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a b s t r a c t

This article describes a new kind of processing chain based on a non-uniform sampling
scheme provided by a level-crossing ADC. The chain implements IIR filters which
process directly the non-uniform samples without resampling in a regular scheme. The
non-uniformity in the sample times leads to choose a state representation for the filters.
The stability is studied and the performances of various numerical schemes used to
implement the filters in this representation are compared.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In many applications such as electronic embedded
systems, there is a need for low consuming devices. One
way to achieve this goal is to use asynchronous circuits, in
which no clock rules the functioning. In these devices,
components do not wait for clock signals, instead they
each treat information as fast as they can and use specific
protocols to communicate with other components. The
consequence (as the components work asynchronously) is
that the slowest component does not determine anymore
the performances of the entire system. Moreover, the
asynchronous circuits are event-driven which means that
they consume energy only if they have data to process.

The classical sampling scheme which consists in taking
signal samples at regular clock times has no interest and
meaning any more with these asynchronous systems. In
order to be compliant with these asynchronous circuits,

the signals can be sampled in a dual way. In classical
synchronous systems, sampling times are known pre-
cisely and the amplitudes are quantized (with an
amplitude quantization error). In asynchronous systems
thresholds are predefined within the amplitude dynami-
cal range and are known precisely. The time instants are
quantized with a local clock (with a time quantization
error). This procedure is called the level crossing sampling
scheme.

Samples are therefore only taken when the signal has
some meaningful variation. This induces a lot of precision
in active parts of the signal and no activity when the
signal is constant (asynchronous circuits are event-
driven), implying low consumption for the targeted
applications and also other advantages like low electro-
magnetic pollution.

There are a lot of applications where it can be useful to
have such a sampling. This is the case when the signal
activity is significant only on short times compared to the
total duration of the signal, such as speech, electro-
cardiogram signals, seismic signals, etc.

The design flow has to be completely redefined for these
systems including signal processing tools which are our
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concern in this paper. Indeed, the general goal is not only to
treat level crossing sampled signals but to treat them using
asynchronous systems. We address here only IIR filtering for
non-uniformly sampled signals. We also do not address the
implementation with asynchronous chips, which has been
done in [2]. Other approaches in processing non-uniform
sampled signals may be found in [10] or [12].

In Section 2 we describe our non-uniform data, the IIR
filters in the state representation and the standard
numerical schemes in the literature (Euler, bilinear,
integral). In Section 3 we point out stability as a criterion
to choose a proper scheme and give a design flow which
takes it into account, both for unconditionally and
conditionally stable schemes. In Section 4 we give other
possible schemes and compare them for three types of
low-pass filters (Butterworth, elliptic and Chebyshev) in
terms of stability, efficiency and algorithmic complexity.

2. State of art

2.1. Definitions and notations

The output of a level-crossing ADC consists in a
sequence of couples ðan,dtnÞ (see Fig. 1). The amplitude
an of the signal is captured each time the signal crosses
some predefined quantization levels. The time delay
elapsed since the last sample dtn is computed by a local
timer with precision TC. From an initial time t0, we may
reconstruct the time tn of the n th input sample using the
recurrence relation tn ¼ tn$1þdtn. This value is used to
describe our approach but not in the algorithms since it is
not available in practice. We will also define the half-time
between samples n and n+1 by tn+1/2=(tn+tn+1)/2.

Such a non-uniform sampling was first introduced in
[11]. An asynchronous implementation, called A-ADC (for
asynchronous ADC), has been defined in [3] and analyzed
in terms of signal-to-noise ratio. In digital signal proces-
sing we are interested in filtering an input signal i(t)
represented by the samples ðin,dtnÞ to obtain an output
signal o(t) represented by the samples ðon,dtnÞ. Keeping
the same time delays is not convenient for FIR filters,
where the output delays depend on the input and the
impulse response samples (see [1,9]). We are interested in
IIR filters for which the output is given at some later time
than the input due to computational delay, but it can be
considered as constant and does not affect time delays.
A closer study of this point would necessitate to consider
an effective asynchronous implementation of the
schemes, which is not our goal here but is discussed in [2].

2.2. State representation for an IIR filter

The aim is not to design asynchronous filters. Instead
we use standard filters. Usually a uniformly sampled
input signal I(s) is written in the Laplace domain and
filtering consists only in multiplying by the filter transfer
function

HðsÞ ¼
PN

j ¼ 0 ajs
j

PN
j ¼ 0 bjsj

and obtaining the output filtered signal O(s)=H(s)I(s). This
is based on efficient Laplace transforms which are not
available for non-uniformly sampled signals. Therefore,
we use the state representation of the filter where all
the signals (input i, output o) are written in the time
domain. This necessitates the use of a vector-valued state
variable x:

dxðtÞ
dt

¼ AxðtÞþBiðtÞ, ð1Þ

oðtÞ ¼ CxðtÞþDiðtÞ, ð2Þ

where

A¼

0 1 & & & 0 0

^ ^ & ^ ^
0 0 & & & 1 0

0 0 & & & 0 1

$b0 $b1 & & & $bN$2 $bN$1

0

BBBBBB@

1

CCCCCCA

is the N'N state matrix, B¼ ð0 & & & 0 1Þt is the command
vector, C ¼ ða0$aNb0 & & & aN$1$aNbN$1Þ is the observation
vector and D¼ aN the direct link coefficient.

The integral form for Eq. (1) is given by

xðtÞ ¼ eAtxð0Þþ
Z t

0
eAðt$tÞBiðtÞdt: ð3Þ

The characteristic polynomial of the state matrix A
reads as

detðlId$AÞ ¼ lNþbN$1l
N$1þ & & & þb1lþb0

(where Id is the N'N identity matrix) and the poles of the
transfer function are exactly the zeros (or eigenvalues) of
the state matrix. We can define a linear change of basis P
for the state vector in Rn and replace it by y(t)=P$1x(t)
such that ~A ¼ P$1AP is the Jordan form of matrix A (if all
the roots of A are distinct, ~A is diagonal). If we further
define ~B ¼ P$1B, ~C ¼ CP and ~D ¼D, the new state variable
y(t) is the solution to

dyðtÞ
dt

¼ ~AyðtÞþ ~BiðtÞ,

oðtÞ ¼ ~CyðtÞþ ~DiðtÞ:

In the sequel, we will keep the original system, but this
form justifies the stability proof in Section 3.1.5.

2.3. Euler approximation of an IIR filter

The Euler method consists in writing Eq. (1) at time
tn$1 and using a forward approximation for the time
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Fig. 1. Non-uniform sampling scheme.
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derivative, namely

xn$xn$1

dtn
¼ Axn$1þBin$1, ð4Þ

which also reads as

xn ¼ ðIdþdtnAÞxn$1þBdtnin$1:

Then the output is simply computed by

on ¼ CxnþDin: ð5Þ

2.4. Bilinear approximation of an IIR filter

Poulton and Oksman [7,8] have chosen a bilinear
method to approximate the time derivative in Eq. (1). This
method consists in writing a centered approximation of
the equation at time tn$(1/2), that is

xn$xn$1

dtn
¼ A

xnþxn$1

2
þB

inþ in$1

2
: ð6Þ

The output is once more computed using Eq. (5).
We may give an explicit form for Eq. (6), namely

xn ¼Cnxn$1þLn
1
2
ðinþ in$1Þ,

where

Cn ¼ Id$
dtn
2

A

! "$1

Idþ
dtn
2

A

! "
and

Ln ¼ Id$
dtn
2

A

! "$1

dtnB:

This algorithm displays several advantages: it is second
order, and is much more effective than the Euler method.
Nevertheless, it is relatively expensive in computational
time since we need to invert a matrix for each new output
sample. This is the reason why we will suggest other
approximation methods which do not share this draw-
back. Other criteria for the choice of a ‘‘good method’’ will
be given below in our specifications.

2.5. Discretization in the integral form

In [5], Fontaine and Ragot choose to discretize the
integral form (3) of the state equation directly. Their only
approximation consists in replacing the continuous signal
i(t) by a sample-hold or piecewise linear interpolation. For
example, for sample-hold interpolation, they compute

xn ¼ eAdtnxn$1$A$1ðId$eAdtn ÞBin$1:

The stability proof below (see Section 3.1.2) for the
continuous variables leads to the stability of such an
approximation, and the results presented in [5] are rather
good in terms of filtering. They suggest to split operators
into second- (or first-) order filters in order to have a
simpler evaluation of the quantity expðAdtnÞ. We will use
this idea to compare the complexity of the different
methods in Section 4.3.

3. Stability specifications and design flow

3.1. Stability

3.1.1. Definition

Definition 1. A filtering process is said to be stable if
when perturbed by an input signal with finite time
duration, the output signal eventually returns to an
equilibrium state.

A well known necessary and sufficient condition for a
filter to be stable is that the poles of its transfer function
(eigenvalues of A) have a negative real part.

3.1.2. Stability in the state representation
Suppose the input signal is constant from time t! on.

Then, for tZt(, the solution to the state equation reads as

xðtÞ ¼ eAðt$t(Þxðt(Þþ
Z t

t(

eAðt$tÞBiðtÞdt

¼ eAðt$t(Þxðt(ÞþA$1ðeAðt$t(Þ$IdÞBiðt(Þ, ð7Þ

oðtÞ ¼ CxðtÞþDiðt(Þ, ð8Þ

and since the eigenvalues of A are supposed to have a
negative real part

lim
t-þ1

oðtÞ ¼ ðD$CA$1BÞiðt(Þ ¼ aNþ
a0$aNb0

b0

! "
iðt(Þ ¼

a0

b0
iðt(Þ:

In particular, the limit does not depend on the state of the
system when perturbed but only on the constant value of
the input. Thus we obtain the classical result that if the
eigenvalues of A have a negative real part then the
filtering process is stable in the sense of Definition 1.

3.1.3. Sampled state equation
We have already seen two types of approximations for

an asynchronous signal: the Euler and the bilinear
methods. The problem we deal with is the approximation
of an ordinary differential equation sampled on a non-
uniform time discretization. This problem is classical in
numerical analysis. Both the Euler and the bilinear
methods can be cast in a more general framework of
one-step schemes which reads as

xn ¼Fnxn$1þGnîn: ð9Þ

(This framework could be easily enlarged to also en-
compass multi-step schemes, e.g. Taylor approximations).
The input signal is approximated by în. To illustrate
notation Eq. (9), the Euler method corresponds to

Fn ¼ IdþdtnA, Gn ¼ dtnB and în ¼ in$1

and the bilinear method to

Fn ¼ Id$
dtn
2

A

! "$1

Idþ
dtn
2

A

! "
,

Gn ¼ Id$
dtn
2

A

! "$1

dtnB and în ¼
1
2
ðinþ in$1Þ:

In Section 3.1.2 we have seen that the stability is
ensured if the eigenvalues of A have a negative real part,
i.e. if the eigenvalues of expðAðt$t(ÞÞ lie inside the unit
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disk. We prove below that, if the eigenvalues of Fn lie
uniformly in the unit disk then the stability of the
approximation is ensured. The stability condition only
involves Fn (and not Gnîn).

3.1.4. ‘‘Good method’’ with respect to stability
For any method that we will define, Fn preserves in

practice the eigendirections of matrix A and an eigenvalue
l of A corresponds to an eigenvalue mn of Fn via the
transform mn ¼ T nðlÞ.

Examples: For the Euler method, T nðlÞ ¼ 1þdtnl. The
eigenvalue l lies in the left half of the complex plane
ðReðlÞo0Þ if and only if mn lies in the region ðReðmnÞo1Þ.
This includes the unit disk and therefore the inverse
image of the unit disk is a subset of the left half-plane
(LHP).

For the bilinear method,

T nðlÞ ¼
1þdtnl=2
1$dtnl=2

:

This is the well known homographic function, which
maps the left half-plane onto the unit disk (see Fig. 2).

Discussion: The choice of a good method may also be
made following two types of questionings.

1. We may want a method that will give good results for
any stable filter.

2. We may select filters with eigenvalues in some
restricted region of the complex plane such that the
eigenvalues for the approximate method lie inside the
unit disk.

The bilinear method is good in both respects. The Euler
method should be rejected if the first point of view is
adopted. Otherwise, the filter should be chosen such that
j1þdtnljo1. This is a disk of radius 1=dtn which is
included in the left half-plane (see Fig. 3). If the filter is
given, and has no eigenvalues on the imaginary axis, this
implies an upper bound on the sampling time.

3.1.5. Proof of the stability of the approximation
In both cases, Fn is an approximate value of expðdtnAÞ.

The stability of the approximation will be proved follow-
ing the proof for the continuous equation. A simple

recurrence from Eq. (9) implies that

xn ¼
Yn

j ¼ 1

Fj

0

@

1

Ax0þ
Xn

j ¼ 1

Yn

k ¼ jþ1

Fk

0

@

1

AGj î j:

Let us first prove stability in the simple case when the
time step is constant. In this case, Fj ¼F and Gj ¼G for all
j. Besides we assume that î j is constant and equal to i!
from index n0 onwards. Therefore

xn ¼Fnx0þ
Xn

j ¼ 1

Fn$jGî j

¼Fnx0þFn$n0 þ1
Xn0$1

j ¼ 1

Fn0$j$1Gî j

0

@

1

Aþ
Xn$n0

j ¼ 0

FjGi(:

Since the eigenvalues of F are supposed to lie inside the
unit circle the first two terms vanish as n-1. Thus

lim
n-1

xn ¼ lim
n-1

Xn$n0

j ¼ 0

FjGi( ¼ ðId$FÞ$1Gi(:

In the case of non-constant time steps, the fact that the
eigenvalues of all matrices lie in the unit circle does not
prove that products like

Qn
j ¼ 1 Fj vanish (counter exam-

ples are easy to find). However, this is true for triangular
matrices and therefore for the Jordan form given in
Section 2.2. The proof can be made with this formulation
and the result is still valid in the initial variables.

Besides, our definition of stability and the principle of
the A-ADC imply that if the input is constant, no new
output is computed and the output is therefore constant.
This way of thinking is at least valid for absolute stable
methods. We have seen that we may have to define an
upper bound TU for the sampling time to ensure the
stability. Then we have to add new samples with the same
amplitude and delay time TU. In this case, the stability
proof is the same as in the synchronous case.

3.2. Design flow

The preceding discussion leads to define a design flow
to implement a stable numerical filter. This design flow is
shown in Fig. 4. There are two inputs: a numerical scheme
and a filter. For a given value of dtn, a transform T n is
calculated from the numerical scheme. Then we define
the stability domain as the regionRn of the complex plane
which is the inverse image of the unit disk D1:

Rn ¼ T $1
n ðD1Þ:

ARTICLE IN PRESS

Fig. 2. Action of the T n transform for the bilinear transformation. Left
eigenvalues l of matrix A, right eigenvalues mn of matrix Fn shown on
the complex plane.

Fig. 3. Action of the T n transform for the Euler scheme. Left eigenvalues
l of matrix A, right eigenvalues mn of matrix Fn shown on the complex
plane.
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If the left half plane is included in Rn then the numerical
scheme yields a stable method whatever the filter is. We
will call such a scheme an unconditionally stable scheme.
Otherwise, if the filter poles l (eigenvalues of matrix A)
belong to Rn then the numerical scheme yields a stable
method for this specific filter. If this condition is not
fulfilled then a possible solution is to reduce the maximal
value of dtn. A generic situation is indeed that of the
Runge–Kutta schemes (see below Section 4.1.1).

The regionRn is plotted in Figs. 5 and 6 for the RK4 and
RK23 schemes, respectively. RK23 is an unconditionally
stable scheme with a ‘‘funny’’ (i.e. non-convex) stability
region. RK4 is a conditionally stable scheme. The regions
Rn do not overlap for different values of dtn. However, the
particular form of these regions allow to include any given
set of points from the left half plane by taking a small
enough value of dtn.

4. Numerical schemes

4.1. Explicit and implicit schemes

The numerical schemes are used to discretize Eq. (1).
The left-hand side is always discretized as ðxn$xn$1Þ=dtn.
If the right-hand side is given in terms of the state and the
entries at times before tn, i.e. tn$1, tn$2, ythen the
scheme is said to be explicit. We have already presented
the Euler method which is an explicit scheme. If time tn is
used the scheme is said to be semi-implicit. The bilinear
method is an example of such a method. If later times, like
tn+1, are used, the scheme is said to be implicit. Such
schemes are not used for filtering methods since they not
only use future entries (which would be possible by
insertion of delays) but also future states of the system. In
addition it would be prohibited by the large amount of
calculations needed.

4.1.1. Explicit schemes are not unconditionally stable
By no means can an explicit method be uncondition-

ally stable. Indeed, for an explicit method, T n is a
polynomial and no polynomial can map the left half-
plane in any bounded domain of the complex plane. This
is a major drawback, but we want to consider explicit
methods for their costless implementation. Therefore, for

explicit methods we will be interested in finding the
filtering methods which will lead to the less restrictive
condition on time steps.

4.1.2. The Runge–Kutta 4 scheme
Many explicit schemes exist in the numerical analysis

literature [6], among them explicit Runge–Kutta schemes.
We have used the 4th order Runge–Kutta scheme (RK4)
which for our particular state equation and a linear
approximation of iðdtn$1=2Þ reads as xn ¼Fnxn$1þGnîn,
where

Fn ¼ IdþdtnAþ
dt2n
2

A2þ
dt3n
6

A3þ
dt4n
24

A4,

Gnîn ¼ dtn
Id
2

þ
dtn
3

Aþ
dt2n
8

A2þ
dt3n
24

A3

" #
Bin$1

þdtn
Id
2

þ
dtn
6

Aþ
dt2n
24

A2

" #

Bin:
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Fig. 4. Design flow to implement stable numerical filters.
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We may notice that the iteration matrix that operates on
yn$1 is the 4th order Taylor expansion of expðdtnAÞ which
is the exact value. For this scheme, the inverse image of
the unit circle for

T nðlÞ ¼ 1þdtnlþ
dt2n
2

l2þ dt3n
6

l3þ dt4n
24

l4

is shown in Fig. 5.

4.1.3. Semi-implicit schemes
The bilinear method is a semi-implicit scheme. We

have also tested a third order two-stage Runge–Kutta
semi-implicit method (RK23). For our specific state
equation, it reads as xn ¼Fnxn$1þGnîn, where

Fn ¼ ½Id$dtnA*$1 Id$2
dtn
3

A

# $$1

Id$2
dtn
3

A$
dt2n
2

A2

" #

,

Gnîn ¼ ½Id$dtnA*$1 Id$2
dtn
3

A

# $$1

'dtn
Id
2
$
dtn
2

A

# $
Bin$1þ

Id
2
$2

dtn
3

A

# $
Bin

! "
:

For this scheme, the inverse image of the unit circle for

T nðlÞ ¼
1$2

dtn
3

l$dt2n
2
l2

ð1$dtnlÞ 1$2
dtn
3
l

! "

is shown in Fig. 6 and is twofold as already noticed.
A very well known semi-implicit scheme is also the

retrograde Euler scheme, which is in some sense ‘‘too
stable’’ as will be seen in the simulations below. It reads as

xn$xn$1

dtn
¼ AxnþBin, ð10Þ

which should be compared with Eqs. (4) or (6). For this
scheme

Fn ¼ ½Id$dtnA*$1, Gn ¼ ½Id$dtnA*$1dtnB and în ¼ in

and therefore

T nðlÞ ¼
1

1$dtnl
:

This scheme is unconditionally stable, and the stability
domain is the exterior of the circle of center ð1=dtn,0Þ and
of radius 1=dtn, which contains the left half-plane.
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Table 1
Filter amplifications for the input frequencies 0, 1 and 4Hz, and the cut-
off frequency 2Hz.

0Hz 1Hz 2Hz 4Hz

Butterworth 1.0000 1.0000 0.7071 0.0010
Elliptic 0.9441 0.9996 0.9441 0.0086
Chebychev 0.7943 0.9340 0.7943 0.0000

Please cite this article as: L. Fesquet, B. Bidégaray-Fesquet, IIR digital filtering of non-uniformly sampled signals via state
representation, Signal Process. (2010), doi:10.1016/j.sigpro.2010.03.030
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Fig. 9. Eigenvalues of the five schemes for the Butterworth filter and the maximal time step dtmax ¼ 0:0388 s: (a) Euler, (b) retrograd Euler, (c) bilinear,
(d) RK23 and (e) RK4.
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4.2. Comparison of the schemes for three low-pass filters

We address the filtering of the superposition of DC, 1
and 4Hz signals:

iðtÞ ¼ 0:45sinð2ptÞþ0:45sinð4' 2ptÞþ0:9

at a 2Hz cut-off frequency. We first apply an A-ADC
converter with dynamic range [0, 1.8V] on this signal to
obtain 641 samples displayed in Fig. 7.

The filter order is 10 for the three filters. Each time five
schemes are used, and compared on Figs. 8–13, namely
Euler, retrograde Euler, bilinear, RK23 and RK4 schemes.
As we have seen, three of them are unconditionally stable.

To be able to discriminate between filter character-
istics and sampling or numerical effects, we give in
Table 1 the amplification coefficients for the frequencies
of our test input signal and the cut-off frequency. The
values will have to be compared with those in Tables 2–4.

Horizontal lines in Figs. 8, 10 and 12 display the
theoretical lower and upper values for the output due to
the characteristics of the filter only.

4.2.1. Butterworth filter
We first try a Butterworth filter. The filtering results

are displayed in Fig. 8 and show three very comparable
and good results corresponding to the bilinear, RK4 and
RK23 schemes. The retrograde Euler scheme is of course
stable but damps the solution too much. Some
amplification is observed for the Euler scheme.

This is accounted for in Fig. 9 on which eigenvalues
mn ¼ T nðlÞ are plotted for the five schemes. The Euler
scheme has two eigenvalues outside the unit disk. They lie
not too far from the unit circle which explains that the
solution is still reasonable but a longer simulation would
make this solution blow up.

In Table 2 are displayed the mean value and the half
amplitude which are supposed to reflect the DC and the
1Hz components of the filtered signal. In order not to be
perturbed by the transient values and more generally by
the initial and final times used to compute the mean, we
consider it to be the half value between the minimum and
the maximum of the filtered signal. The results are given
for all schemes except the Euler schemes which is clearly
unstable. The comparison is made with the theoretical
value which is the value displayed in Table 1 multiplied
by the input amplitude of the DC and the 1Hz
components, namely 0.9 and 0.45, respectively.

There is a good agreement with the expected theoretical
values, especially for the mean value. The 1Hz component
is as already noticed too much damped by the retrograde
Euler scheme.

4.2.2. Elliptic filter
The same computations are performed for an elliptic

filter displaying comparable results for the bilinear, RK4
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Table 2
Mean and half amplitude of the Butterworth filtered signals for all the
schemes compared to the theoretical values at DC and 1Hz frequency.

Theoretical Retro Euler Bilinear RK23 RK4

Mean 0.9000 0.8986 0.9044 0.9116 0.9054
Half amplitude 0.4500 0.3686 0.4578 0.4604 0.4568
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Fig. 10. Filtering with five schemes for the elliptic filter: (a) input signal, (b) Euler, (c) retrograd Euler, (d) bilinear, (e) RK23 and (f) RK4.
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and RK23 schemes (see Fig. 10). The retrograde Euler
scheme yields better results than for the Butterworth
filter. The Euler scheme is very bad in this situation. Most
samples for this scheme are not displayed in Fig. 10
because they are out of the dynamic range.

This is coherent with the eigenvalue computations
plotted in Fig. 11: only two eigenvalues lie on the unit
disk for the Euler scheme and the others are far from the
unit circle.

Table 3 is the equivalent of Table 2 for the elliptic filter.
It would not be fair to compare the filtered amplitudes
with the ideal values (0.9 for the DC component and 0.45
for the 1Hz component) since the performance of the
elliptic filter is far from that at least for the DC
component.

4.2.3. Chebyshev filter
The same computations are performed for a Chebyshev

filter and shown in Fig. 12. Once again, the bilinear, RK4

and RK23 schemes yield good results, the retrograde Euler
scheme damps the solution too much and Euler is out of
range as the eigenvalue analysis displayed in Fig. 13
explains (only four eigenvalues on the unit disk).

As can be seen in Table 4 the performance of the
Chebyshev filter is poor especially for the DC component.
However, the applied schemes do not alter the
performance more.

The numerical results with the different schemes are
comparable to that obtained with a uniform sampling.
The main difference is that the value of the longest dtn has
to be checked in order to ensure the filter stability in the
case of conditionally stable schemes.

After the filtering process we obtain a signal which is
not a level crossing sampled signal. In particular the low-
pass filtered signals are clearly over-sampled, with
respect to the Nyquist criterion (which is always the case
for level crossing samples in active parts of the signal) but
also compared to a level crossing sampled signal. A new
sampling block should therefore be added behind the
filtering block.

4.3. Complexity analysis

We now drop the study of both Euler schemes which
have been proven to be less efficient, and compare the
other schemes with respect to their complexity, which
will be our last argument for choosing a good scheme.
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Fig. 11. Eigenvalues of the five schemes for the elliptic filter and the maximal time step dtmax ¼ 0:0388 s: (a) Euler, (b) retrograd Euler, (c) bilinear,
(d) RK23 and (e) RK4.

Table 3
Mean and half amplitude of the elliptic filtered signals for all the
schemes compared to the theoretical values at DC and 1Hz frequency.

Theoretical Retro Euler Bilinear RK23 RK4

Mean 0.8497 0.8487 0.8412 0.8540 0.8404
Half amplitude 0.4498 0.4249 0.4585 0.4676 0.4547
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4.3.1. Reduction to one- or two-order filters
In order to implement an N th order filter, it is usual to

decompose it in multiple first and second order filters

which are easily implemented with classical electrical
structures like Rauch or Sallen-key structures. In our case,
such a reduction is also attractive because it is much
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Fig. 12. Filtering with five schemes for the Chebyshev filter: (a) input signal, (b) Euler, (c) retrograd Euler, (d) bilinear, (e) RK23 and (f) RK4.
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Fig. 13. Eigenvalues of the five schemes for the Chebyshev filter and the maximal time step dtmax ¼ 0:0388 s: (a) Euler, (b) retrograd Euler, (c) bilinear,
(d) RK23 and (e) RK4.
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L. Fesquet, B. Bidégaray-Fesquet / Signal Processing ] (]]]]) ]]]–]]]10

dx.doi.org/10.1016/j.sigpro.2010.03.030


easier to invert scalars or 2'2 matrices than an N'N
matrix. Moreover, the decomposition provides the ability
to make explicit the calculus of the matrix inversion
which can be a real improvement in terms of computation
speed and complexity.

4.3.2. Algorithmic complexity
In order to evaluate the implementation cost, the

number of operations and the memory needs have been
estimated for an N-order filter decomposed into one- and
two-order filters for four schemes (bilinear, Runge–Kutta
4, Runge–Kutta 23 and the integral form). To obtain these
values, storage has been favored vs. computation. Other
choices can be made but this is connected to implementa-
tion issues which are out of the scope of this article. For
the semi-implicit schemes, the values in Tables 6 and 5
refer to the worst case, that is when there is at most one
(N[2], i.e. N modulo 2) one-order filter and bN=2c two-
order filters). It is always less complex to split a two-order
filter into two filters when possible: the coefficient in
front of bN=2c is always larger than twice the one in front
of N[2]. For RK4, since no matrix inversion is needed, the
decomposition into low-order filters is not necessary.

Tables 5 and 6 give us the complexity overview related
to each scheme. It appears that the RK4 scheme and the
bilinear scheme have about comparable complexities. The
integral scheme requires an exponentiation.

5. Conclusion

In the case of non-uniform sampling, the only still
valid representation for IIR filters is the state representa-
tion, which is an Ordinary Differential Equation repre-
sentation. The discretization is usually performed for
uniform samples but may be as well performed for non-
uniform samples. We have compared different numerical
schemes in terms of stability, complexity and quality of
the filtering result when applied to classical low-pass
filters as Butterworth, elliptic or Chebyshev filters.

Euler schemes are both to be rejected, the explicit one
for being unstable and the implicit one for being in a sense
too stable, i.e. too dissipative. The three other studied
schemes (bilinear, RK23 and RK4) give qualitatively good
results. If applied to N-order filters, only RK4 is effective
(no matrix inversion), but if 1- and 2-order decomposi-
tions are used, the complexity study does not allow to
rank one of them clearly first. For RK23 and RK4, some
oversampling is needed for inactive inputs to ensure
stability, while this is unnecessary for the bilinear scheme.

This work is part of a wider study of signal processing
in a complete asynchronous framework (asynchronous
representation and processing of the data) [4]. The goal is
definitively to reduce the number of samples, the
computational load and so the energy consumption. We
strongly believe that this is an attractive approach for
autonomous embedded systems.
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Table 4
Mean and half amplitude of the Chebyshev filtered signals for all the
schemes compared to the theoretical values at DC and 1Hz frequency.

Theoretical Retro Euler Bilinear RK23 RK4

Mean 0.7149 0.7401 0.7124 0.7154 0.7166
Half amplitude 0.4203 0.3349 0.4546 0.4559 0.4557

Table 5
Memory needs for several schemes.
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Table 6
Comparison of the operation number for several schemes.
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