.001 for the
forest biomass model.

As expected, our method is exact. The order 3 method also behaves very
well. It has the major advantage to be derived only with the knowledge of the
coefficient of the characteristic polynomial of matrix A which is much easier
to compute than the αj. The performance of the traditional NSFD method
(23) is comparable to that of the explicit and implicit Euler methods.

In Figure 7, we show the convergence of the five methods, plotting maxk Ek
with respect to ∆t and the corresponding numerical orders. The NSFD
method with the R1 correction and exact (α) coefficients is exact and the
computation of the order is not applicable (n.a.). When approximated with
γ coefficients, it is of order 3, which is already a great enhancement com-
pared to the other methods (even the NSFD method that treats equations
separately) which are of order one.
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Explicit Euler 1.02
Implicit Euler 0.98
NSFD (α) n.a.
NSFD (γ) 3.07
NSFD (separate) 1.02

Figure 7: Numerical order of the five methods for the biomass model.

4.3 Impact of R0 and R1: A forest biomass model with
constant force

To test the impact of both R0 and R1, we consider the forest biomass model
(20), in which we introduce a constant forcing by planting trees. This cor-
responds to add a constant zf in the right-hand side of the last equation,
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modeling the time evolution of living trees. Hence the system reads
x′(t) = −x(t) + 3y(t),

y′(t) = −3y(t) + 5z(t),

z′(t) = −5z(t) + zf ,

(24)

with initial conditions x(0) = 0, y(0) = 0, and z(0) = z0.
The analytical solution is given by
x(t) =

15

8
(e−t − 2e−3t + e−5t) z0 +

1

8
(8− 15e−t + 10e−3t − 3e−5t) zf ,

y(t) =
5

2
(e−3t − e−5t) z0 +

1

6
(2− 5e−3t + 3e−5t) zf ,

z(t) = e−5t(z0 −
1

5
zf ) +

1

5
zf .

We display in Figure 8 the time evolution of this analytical solution for z0 = 1
and zf = 0.5. We observe in particular the theoretical long time limits, zf ,
zf/3, and zf/5 for x, y, and z respectively.
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z (living trees)

Figure 8: Time evolution of the exact solution of System (24) for z0 = 1 and
zf = 0.5.

The NSFD scheme (8) reads

Xk+1 = α0(∆t)Xk + α1(∆t) [AXk + B] + α2(∆t)A [AXk + B]

+ (α0(∆t)− 1)A−1B,
(25)

where the matrix A and coefficients αj are the same as in (22), but now we
have a constant nonlinearity B

B =

 0
0
zf

 . (26)

This test case enables to study the impact of the correction term for the
nonlinear part without any approximation on the nonlinearity itself.
We anew compare this method, with the explicit and implicit Euler schemes,
the scheme where the coefficients αj are replaced by the corresponding γj, and
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the traditional NSFD scheme where we replace the last equation in System
(23) by

zk+1 − zk
(1− e−5∆t)/5

= −5zk + zf .
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Figure 9: Time evolution of the relative errors for ∆t = 0.1 and 0.001 for the
forest biomass model with constant forcing.

The time evolution of the relative error between the analytical exact solu-
tion and the approximated solutions is shown in Figure 9 for different values
of the time step. Our method is exact and behaves very well for any time
step. Replacing the αj’s by their third order approximation also yields good
results, while the traditional Mickens’ NSFD scheme is comparable to the
explicit and implicit Euler methods. We illustrate this also on Figure 10.
The numerical order at 10−2 precision are the same as in the previous test
case.
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Figure 10: Numerical order of the five methods for the biomass model with
constant forcing.

4.4 Non autonomous systems: A forest biomass model
with a seasonal plantation

To continue to explore method errors, we now modify the biomass model
(20) to have both corrections R0 and R1 and this time a nonlinearity that
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models seasonal plantations, and which amounts to performing a sinusoidal
forcing 

x′(t) = −x(t) + 3y(t),

y′(t) = −3y(t) + 5z(t),

z′(t) = −5z(t) + zf [1 + cos(ωt)] ,

(27)

with initial conditions x(0) = 0, y(0) = 0, and z(0) = z0. Such a time
dependent forcing will have to be approximated in the numerical schemes.

This example does not match the description of Section 3 and, to begin
with, Equation (2) because it is non autonomous. To include this type of
equations we should define B(t,Xk, Xk+1,∆t), and the rest of the discussion
would be still valid.

The exact analytical solution of the new system is

x(t) =
15

8
(e−t − 2e−3t + e−5t) z0 +

1

8
(8− 15e−t + 10e−3t − 3e−5t) zf

+15
3(5− 3ω2) cos(ωt) + ω(23− ω2) sin(ωt)

(1 + ω2)(9 + ω2)(25 + ω2)
zf

+
15

8

(
−e−t

1 + ω2
+

6e−3t

9 + ω2
+
−5e−5t

25 + ω2

)
zf ,

y(t) =
5

2
(e−3t − e−5t) z0 +

1

6
(2− 5e−3t + 3e−5t) zf

+5
(15− ω2) cos(ωt) + 8ω sin(ωt)

(9 + ω2)(25 + ω2)
zf +

5

2

(
−3e−3t

9 + ω2
+

5e−5t

25 + ω2

)
zf ,

z(t) = e−5tz0 +
1

5
(1− e−5t) zf +

5 cos(ωt) + ω sin(ωt)

25 + ω2
zf +

−5e−5t

25 + ω2
zf .

This solution is displayed in Figure 11. We choose z0 = 1 and zf = 0.5
to have the same mean limits as in the previous simulations. We also choose
ω = 2π to have a one year period for the forcing.
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Figure 11: Time evolution of the exact solution of System (27) for z0 = 1,
zf = 0.5 and ω = 2π.

The numerical schemes we compare are exactly the same as before, except
for the treatment of B:

B(t) =

 0
0

zf [1 + cos(ωt)]

 ,
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which is now time-dependent and for which we have to choose an approxim-
ation. For the computation of Xk+1 from Xk, five approximations have been
used and compared if relevant, namely

Bleft = B(tk), Bright = B(tk+1), Bmiddle = B((tk + tk+1)/2),

Bhalf = (B(tk) +B(tk+1))/2, Bmean =

∫ tk+1

tk

B(t)dt.

The explicit and implicit Euler methods clearly use Bleft and Bright respect-
ively, but the question is open for the other numerical methods.

In a first row of numerical tests we compare the errors when B is approx-
imated by Bhalf . We choose this because it is the form which (besides the
explicit one) is the easiest to extend when nonlinearities involving Xk are
concerned. Figure 12 shows the errors for the five studied schemes. Again
our method and its third order approximation outperform the three other
schemes and yield second order schemes, which corresponds to the error in
approximating the nonlinearity.
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NSFD (γ) 2.00
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Figure 12: Numerical order of the various method for B = Bhalf .

We can discuss a little further by comparing the use of Bleft, Bright, Bmiddle,
Bhalf , and Bmean for ∆t = 0.001. The numerical results are displayed in Figure
13 for the NSFD scheme with α coefficients. The computation with Bhalf

yields the worst results among the other methods but the difference is not
significant enough to be worth when dealing with more complex nonlinearities
or time dependent forcings.
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Figure 13: Numerical order of the NSFD method for various approximations
of B.

All the computations in this numerical test section have been performed
using Python notebooks, that can be found at the following address:
https://gricad-gitlab.univ-grenoble-alpes.fr/bidegarb/nsfd systems.

5 Discussion

5.1 Extended rules for systems

We have defined two new rules for NSFD schemes for systems of ODEs.
These rules stem from a careful derivation when splitting the equation into
a linear and a nonlinear part. The only approximations are made on the
nonlinear part.

In a first step a matrix formulation is given, leading to a generalization of
the second rule (Rule 2’), which addresses the treatment of the first derivat-
ive. The usual scalar functions φ and ψ, involved in the denominator and the
numerator respectively, are then replaced by matrix valued functions. The
system is treated as a whole, contrarily to what can usually been done where
each equation is taken into account more or less separately. An example of
this separate treatment is illustrated by (23).

The matrix formulation is an exponential integrator, and deriving a scalar
version of this scheme allows to avoid the possible difficulties in computing the
matrix exponentials. This leads to usual scalar coefficients in the discretiza-
tion of the first order derivative, but they are the same for all the equations,
and to correction terms in the right-hand side, which are described by Rule
3’.

In the examples we have separated the effect of the two correction terms
on purpose. But of course they are designed also to work together. If the
system is linear, or the nonlinearity is a constant forcing term, no approx-
imation is made at any stage of the derivation and the obtained scheme is
exact. In the case of a constant forcing term and for at least three coupled
equations the two correction terms are nonzero.
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5.2 Deriving the scalar coefficients

The derivation of the scalar coefficient is tedious. The examples shown here
are quite simple since they deal with very few equations. In our second
example, we computed exp(∆tA) formally and wrote equation (6), which led
to solve a three-dimensional linear system in the αj. Computing exp(∆tA)
formally needs to know the eigenvalues and eigenvectors.

Replacing this formal derivation by a numerical determination of the αj,
computing exp(∆tA) numerically and solving the resulting systems numer-
ically can destroy the quality of the method. We have experienced ourselves
that even not being careful with the computation of the (scalar) exponen-
tials in the construction of the αj in Section 4.2 leads to destroy the fine
equilibrium that leads to the expansions in Proposition 1 and to a not better
scheme than the explicit Euler scheme!

If the formal computation is not possible, we strongly recommend to re-
place the αj by their n-th order approximation as done in Section 4.2 with
γj coefficients. This approximation has the advantage to only use the know-
ledge of the coefficients of the characteristic polynomial. This polynomial
is easier to compute than the αj. It is indeed the first step in the com-
putation of the αj. Taking γj simply consists in using the truncated series

Sn−1(∆tA) =
∑n−1

j=0
∆tj

j!
Aj instead of the matrix exponential. For a linear sys-

tem with n = 5, this is equivalent to use the classical order 4 Runge–Kutta
method. For other system dimensions, we also have a Runge–Kutta-like
method, but with an order that is adapted to n.

5.3 Singular linear part

In the previous discussion, we have used A−1 and implicitly have supposed
that A was non-singular. If A is singular, the nonlinearity B can be written
as B = AC +K where K belongs to the kernel of A. Then∫ ∆t

0

e(∆t−s)AdsB = (e∆tA − I)C = (e∆tA − I)A+B,

where A+ is the generalized inverse of A. This allows to generalize our
approach in the singular case.

6 Conclusion

Having considered the NSFD method as a special class of exponential integ-
rators, we have been able to revisit Mickens’ rules to apply them to systems of
ODEs. When these systems are linear, the method is exact. In the Hamilto-
nian nonlinear case, it consists in adding to Mickens’ schemes a correction
term, that has been shown to improve the accuracy.
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[SBF21] M. E. Songolo and B. Bidégaray-Fesquet, Strang splitting schemes
for N-level Bloch models. To appear in International Journal of Mod-
eling, Simulation, and Scientific Computing.

26


	Introduction
	The Nonstandard Finite Difference Context
	Nonstandard Finite Difference Rules
	Nonstandard, Exact, and Best Finite Difference Schemes

	Nonstandard Finite Difference Schemes for systems
	Matrix formulation
	Scalar formulation
	Construction
	Order estimate
	Correction of the right-hand side

	Stability issues
	Consistency and zero-stability
	Elementary stability


	Numerical tests
	Impact of R0
	A quadratic nonlinear oscillator
	Mickens' scheme for Hamiltonian systems
	Adding a correction term
	Numerical results

	Impact of R1
	A forest biomass model
	Derivation of correction terms
	Numerical results

	Impact of R0 and R1: A forest biomass model with constant force
	Non autonomous systems: A forest biomass model with a seasonal plantation

	Discussion
	Extended rules for systems
	Deriving the scalar coefficients
	Singular linear part

	Conclusion

