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Abstract. We define a splitting scheme for the N -level Bloch model
which makes use of exact numerical solutions of sub-equations. These exact
solutions involve matrix exponentials which we want to avoid to calculate at
each time-step. The resulting scheme is nonstandard and preserves qualita-
tive properties of the Bloch equations. We explore and compare numerically
multiple ways to implement it and in particular take into account the specific
structure of the Bloch equations.
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1 Introduction

Available laser sources allow studying radiation–matter interactions [8] be-
cause the intensities and the pulse durations achievable by lasers make it
possible to reach the order of magnitude of the cohesion energy of electrons
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in atoms. Some phenomena such as spontaneous or stimulated Raman scat-
tering, Brillouin or Rayleigh, laser effect, two-photon absorption, etc. require
at least a semi-classical model where the field is modeled classically and is
coupled with a quantum medium. Quantum models are more precise than
classical optics models and allow to obtain information on the structure of
the atoms, thus highlighting the whole phenomenon [4].

In this context, Maxwell–Bloch equations can be used. The electromag-
netic field is then modeled by Maxwell equations and matter is described at
the quantum mechanical level by the Bloch equations. The coupling between
these two systems is done by the expression of the polarization. Bloch equa-
tions describe the evolution of the density matrix. They are derived from the
Schrödinger equation or in the Heisenberg formalism. The density matrix
is a quantum observable (unlike the wave function) and allows to describe
the probability of the presence of electrons in the quantified energy levels
(diagonal elements of the matrix) and the coherences between these levels
(off–diagonal elements). Its size depends on the number of levels. In many
references, the derivation of the Bloch equation is only presented in the case
of two-level atoms.

Bloch equations can already raise problems both from a theoretical and
a numerical point of view. They have been approached by various numeri-
cal methods such as the Crank–Nicolson method [1, 3, 12, 18, 26, 27, 28], a
fourth-order Runge–Kutta method [23], the relaxation method [9], etc. But
most of these numerical schemes do not conserve the qualitative properties
of Bloch equations. To overcome this deficiency, Bidégaray et al. [5] have in-
troduced a Strang splitting method which preserves some physical properties
(Hermicity, positivity, trace conservation) of the continuous model.

Following this study, we have discussed in depth Strang splitting schemes
for the two-level Bloch model in [20]. A special feature of these schemes is
that the solutions of sub-equations are exact, of variable time-step size for the
Liouville equation and conform to the Nonstandard Finite Difference (NSFD)
methodology developed by Mickens [14]. These splitting schemes preserve
physical properties of the Bloch equations. Moreover, they are explicit and
retain the advantage of stability when coupled with Maxwell equations. In
this paper, we want to extend this type of schemes to the N -level Bloch
model, in order to improve the scheme presented in [5].

The paper is organized as follows: we introduce the Bloch model in Sec-
tion 2. Section 3 provides the construction rules of NSFD schemes. In
Section 4, we first introduce the decomposition of the Bloch equation, then
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the exact schemes for the sub-equations, and finally the splitting scheme.
In order to reduce the algorithmic complexity of the splitting scheme, we
propose in Section 5 an equivalent formulation of the matrix exponentials
that occur in the exact discretization of the Liouville equation. In Section
6, we compare numerically the Crank–Nicolson method and the reformula-
tions of the exponential discussed in this paper. The study is followed by an
appendix containing an alternative method for the derivation of the matrix
exponential.

2 Bloch model

The derivation of the Bloch equation can be found in many textbooks (see
for example [4, 6, 7, 13, 24]). In this study, we use dimensionless equations:

∂tρ = −i[H0, ρ]− i[V, ρ] +Q(ρ), (1)

where [A,B] = AB − BA is the commutator of the two operators A and
B. The diagonal entries of the density matrix ρ are called populations and
express the presence probabilities of electrons in the quantified energy levels.
The off-diagonal entries are complex numbers called coherences, whose mod-
uli can be interpreted as conditional probabilities of transition between the
energy levels. In equation (1), H0 is the free Hamiltonian of electrons and
is a diagonal matrix diag(ωj)j=1,...,n. The potential V (t) is a zero diagonal,
Hermitian matrix and results from the interaction with an electromagnetic
wave. A phenomenological relaxation matrix Q(ρ) can be added to model
many phenomena such as spontaneous emission, collisions, vibrations in crys-
tal lattices, etc. It must be chosen so as to preserve over time some properties
of the density matrix, in particular Hermicity, positiveness and trace (see [5]
for details).

3 NSFD Schemes

The NSFD method was initiated by Mickens to overcome the defects of nu-
merical instabilities presented by classical methods such as Euler and Runge
Kutta methods. In fact, NSFD methods have the potential to preserve qual-
itative properties of the original system of differential equations.
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To discuss NSFD schemes, we cast the Bloch equation as

∂tρ = F (t, ρ), (2)

which unknown is the matrix ρ : [t0, T ]→ Cn×n, initially equal to ρ0 ∈ Cn×n,
and F : [t0, T ]× Cn×n → Cn×n is a given function.

For the numerical approximation of (2), we discretize the interval [t0, T ]
at the discrete times tn = t0 + n∆t, where the parameter ∆t > 0 is the step
size. We denote by ρn an approximation of the solution ρ(tn) at time tn.

The finite difference equation reads

D∆t(ρ
n) = F∆t(tn, ρ

n), (3)

where D∆t(ρ
n) and F∆t(tn, ρ

n) approximate ∂tρ(tn) and F (tn, ρ(tn)) respec-
tively.

Definition 1. The scheme (3) is called a nonstandard finite difference method
if at least one of the following conditions is satisfied:

• D∆t(ρ
n) = (φ(∆t))−1(ρn+1 − ρn) where φ(∆t) = ∆tI + O(∆t2) is a

positive diagonal matrix;

• F∆t(tn, ρ
n) = g(ρn, ρn+1,∆t) where g(ρn, ρn+1,∆t) is a nonlocal approx-

imation of the right-hand side of System (2).

These notions are discussed in detail in [2, 14, 15, 16]. Moreover, Mick-
ens has introduced in [15] a rule for the construction of NSFD schemes for
complex equations.
Rule for complex equations. For differential equations having N (≥ 3)
terms, it is generally useful to construct finite difference schemes for various
sub-equations composed of M terms, where M < N , and then combine all
the schemes together in an overall consistent finite difference model.

By this last rule, it is necessary to split Equation (1) into two sub-
equations, then solve sub-equations by exact methods, and finally, connect
solutions of sub-equations through a single consistent solution. To this end,
we explore how to construct consistent finite difference models using Strang
splitting method.
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4 Splitting method

We rewrite Equation (1) as

∂tρjk = −iωjkρjk − i[V, ρ]jk +Q(ρ)jk,

where ωjk = ωj − ωk is the frequency associated with the transition from
level k to level j. This equation is decomposed into the relaxation–nutation
evolution

∂tρ = Lρ, (4)

where (Lρ)jk = −iωjkρjk + Q(ρ)jk and the interaction with the electromag-
netic field

∂tρjk = −i[V, ρ]jk. (5)

We have seen in [20] that this splitting yields the best approximation for
the Bloch equation, and even is better than no splitting for a Self-Induced
Transparency test case.

As the relaxation–nutation operator is linear and time invariant, the so-
lution of Equation (4) is

ρ(t) = exp(L(t− t0))ρ(t0). (6)

Since the potential V generally depends on time, the solution of the interac-
tion equation (5) is

ρ(t) = exp

(
−i
∫ t

t0

V (τ)dτ

)
ρ(t0) exp

(
i

∫ t

t0

V (τ)dτ

)
. (7)

4.1 Exact discretization of the relaxation–nutation equa-
tion

An exact finite difference scheme for Equation (4) is easily deduced from its
analytical solution (6) and one time-step of the relaxation–nutation equation
reads

ρn+1 = eL∆tρn. (8)
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4.2 Exact discretization of the Liouville equation

Let V n+1/2 be the mean of the function V on the time interval [tn, tn+1]:

V n+1/2 =
1

∆t

∫ tn+1

tn

V (τ)dτ.

Then one time-step of the Liouville equation is easily deduced from (7),
namely

ρn+1 = exp(−i∆tV n+1/2)ρn exp(i∆tV n+1/2). (9)

4.3 Strang splitting

To construct the splitting scheme, we choose the Strang formula [22] in order
to achieve second order precision, which would prove useful when coupling
with an order-two scheme for the electromagnetic field in a Maxwell–Bloch
context (see [4]).

Furthermore, this method is consistent (see [11], for details) according to
the discretization rule for complex equations, and preserves the symmetry
and positiveness properties of the density matrix [4], provided relaxation
terms satisfy the conditions given in [5]. Thus, the Strang splitting method
for the Bloch model reads

ρn+1 = exp(L∆t/2) exp(−i∆tV n+1/2) exp(L∆t/2)ρn exp(i∆tV n+1/2). (10)

Here, we begin and end up with the relaxation–nutation term in the split-
ting. This is the good choice, since this term is the steepest one when the
electromagnetic field is small, which necessarily happens in the test cases
(oscillating field, wave paquet). This appropriate treatment of stiffness is the
reason why splitting behaves better than no splitting. In the sequel, we give
equivalent formulations to exp(i∆tV n+1/2), to avoid the possible complexity
of the calculation of matrix exponentials at each time-step.

5 Exponential of N ×N matrices

Dozens of methods for calculating the exponential of a matrix can be obtained
from more or less classical results in analysis, approximation theory, and
matrix theory. In [17], the authors describe nineteen methods that seem to be
practical. The relative effectiveness of each method is evaluated according to
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the following attributes, listed in decreasing order of importance: generality,
reliability, stability, accuracy, efficiency, storage requirements, ease of use
and simplicity. In particular, generality means that the process is applicable
to large classes of matrices. For example, a method that only works on
matrices with distinct eigenvalues will not be much appreciated. By these
standards, none of the algorithms we know is satisfactory, although some are
much better than others.

5.1 Interpretation as an interpolation problem

The Cayley–Hamilton theorem applied to a matrix A ∈ MN(C) ensures
that p(A) = 0 where p is the characteristic polynomial of A defined by
p(λ) = det(λI −A). This allows to express AN and higher powers as N − 1-
degree polynomials of A. More generally it allows to express an analytical
function of A as such a polynomial. This is the case for the exponential of
A.
Let γ ∈ C, the function exp(iγA) can also be expressed by a polynomial that
we denote Pγ(A):

Pγ(A) =
N−1∑
j=0

αj(γ)Aj. (11)

If the eigenvalues λ1, . . . , λN are distinct, then there is a basis in which A is
the diagonal matrix D. Let P be the change of basis matrix, which does not
depend on γ, we have

exp(iγD) = P−1 exp(iγA)P = P−1Pγ(A)P = Pγ(D).

This relation involving diagonal matrices is actually a system of N indepen-
dent equations

exp(iγλk) = Pγ(λk), k = 1, . . . , N,

which admits a unique solution, because it amounts to inverting a Vander-
monde matrix. We however do not want to invert it, but interpret this system
as an interpolation problem, i.e. interpolate function Pγ at the locations λk,
k = 1, . . . , N , with values exp(iγλk). Since the function Pγ is an (N − 1)-
degree polynomial, the interpolation polynomial at these N locations will be
exactly the function itself.
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5.2 Newton interpolation

In [20], in the case of 2-level Bloch equations, the interpolation polynomial
is expressed in the canonical basis (I, A). This can of course be extended
in the case of N × N matrices in the canonical basis (I, A, . . . , AN−1) but
the formulae are quite intricate and have to be derived individually for each
value of N . The 3× 3 case is treated in an Appendix. To avoid this we use
here the Newton basis

I, (γA− λ1I), (γA− λ1I)(γA− λ2I), . . . , (γA− λ1I) . . . (γA− λN−1I).

In this decomposition the coefficients are divided differences

Pγ(A) = f [λ1] +
N∑
`=2

f [λ1, . . . , λ`]
`−1∏
k=1

(γA− λkI),

where f [λk] = exp(iγλk), k = 1, . . . , N and we have the recursion formula

f [λk, . . . , λ`] =
f [λk, . . . , λ`−1]− f [λk+1, . . . , λ`]

λk − λ`
, 1 ≤ k < ` ≤ N.

The calculation of the polynomial is then done iteratively using the Hörner
algorithm. Indeed, we have

Pγ(A) = c0 +
N−1∑
`=1

c`
∏̀
k=1

(γA− λkI)

= c0 + (γA− λ1)(c1 + (γA− λ2)(c2 + · · ·+ (γA− λN−1))). (12)

The advantage of this approach, compared to the one based on the canonical
basis, is that the numerical code produced is generic for all N .

5.3 NSFD interpretation for the Liouville equation

In Equations (9) and (10) we need to evaluate exp(i∆tV n+1/2). The ma-
trix V n+1/2 is the product of the scalar electric field En+1/2 and a constant
polarisability matrix p (see [4]). We can therefore write

exp(i∆tV n+1/2) = P∆tEn+1/2(p).
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Therefore, the exact scheme for the Liouville equation can be written as

ρn+1 = P−1
∆tEn+1/2(p)ρ

nP∆tEn+1/2(p), (13)

or equivalenty
P∆tEn+1/2(p)ρn+1 = ρnP∆tEn+1/2(p). (14)

The polynomial P∆tEn+1/2(p) is of course also equal to the series expansion
of the exponential exp(i∆tV n+1/2). Therefore, in the limit ∆t→ 0,

αj(∆tE
n+1/2) =

(i∆tEn+1/2)j

j!
+O(∆tj+1).

In particular

α0(∆tEn+1/2) = 1 +O(∆t) and α1(∆tEn+1/2) = i∆tEn+1/2 +O(∆t2).

Let us set α1(∆tEn+1/2) = iEn+1/2α̃1(∆tEn+1/2). For a small enough ∆t, we
can ensure that α0(∆tEn+1/2) and α̃1(∆tEn+1/2) are non zero and rewrite
Equation (11) as

P∆tEn+1/2(p) = α0(∆tEn+1/2) + α̃1(∆tEn+1/2)iEn+1/2Q∆tEn+1/2(p),

where Q∆tEn+1/2(p) is a (N − 1)-order polynomial with smaller degree term
equal to p. The exact scheme for the N -level Liouville equation (14) reads

(Φn+1/2(∆t))−1(ρn+1 − ρn) =− i
{
Ṽ n+1/2ρn+1 − ρnṼ n+1/2

}
,

Φn+1/2(∆t) =
α̃1(∆tEn+1/2)

α0(∆tEn+1/2)
I,

(15)

where
Ṽ n+1/2 = En+1/2Q∆tEn+1/2(p).

Remark 1. Observe a nonlocal discretization and a renormalisation of the
step size in the exact scheme for the N-level Liouville equation, according to
the Mickens rules. In particular Φn+1/2(∆t) = ∆tI +O(∆t2).

Remark 2. Ṽ n+1/2 is not just equal to V n+1/2 but there is an additional
higher order term which is called a recovery factor because it comes from
estimating the matrix exponential. The addition of this term contradicts one
of the basic principles of the NSFD schemes theory, which forbids any form
of adjustment by adding ad hoc terms.
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6 Numerical simulations

The decomposition of the Bloch equation into the relaxation–nutation evo-
lution and the evolution of interaction with the electromagnetic field has two
main advantages. First, part of the computations can be performed off-line,
before the time iterations, calculating once and for all the eigenvalues of the
electric dipole matrix, as well as the change of basis matrix and its inverse.
Here we deal only with the Bloch equation, but this is even more efficient
when there is space dependence, such as when coupling with Maxwell equa-
tions. The second advantage has been pointed out in [20] and demonstrated
on a Self Induced Transparency test case, and is due to the fact that it
decouples stiff and non-stiff parts of the equation.

In addition, the analysis of the error with respect to the time step size
shows that decoupling the stiff and non-stiff parts decreases the error by a
factor of 10 in favor of the splitting method. In Figure 1, we compare the
errors for the exact scheme for the raw Bloch equation (of type (9) where
V also contains the nutation term) with the Strang splitting scheme (10)
for three-level case, for the schenario described in Section 6.1. We can then
observe the gain linked to splitting even if the two schemes are of order two.

10 3 10 2 10 1 100

t

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

er
ro

r

Splitted
Full

Figure 1: Error of the splitting and no-splitting methods with respect to the
time-step in log-log scale.

In the following, we compare various schemes for the Bloch model, always
performing the same decomposition but varying the way the exponential is
calculated or approximated. We consider the historical method for the Bloch
equation [26, 27, 28], namely the Crank–Nicolson method, although it has

10



been shown in Reignier’s thesis [19] that it does not preserve the property of
positivity for more than three levels. Other methods such as the fourth-order
Runge–Kutta method are not adapted to preserve the physical properties
of the Bloch equation [20]. We compare the Crank–Nicolson method with
the methods presented in this paper, and the computation of the matrix
exponential. We describe below the four methods.

Exponential method.

ρn+1 = exp(L∆t/2) exp(−i∆tV n+1/2) exp(L∆t/2)ρn exp(i∆tV n+1/2).

Crank–Nicolson method. The matrix exponential is approximated by
the Crank–Nicolson scheme:

ρn+1 = exp(L∆t/2)(An+1/2)−1 exp(L∆t/2)ρnAn+1/2,

An+1/2 =

(
I +

i

2
∆tV n+1/2

)(
I − i

2
∆tV n+1/2

)−1

.
(16)

Newton method. This is the method described in this paper using a New-
ton basis and Hörner algorithm for the construction of the polynomial:{

ρn+1 = exp(L∆t/2)(Bn+1/2)−1 exp(L∆t/2)ρnBn+1/2,

Bn+1/2 = P∆tEn+1/2(p).
(17)

Canonical method. As in [20] the polynomial equivalent to the exponen-
tial is expressed in the canonical form. Details for three levels can be found
in Appendix A:

ρn+1 = exp(L∆t/2)(Cn+1/2)−1 exp(L∆t/2)ρnCn+1/2,

Cn+1/2 =
N−1∑
j=0

α
n+1/2
j (V n+1/2)j.

(18)

6.1 Three-level test case

We first compare the methods on a three-level test case. We suppose there
is no relaxation (Q(ρ) = 0) and apply a sinusoidal input electrical field
E(t) = sin(2πt) (recall we deal with dimensionless equations). The level
frequencies are chosen to be 0, π and 2π since resonance with the input wave

11



is required for the system to evolve nontrivially. Besides the polarizability
matrix p is chosen to be

p =

 0 1 1.1
1 0 1

1.1 1 0

 .

Let np be the number of discretization times within one period of the input
signal. The time-step is therefore equal to 1/np. The time evolution of
populations over 20 periods of the input signal is displayed on Figure 2.
This result has been obtained with the Python implementation of the matrix
exponential exp(i∆tV n+1/2), and np = 20, but similar results can be obtained
with the other methods described in this paper.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (dimensionless)

0.0

0.2

0.4

0.6

0.8

1.0 rho11
rho22
rho33

Figure 2: Time evolution of populations over 20 periods for a 3-level test-case.

Notice that the pseudo-period of the population is not that of the wave.
The period of the wave can be however seen on the plots, since every flat
part corresponds to a vanishing input electric field.

6.1.1 Computational time

We have two varying parameters, namely the numerical method and the time-
step. We compare the computational time (for a not especially optimized
python implementation on a small laptop). The results are gathered in Table
1. To homogenize the results, 2000 periods have been simulated (which,
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np Exponential Crank–Nicolson Newton Canonical
5 10 4 (out) 4 3
10 14 6 (bad) 7 5
20 27 11 (bad) 15 11
100 131 38 78 53

Table 1: Computational time (in seconds) for a 3-level test-case.

coming back to a dimensional world, would correspond for light waves to
about 10 ps).

The Exponential method is clearly the most expensive. The Crank–
Nicolson is the less expensive, but the quality of the results disqualifies this
method since we need a lot of points to ensure the same quality as with the
other methods. With np = 5, positiveness is violated from the very first
periods on. Therefore, the Newton and Canonical methods seem to be the
best, from the computational time point of view, with a little advance for
the Canonical methods. We see next why we however prefer the Newton
method.

6.1.2 Scheme order

The global error of the Strang method (for operators which do not commute)
is of order 2 [21]. On the other hand, the Crank-Nicolson method, which
corresponds to approximate exponentials at order 1, is of order 1.

10 3 10 2 10 1 100
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10 7
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10 5

10 4

10 3

10 2

10 1

100
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Exponential
Crank-Nicolson
Newton
Canonical

Figure 3: Error of the splitting methods with respect to the time-step in
log-log scale.
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Figure 3 shows the error of the splitting methods with respect to the time-
step in log-log scale. The plots for the exponential, Newton and canonical
methods are superimposed. The corresponding order is 2. As anticipated,
Crank-Nicolson method is order 1.

6.1.3 Behavior in a degenerate case

We have previously chosen a strange matrix p to prevent it to have equal
eigenvalues. Let us now take

p =

0 1 1
1 0 1
1 1 0

 ,

which eigenvalues are −1 (double) and 2, and come back to 20 periods of
the input signal and np = 20. The results are displayed on Figure 4 for the
Newton and the Canonical methods. The Exponential method serves here
as a reference solution.

While both the Newton and the Canonical methods use the eigenvalues
of the problem to compute the matrix exponential, the Canonical method is
very sensitive to degenerate situations. In this case, the Jordan form of the
the matrix is not diagonal and different formulae should be used (see [10] for
full details). This does not solve the problem, since in the case of a nearly
degenerate situation (two very close eigenvalues) the formulae presented in
this paper (see Appendix) can used but would be very unstable.

6.2 N-level test case

Now, we compare only the Exponential and Newton methods, and have N
vary. The results, namely the computational times, are gathered in Table 2
for various values of N and anew 2000 periods of the input signal.

We are not very fair with the Newton method, since we compare it with a
clearly well optimized Python matrix exponential which computational time
barely depends on the dimension of the matrix. In many studies however we
are dealing with small density matrices, describing 2, 3 or 4 levels. In these
cases the computational gain using the Newton method is not impressive,
but can prove very useful for simulation over long physical times or involving
many space locations.
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Figure 4: Time evolution of populations over 20 periods in a degenerate sit-
uation. From top to bottom: Exponential, Newton, and Canonical method.
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N Exponential Newton
2 27 9
3 27 16
4 27 23
5 27 34
10 34 125

Table 2: Computational time (in seconds) for a N-level test-case.

7 Conclusion

We have derived splitting schemes for the N -level Bloch model. To this aim,
the Bloch equation has been decomposed into a relaxation–nutation evolution
and the interaction with the electromagnetic field (which is a Liouville equa-
tion). We are able to obtain exact solutions for the resulting sub-equations,
and construct a Strang splitting scheme. The solution of the Liouville equa-
tion involves matrix exponentials and we discuss whether it is reasonable or
not to compute it. Indeed, thanks to the Cayley–Hamilton theorem, it can be
replaced by the computation of a polynomial. We used in particular Newton
interpolation to define this polynomial. The resulting scheme has a variable
time-step size and satisfies the nonstandard discretization rules of Mickens.
Moreover, the splitting scheme preserves the qualitative and quantitative
properties (Hermicity, trace conservation, positiveness) of Bloch equations.

The numerical comparison of the methods shows that computing a poly-
nomial instead of the exponential is advantageous for small density matrices,
i.e. a small number of levels. If the gain is relatively low, the number of such
computations for a full Maxwell–Bloch simulation can really make it a good
track to improve the computational load.

The choice of the splitting scheme aims at solving exactly each sub-
equation, but also at dealing correctly with terms with different stiffness.
An interesting goal in this direction is to derive methods that preserve the
asymptotic behavior to the rate equations. If splitting methods are not direct
candidates for this since they dissociate different parts of the Bloch equations
which are intimately connected in the Boltzmann equation, it would be in-
teresting to connect numerical solutions of these two sub-equations in an
implicit method by the NSFD technique, hoping thus to obtain asymptotic
preserving schemes. This is the object of our future research.
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A Alternative method for 3× 3 matrix expo-

nentials

A.1 Problem setting

The problem of the expression of exponential of matrices as exact finite
difference schemes has been studied in [10] for general 3-order systems

x′(t) = Ax(t); x(t) = (x1(t), x2(t), x3(t))T , A ∈M3(C).

Here we restrict to the case where matrix A is similar to the canonical Jordan
form

J3 =

λ1 0 0
0 λ2 0
0 0 λ3

 ,

where λ1, λ2, and λ3 are distinct.
We have already seen that solving numerically x′(t) = J3x(t) amounts to
solving three decoupled systems

xn+1
1 = xn1e

λ1∆t, xn+1
2 = xn2e

λ2∆t, xn+1
3 = xn3e

λ3∆t. (A.1)

Back in the original basis, this can be written as

xn+1 = (α(∆t)I + β(∆t)A+ γ(∆t)A2)xn,
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which we prefer to express as a polynomial of β(∆t)A:

xn+1 = (α(∆t)I + β(∆t)A+ ξ(∆t)(β(∆t))2A2)xn.

The explicit exact finite difference form is

xn+1 − α(∆t)xn

β(∆t)
= Axn + ξ(∆t)β(∆t)A2xn,

where α(∆t), β(∆t), and ξ(∆t) are parameters to be determined. The same
coefficients appear in the Jordan basis, and identifying in Equation (A.1) we
obtain

α(∆t) + β(∆t)λj + ξ(∆t)(β(∆t))2λ2
j = eλj∆t, j = 1, 2, 3.

A.2 Coefficients

Solving the Vandermonde system (A.1) is a classical problem. It can be
expressed using determinants. Defining the determinant of the system:

δ =

∣∣∣∣∣∣
1 λ1 λ2

1

1 λ2 λ2
2

1 λ3 λ2
3

∣∣∣∣∣∣ ,
the coefficients are equal to

δα(∆t) =

∣∣∣∣∣∣
eλ1∆t λ1 λ2

1

eλ2∆t λ2 λ2
2

eλ3∆t λ3 λ2
3

∣∣∣∣∣∣ , δβ(∆t) =

∣∣∣∣∣∣
1 eλ1∆t λ2

1

1 eλ2∆t λ2
2

1 eλ3∆t λ2
3

∣∣∣∣∣∣ , δγ(∆t) =

∣∣∣∣∣∣
1 λ1 eλ1∆t

1 λ3 eλ2∆t

1 λ3 eλ3∆t

∣∣∣∣∣∣ .
More explicitely we have

δ = (λ2 − λ1)(λ3 − λ1)(λ3 − λ2),

α(∆t) =
eλ1∆tλ2λ3(λ3 − λ2) + eλ2∆tλ3λ1(λ1 − λ3) + eλ3∆tλ1λ2(λ2 − λ1)

δ
,

β(∆t) =
eλ1∆t(λ2

2 − λ3
3) + eλ2∆t(λ2

3 − λ3
1) + eλ3∆t(λ2

1 − λ3
2)

δ
,

γ(∆t) =
eλ1∆t(λ3 − λ2) + eλ2∆t(λ1 − λ3) + eλ3∆t(λ2 − λ1)

δ
,

ξ(∆t) =
γ

β2
. (A.2)
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Theorem 1. For any matrix A ∈M3(C), whose eigenvalues are distinct,

exp(∆tA) = α(∆t)I + β(∆t)A+ ξ(∆t)(β(∆t))2A2 (A.3)

where α(∆t), β(∆t) and ξ(∆t) are determined by the relations (A.2).

A.3 Application to the three-level Bloch equation

We now want to make explicit the coefficients α0, α1 and α2 in Equation (18)
to construct matrix Cn+1/2:

exp(i∆tV n+1/2) = α
n+1/2
0 I + α

n+1/2
1 V n+1/2 + α

n+1/2
2 (V n+1/2)2. (A.4)

Compared Equation (A.3) of Theorem 1 and Equation (A.4), we have A =

iV n+1/2, α
n+1/2
0 = α(∆t), α

n+1/2
1 = iβ(∆t), α

n+1/2
2 = −ξ(∆t)β2(∆t). De-

noting θ
n+1/2
j = λ

n+1/2
j ∆t, j = 1, 2, 3, where the λ

n+1/2
j are the distinct

eigenvalues of matrix V n+1/2, we obtain

δn+1/2 = (λ
n+1/2
2 − λn+1/2

1 )(λ
n+1/2
3 − λn+1/2

1 )(λ
n+1/2
3 − λn+1/2

2 ),

δn+1/2α
n+1/2
0 = eiθ

n+1/2
1 λ

n+1/2
2 λ

n+1/2
3 (λ

n+1/2
3 − λn+1/2

2 )

+ eiθ
n+1/2
2 λ

n+1/2
3 λ

n+1/2
1 (λ

n+1/2
1 − λn+1/2

3 )

+ eiθ
n+1/2
3 λ

n+1/2
1 λ

n+1/2
2 (λ

n+1/2
2 − λn+1/2

1 ),

δn+1/2α
n+1/2
1 = i

(
eiθ

n+1/2
1 ((λ

n+1/2
2 )2 − (λ

n+1/2
3 )2)

+ eiθ
n+1/2
2 ((λ

n+1/2
3 )2 − (λ

n+1/2
1 )2)

+ eiθ
n+1/2
3 ((λ

n+1/2
1 )2 − (λ

n+1/2
2 )2)

)
,

δn+1/2α
n+1/2
2 = −

(
eiθ

n+1/2
1 (λ

n+1/2
3 − λn+1/2

2 )

+ eiθ
n+1/2
2 (λ

n+1/2
1 − λn+1/2

3 )

+ eiθ
n+1/2
3 (λ

n+1/2
2 − λn+1/2

1 )
)
.

Setting αn+1/2 = α
n+1/2
0 , βn+1/2 = −iαn+1/2

1 and ξn+1/2 = α
n+1/2
2 /(α

n+1/2
1 )2,

the exact scheme for the Liouville equation becomes

ρn+1 = (αn+1/2I + βn+1/2V n+1/2 + ξn+1/2(βn+1/2)2(V n+1/2)2)−1ρn

(αn+1/2I + βn+1/2V n+1/2 + ξn+1/2(βn+1/2)2(V n+1/2)2) (A.5)
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As we have seen for the two-level model in [20], it is also possible to write
the exact scheme for the three-level Liouville equation in the form of a NSFD
model. Indeed the scheme (A.5) can be written as

αn+1/2(ρn+1 − ρn) = βn+1/2[ρn(V n+1/2 + ξn+1/2βn+1/2(V n+1/2)2)

−(V n+1/2 + ξn+1/2βn+1/2(V n+1/2)2)ρn+1].

If ∆t is small enough, we can ensure that αn+1/2 and βn+1/2 are nonzero and

i
αn+1/2

βn+1/2
(ρn+1 − ρn) =− i[(V n+1/2 + ξn+1/2βn+1/2(V n+1/2)2)ρn+1

− ρn(V n+1/2 + ξn+1/2βn+1/2(V n+1/2)2)]

or equivalently
(Φn+1/2(∆t))−1(ρn+1 − ρn) =− i[(V n+1/2 + ξn+1/2βn+1/2(V n+1/2)2)ρn+1

− ρn(V n+1/2 + ξn+1/2βn+1/2(V n+1/2)2)],

Φn+1/2(∆t) =− iβ
n+1/2

αn+1/2
I.

In the left-hand side, we can recognize a nonstandard discretization in which
the discretization time-step size undergoes a renormalization. We also notice
that the renormalization matrix Φn+1/2 has the following property:

Φn+1/2(∆t) = ∆tI +O(∆t2) when ∆t→ 0,

because

lim
∆t→0

αn+1/2 = 1; lim
∆t→0

βn+1/2 = i∆t; lim
∆t→0

ξn+1/2 =
1

2
.

The Strang splitting scheme derived from Equations (8) and (A.5) is
exactly (18). This scheme has a variable time-step size and preserves pos-
itiveness, because both steps (8) and (A.5) are positive. The trace is also
conserved.
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