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Abstract

We study the Cauchy problem for two systems of equations (Maxwell-Debye
and Maxwell-Bloch) describing laser-matter interaction phenomena. We
show that these problems are locally in time well-posed for initial data in
different Sobolev spaces. In the case of Maxwell-Debye system, which con-
tains some delay term, we study the limit of the solutions when this delay
tends to 0. We also consider an adiabatic approximation of Maxwell-Bloch
system.

1This work has been performed as the author was working in the CMLA, CNRS URA
1611, ENS de Cachan, France and LANOR, CNRS URA 760, Université Paris Sud, France
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Introduction

Our goal is an analytical study of equations governing the propagation of
light through a medium which interacts with the electromagnetic field corre-
sponding to this light wave. Thus we study two systems of equations which
have a similar mathematical structure : Maxwell-Debye system

(
∂

∂z
+
n0

c

∂

∂t

)
A− i

2k
∇2

1A+ i
ω0

c
δnA = 0,

τ
∂δn

∂t
+ δn = n2|A|2.

which describes the interaction of an electromagnetic wave with a nonreso-
nant medium which has a relevant response time and Maxwell-Bloch system

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2

1A+
κ

c
A =

iω

2ε0c
L,

∂L

∂t
+ (γ12 + i(ω12 − ω))L =

ip2

~
AN,

∂N

∂t
+ γ11(N −N0) =

2i

~
(A∗L− AL∗).

which describes the interaction of an electromagnetic wave with a resonant
medium which is constituted by a gas of two-level atoms.

There exists already various articles about a simpler version of Maxwell-
Bloch equations, which consists in neglecting the Laplacian (∇2

1) with respect
to the x and y space variables. Thus we neglect the transversal variations of
the field, i.e. we consider a (1+1)-dimensional problem.
In an article of Constantin, Foias and Gibbon [4], this (1+1)-dimensional
equation is studied for periodic boundary conditions with respect to z. Then
the system happens to be a nonlinear hyperbolic one. They study the global
existence of solutions in L2 and construct a finite dimensional universal at-
tractor in this space. This attractor is constituted by C∞ functions. This
system has the complex Lorenz system as sub-system, when we restrict our-
selves to solutions with no dependence with respect to the space variable z.
This enables us to have an inkling of the complexity of the dynamics of these
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equations.
Lega, Moloney and Newell [6] derive from the same Maxwell-Bloch equations
a complex equation of Swift-Hohenberg type which capture the main features
of the laser dynamics. They also analyze the stability of travelling wave so-
lutions.
Concerning numerical computations, we cite Mart́ın, Pérez-Garćıa, Guerra,
Tirado and Vázquez [7] who developped a linearly implicit finite difference
scheme for the Maxwell-Bloch equations (with no z-dependence) using a
multigrid technique.

We specify in a first part the derivation of both models. The following
parts are devoted to the study of the Cauchy problem. We are dealing with
solutions which are bounded with respect to variables t (on a certain inter-
val) and z and belong to Sobolev spaces with respect to transverse space
variables, x and y. This is consistent with the physical point of view : the
propagation of a laser beam which is regular and localized with respect to
the transverse space variables. In the second part we show that the Cauchy
problem for the Maxwell-Debye equations is locally well posed in Hs for
s > 1 (smooth solutions) and next in H1 and L2 (weak solutions). In the
case when s ≥ 1, we also show that, as the delay τ tends to 0, the solutions
to Maxwell-Debye equations tend in Hs to that of the Schrödinger equa-
tion which is the formal limit. The third part regroups a few results about
Maxwell-Bloch equations. We begin with the study of an adiabatic approx-
imation to finish with the Cauchy problem in Hs, s > 1 for the whole system.

I want to thank here Professor Jean Ginibre, whose kind remarks made
possible great improvements in the proof of some results.
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1 The equations of nonlinear optics.

We are dealing with models for the description of the propagation of light
in an active resonant medium. Since the medium has a huge number of
degrees of freedom, we restrict ourselves to a low number of them thanks
to various assumptions. The electric field is supposed to be a collection of
almost monochromatic wavetrains and we assume that the degrees of freedom
that directly or undirectly resonate with the electric field are the only ones
to have a longtime influence. The ingredients of the modelling may be found
in Newell and Moloney’s book [8].

We first begin with the derivation of Bloch equations that describe the
dynamics of oscillators (excited atoms) of the matter.
The state of matter is described by the wave function ψ and the hamiltonian
operator H whose eigenvalues are the (quantified) energy levels and eigen-
functions are the basis states.
In the unperturbed state, the hamiltonian is denoted by H0, the energy levels
by Ej = ~ωj with eigenfunctions ψj respectively, verifying H0ψj = ~ωjψj.
{ψj} is an orthonormal basis of the phase space and we may choose eigen-

functions so that moreover

∫
~Rψj(~R)d~R = 0 and

∫
~Rψjψ

∗
jd
~R = 0.

We want to compute the polarization vector induced by the field ~E. As a
general rule, it is given by

~P = nae

∫
~Rψψ∗d~R

where na is the volume density of atoms, and e the electric charge.

The first step consists in using Schrödinger equation. We suppose that ψ
is solution to

i~
∂ψ

∂t
= Hψ

where H is the sum of H0 and of the pertubation potential δV = −e
∫

~E.d~R.

As ~E changes very little over atomic distances, we will consider that δV =
−e ~E.~R.
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The second step consists in finding how unperturbed states read. To that

aim we suppose that ψ(~R, t) =
N∑

j=1

aj(t)ψj(~R). We obtain in a straightfor-

ward way that if H = H0 then aj(t) = aj(0)e
−iωjt.

The third step is the computation of the polarization vector. We have

~Patom = e

∫
~Rψψ∗d~R =

∑
jk

ρjk
~Pkj = Tr ~pρ

where the density matrix element ρjk = aja
∗
k depends on time and the dipolar

matrix element ~pjk = e

∫
~Rψ∗jψkd~R not. We clearly have ~P = na

~Patom.

There remains to write dynamical equations for ρjk.
The fourth step is the derivation of ”raw” Bloch equations (in that they

is too many of them). Using the particular form of H, we obtain

∂ak

∂t
= −iωkak +

i ~E

~
.

N∑
l=1

~pklal

and therefore for the density matrix elements

∂ρjk

∂t
= −i(ωj − ωk)ρjk +

i ~E

~
.

N∑
l=1

~pjlρlk −
i ~E

~
.

N∑
l=1

~plkρjl.

The fifth step is devoted to the simplification of these equations. We know
how to solve the former equations if we neglect terms containing ~E, but this
may be only accomplished if they are actually neglectible. In practice, we may

neglect all
i ~E

~
.

N∑
l=1

~pjlρlk −
i ~E

~
.

N∑
l=1

~plkρjl terms but those having frequences

close to ωjk = ωj−ωk. Thus a large number of terms may ne neglected, their
sum is nonetheless non neglectible. The gradual loss from the few modes
we are interested in to the larger number of other modes is modellized by
adding a term reading −γjkρjk (γjk > 0) in the equations for the n energy
levels we keep. We will not study the other equations. Thus we performed a
simplification of the equations as well as a reduction of their number.

The sixth step consists in identifying the possible resonances.
There may be some direct resonance, i.e. frequency ω in ~E is near to ωjk
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( ~E.
∑
~pjkρkk type of products).

There may be D.C. rectification ( ~E.
∑
~pjlρlj terms in which frequency −ω in

~E cancels the frequency ωlj ∼ ω in ρlj, inducing a longtime cumulative effect
on ρjj).
Last there may be some parametric resonance as one of the binary combi-
nations of field difference frequencies ±ωr with dipolar difference frequencies
±ωlk are equal to other difference frequencies ±ωjk.

Thus for the n levels we consider, we have

∂ρjk

∂t
= −i(ωj − ωk)ρjk +

i ~E

~
.

n∑
l=1

~pjlρlk −
i ~E

~
.

n∑
l=1

~plkρjl (1.1)

and the polarization vector is given by

~P = naTr ~pρ. (1.2)

Last we derive Maxwell’s equation governing the envelope of ~E.
Maxwell’s equations are

~∇. ~D = ρ, electric Gauss equation,
~∇. ~B = 0, magnetic Gauss equation,

~∇× ~E = −∂
~B

∂t
, Faraday equation,

~∇× ~H =
∂ ~D

∂t
+ ~, Ampère equation.

~E is the electric intensity field, ~B the magnetic induction field, ~D the elec-
tric induction field and ~H magnetic intensity field. These fields are connected
through the relations ~B = µ ~H and ~D = ε0 ~E+ ~P where ε and µ are the dielec-
tric constant and the permittivity of the matter respectively. We consider
here that the electric charge density ρ and the electric current density ~ are

zero and that µ is constant and equal to µ0 =
1

ε0c2
where c is the speed of

light in the vacuum and ε0 the dielectric constant of the vacuum.
Then we easily obtain

~∇2 ~E − 1

c2
∂2 ~E

∂2t
=

1

ε0c2
∂2 ~P

∂2t
. (1.3)
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2 Maxwell-Debye equations.

2.1 Modelization.

The presence of an electromagnetic field induces a variation of the medium
refraction index, which we assume here to be nonresonant and with a non
neglectible response time τ . Let ~D = ε0n(ω) ~E be the deplacement electric
field, where n(ω) is called index of the medium and reads

n(ω) = n0(ω) + δn(E).

The equation for δn is Debye’s equation, namely

τ
∂δn

∂t
+ δn = n2|E|2.

This evolution law is relatively intuitive if we notice that for a medium that
reacts ”instantaneously”, we have n(ω) = n0(ω)+n2|E|2. We split the polar-

ization vector in a linear polarization ~PL = ε0(n
2
0(ω) − 1) ~E and a nonlinear

one ~PNL = 2ε0n0δn(E) ~E. In the case of an unidirectional wave, we may set
~E = êA(~r, t)ei(kz−ωt) + c.c. and (1.3) becomes

(
∂

∂z
+
n0

c

∂

∂t

)
A− i

2k
∇2

1A+ i
ω0

c
δnA = 0,

τ
∂δn

∂t
+ δn = n2|A|2.

(2.1)

In what follows, we will write n instead of δn.

2.2 The local Cauchy Problem.

2.2.1 Setting.

We set ξ =
c

n0

t− z and A(x, y, z, t) = Ā(ξ, t;x, y), n(x, y, z, t) = n̄(ξ, t;x, y).

Maxwell-Debye equations (2.1), after this change of variable, read
n0

c

∂Ā

∂t
− i

2k
∇2

1Ā+ i
ω0

c
n̄Ā = 0,

τ
∂n̄

∂t
+
τc

n0

∂n̄

∂ξ
+ n̄ = n2|Ā|2.

(2.2)
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Anew we make a change of variable n̄ = m̄e−
n0
τc

ξ, yielding the new system :
n0

c

∂Ā

∂t
− i

2k
∇2

1Ā+ i
ω0

c
m̄e−

n0
τc

ξĀ = 0,

τ
∂m̄

∂t
+
τc

n0

∂m̄

∂ξ
= n2|Ā|2e

n0
τc

ξ.

We study the transport equation with t as evolution variable, and hence,

setting Ξ(t) = ξ0 +
c

n0

t, where ξ0 refers to a particular caracteristic,

d

dt
(m̄(Ξ(t), t;x, y)) =

(
∂m̄

∂ξ
Ξ′(t) +

∂m̄

∂t

)
(Ξ(t), t;x, y) ,

=

(
c

n0

∂m̄

∂ξ
+
∂m̄

∂t

)
(Ξ(t), t;x, y) ,

=
n2

τ
|Ā (Ξ(t), t;x, y) |2e

n0
τc

Ξ(t).

m̄(Ξ(t), t;x, y) = m̄(Ξ(t0), t0;x, y) +

∫ t

t0

n2

τ
|Ā (Ξ(ζ), ζ;x, y) |2e

n0
τc

Ξ(ζ)dζ.

From now on, we stay on the caracteristic containing the point (t, ξ) = (0, ξ0),

hence Ξ(t) = ξ0 +
c

n0

t and Ξ(ζ) = ξ0 +
c

n0

ζ.

m̄(ξ0 +
c

n0

t, t;x, y) = m̄(ξ0 +
c

n0

t0, t0;x, y)

+

∫ t

t0

n2

τ
|Ā(ξ0 +

c

n0

ζ, ζ;x, y)|2e
n0
τc

(ξ0+ c
n0

ζ)
dζ.

The first variable is useless since we only consider one caracteristic, therefore
we set 

Ā(ξ0 +
c

n0

t, t;x, y) = Ã(t;x, y),

m̄(ξ0 +
c

n0

t, t;x, y) = m̃(t;x, y),

n̄(ξ0 +
c

n0

t, t;x, y) = ñ(t;x, y).

m̃(t;x, y) = m̃(t0;x, y) +

∫ t

t0

n2

τ
|Ã(ζ;x, y)|2e

n0
τc

(ξ0+ c
n0

ζ)
dζ,
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and accordingly

ñ(t;x, y) = ñ(t0;x, y) +

∫ t

t0

n2

τ
|Ã(ζ;x, y)|2e

ζ
τ dζ.

We combine this result with the Schrödinger equation. We still do not choose
a particular t0 but we suppose it is fixed.
∂Ã

∂t
(t;x, y)− ic

2kn0

∇2
1Ã(t;x, y)+

+i
ω0

n0

{
ñ(t0;x, y) +

∫ t

t0

n2

τ
|Ã(ζ;x, y)|2e

ζ
τ dζ

}
e−

t
τ Ã(t;x, y) = 0.

We now write the integral formulation of this equation using operator U(t)

associated to the linear part
∂Ã

∂t
− ic

2kn0

∇2
1Ã = 0 of the former equation and

omitting variables x and y.

Ã(t) = U(t−t1)Ã(t1)−
∫ t

t1

U(t−θ)iω0

n0

{
ñ(t0) +

∫ θ

t0

n2

τ
|Ã(ζ)|2e

ζ
τ dζ

}
e−

θ
τ Ã(θ)dθ.

Let us fix the initial data, i.e. values for t0 and t1.
We arbitrarily set t0 = t1 = 0. Initial data for Ã and ñ, are called ϕ and ν
respectively. Thus we get

Ã(t) = U(t)ϕ−
∫ t

0

U(t− θ)iω0

n0

{
ν +

∫ θ

0

n2

τ
|Ã(ζ)|2e

ζ
τ dζ

}
e−

θ
τ Ã(θ)dθ. (2.3)

Proposition 1 If A and n belong to L∞(z; 0, T ;L2), then problems (2.2)
and (2.3) are equivalent.

We try to carry out a fixed point method on formulation (2.3) in order to
prove local existence for the Cauchy problem. From now on, we treat t > 0
as a time variable and we consider two space variables x and y. Boundary
conditions in x and y for A are 0 at +∞ and −∞.
We will perform a fixed point method. To that aim, we set

ΦÃ(t) = U(t)ϕ−
∫ t

0

U(t− θ)i
ω0

n0

{
ν +

∫ θ

0

n2

τ
|Ã(ζ)|2e

ζ
τ dζ

}
e−

θ
τ Ã(θ)dθ.

We want to show that for a certain functionnal spaceX, R > 0 and 0 < α < 1
and for all A,B ∈ BX(0, R), we have ΦA ∈ BX(0, R) and ‖ΦA − ΦB‖X ≤
α‖A−B‖X .
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2.2.2 Estimates on operators.

Let us first set

U ? f(t) =

∫ t

0

U(t− θ)f(θ)dθ,

and similarily

h ? g(t) =

∫ t

0

h(t− θ)g(θ)dθ

where h(θ) =
1

τ
e−θ/τ .

With these notations we have :

ΦÃ(t) = U(t)ϕ− i
ω0

n0

U ?
(
ν + n2h ? {|Ã|2}Ã

)
.

In this section we state some results about this operator ?.
First of all we recall the definition of an admissible pair :

A pair (q, r) is said to be admissible if
N

2
− N

r
=

2

q
where N is the space

dimension and r ∈
[
2,

2N

N − 2

)
([2,∞) if N = 2, [2,∞] if N = 1).

Lemma 1 There exists some K > 0 such that for all f ∈ L1(0, T ;Hs),

‖U ? f‖L∞(0,T ;Hs) ≤ K‖f‖L1(0,T ;Hs).

Lemma 2 If (q, r) and (γ, ρ) are admissible pairs, there exists K > 0 such
that

‖U ? f‖Lq(0,T ;W s,r) ≤ K‖f‖Lγ′ (0,T ;W s,ρ′ ),

for all f ∈ Lγ′(0, T ;W s,ρ′).

Lemma 3 (Strichartz estimate) If (q, r) is an admissible pair, there ex-
ists a constant C only depending on N and r such that for all ϕ ∈ L2,

‖U(t)ϕ‖Lq(R;Lr(Rn)) ≤ C‖ϕ‖L2 .

The proof of the two first lemmas may be found in Ginibre and Velo’s article
[5], for Strichartz estimate see [9].
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Since h belongs to L1(0, T ) with norm (1− e−T/τ ) < min(1,
T

τ
), for some

positive function g, we have

‖h ? g‖Lq(0,T ;W s,p) ≤ ‖g‖Lq(0,T ;W s,p),

2.2.3 Existence and Uniqueness for smooth solutions.

The first idea is to seek smooth solutions, i.e. treat the case when X is an
algebra, thus we will set X = L∞(0, T ;Hs) ∩ L4(0, T ;W s,4) with s > 1.
Remark :
If we consider the initial variables, this corresponds to a L∞(ξ;L∞(0, T ;Hs))∩
L∞(ξ;L4(0, T ;W s,4)) regularity.

Theorem 1 i) For all (ϕ, ν) belonging to Hs×Hs with s > 1, equation (2.3)
has a unique solution in X = L∞(0, T ;Hs) ∩ L4(0, T ;W s,4) for some small
enough T .
ii) Solutions depend continuously on the initial data, i.e. :
if Ã ∈ L∞(0, T ;Hs) ∩ L4(0, T ;W s,4) is solution to Maxwell-Debye equations
for the initial data (ϕ, ν), ϕp and νp tend respectively to ϕ and ν in Hs, then
for some large enough p, solution Ãp to Maxwell-Debye equations associated
to initial data ϕp and νp tend to Ã in L∞(0, T ;Hs) ∩ L4(0, T ;W s,4).

Proof of i)
Let us set ΦÃ(t) = I + II + III with

I = U(t)ϕ,

II = −iω0

n0

U ?
(
νe−

t
τ Ã

)
(t),

III = −iω0n2

n0

U ?
(
h ? {|Ã|2}Ã

)
(t).

Thank to the above estimates, it is straightforward that for any admissible
pair (q, r) where r ≤ 4 :

‖I‖Lq(0,T ;W s,r) = Cr‖ϕ‖Hs ,

where C2 = 1,

‖II‖Lq(0,T ;W s,r) ≤ CT‖ν‖Hs‖Ã‖L∞(0,T ;Hs),
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‖III‖Lq(0,T ;W s,r) ≤ CT‖Ã‖3
L∞(0,T ;Hs).

Hence

‖ΦÃ‖X ≤ (1 + C4)‖ϕ‖Hs + CT‖ν‖Hs‖Ã‖X + CT‖Ã‖3
X .

Let a = ‖ϕ‖Hs , we set R = 2(1 + C4)a. For some small enough time T , we
do have

‖ΦÃ‖X ≤ a+ CT‖ν‖HsR + CTR3 ≤ R.

We next have to verify that Φ is a contraction.

(ΦÃ− ΦB̃)(t) = I ′ + II ′

where
I ′ = −iω0

n0

U ?
(
νe−

t
τ (Ã− B̃)

)
(t),

II ′ = −iω0n2

n0

[
U ?

(
h ? {|Ã|2}Ã

)
− U ?

(
h ? {|B̃|2}B̃

)]
(t).

The same estimates yield :

‖I ′‖Lq(0,T ;W s,r) ≤ CT‖ν‖Hs‖Ã− B̃‖L∞(0,T ;Hs),

‖II ′‖Lq(0,T ;W s,r) ≤ CT
(
‖Ã‖2

L∞(0,T ;Hs) + ‖B̃‖2
L∞(0,T ;Hs)

)
×‖Ã− B̃‖L∞(0,T ;Hs).

Hence

‖(ΦÃ− ΦB̃)‖X ≤ CT
{
‖ν‖Hs + ‖Ã‖2

X + ‖B̃‖2
X

}
‖Ã− B̃‖X .

Keeping the same R but possibly reducing T once more, Φ is contractant
in BX(0, R). We obtain local existence and uniqueness in time for smooth
solutions to Maxwell-Debye equations in an integral form. This ends the first
step of the proof of theorem 1.

Proof of ii)
The second step is proved in the same way than the contraction.
This completes the proof.

Remark : In the former proof, right hand sides only depend on norms in
L∞(0, T ;Hs). Hence we might have done the same analysis in L∞(0, T ;Hs)
only.
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2.2.4 Existence and Uniqueness of weaker solutions.

Now let us study weaker solutions, i.e. in X ′ = L∞(0, T ;H1)∩L4(0, T ;W 1,4)
and X” = L4(0, T ;L4) ∩ C(0, T ;L2).

Theorem 2 i) For all (ϕ, ν) belonging to H1 × H1, equation (2.3) has a
unique solution in X ′ = L∞(0, T ;H1)∩L4(0, T ;W 1,4) for some small enough
T .
ii) For all (ϕ, ν) belonging L2 × L2, equation (2.3) has a unique solution be-
longing to X” = L4(0, T ;L4)∩ C([0, T ];L2) for some small enough T . More-
over Ã belongs to Lq(0, T ;Lr) for every admissible pair (q, r).
iii) Solutions depend continuously on the initial data in an analogous sense
to that given by theorem 1.

Proof of i)
Let us show that Φ maps some ball BX′(0, R) in itself.

Le (q, r) be an admissible pair. We obtain the following estimates :

‖I‖Lq(0,T ;W 1,r) = Cr‖ϕ‖H1 ,

where C2 = 1,

‖II‖Lq(0,T ;Lr) ≤ C
∥∥∥e− t

τ νÃ(t)
∥∥∥

L2(0,T ;L1)
,

≤ CT 1/2‖ν‖L2‖Ã‖L∞(0,T ;L2).

‖III‖Lq(0,T ;Lr) ≤ C
∥∥∥h ? {|Ã|2}Ã∥∥∥

L4/3(0,T ;L4/3)
,

≤ C
∥∥∥h ? {|Ã|2}∥∥∥

L2(0,T ;L2)

∥∥∥Ã∥∥∥
L4(0,T ;L4)

,

≤ C‖h‖L1‖|Ã|2‖L2(0,T ;L2)

∥∥∥Ã∥∥∥
L4(0,T ;L4)

,

≤ CT 3/4‖Ã‖3
L∞(0,T ;H1).
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Let us now study the gradients :
Let us set ∇1II = II1 + II2 with

II1 = −iω0

n0

U ?
(
νe−

t
τ∇1Ã

)
(t),

II2 = −iω0

n0

U ?
(
∇1νe

− t
τ Ã

)
(t).

‖II1‖Lq(0,T ;Lr) ≤ C
∥∥∥e− t

τ ν∇1Ã
∥∥∥

L2(0,T ;L1)
,

≤ CT 1/2 ‖ν‖L2 ‖∇1Ã‖L∞(0,T ;L2).

‖II2‖Lq(0,T ;Lr) ≤ C
∥∥∥e− t

τ∇1νÃ
∥∥∥

L2(0,T ;L1)
,

≤ CT 1/2‖∇1ν‖L2‖Ã‖L∞(0,T ;L2).

We may now write ∇1III = III1 + III2 + III3 with

III1 = −iω0n2

n0

U ?
(
h ?

{
|Ã|2

}
∇1Ã

)
(t),

III2 = −iω0n2

n0

U ?
(
h ?

{
∇1ÃÃ

∗
}
Ã

)
(t),

III3 = −iω0n2

n0

U ?
(
h ?

{
Ã∇1Ã

∗
}
Ã

)
(t).

‖III1‖Lq(0,T ;Lr) ≤ C‖h ? |Ã|2‖L4/3(0,T ;L4)‖∇1Ã‖L∞(0,T ;L2),

≤ C‖Ã‖2
L8/3(0,T ;L8)‖∇1Ã‖L∞(0,T ;L2),

≤ CT 3/4‖Ã‖3
L∞(0,T ;H1).

We also have :

‖III2‖Lq(0,T ;Lr) ≤ C
∥∥∥h ? (

∇1ÃÃ
∗
)∥∥∥

L4/3(0,T ;L8/5)
‖Ã‖L∞(0,T ;L8),

≤ C‖∇1Ã‖L∞(0,T ;L2)‖Ã∗‖L4/3(0,T ;L8)‖Ã‖L∞(0,T ;L8),

≤ CT 3/4‖Ã‖3
L∞(0,T ;H1).
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In the same way

‖III3‖Lq(0,T ;Lr) ≤ CT 3/4‖Ã‖3
L∞(0,T ;H1).

If we set for example R = 2(1 +C4)‖ϕ‖X′ , and choose some small enough T ,
Φ maps the ball BX′(0, R) in itself.

The proof for the contraction is done using the same sort of decompositions
as in the case of Hs solutions and with the same estimates than above. With
a possible new reduction of T , Φ is a contraction from BX′(0, R) in itself.
This shows the first part of theorem 2.

Proof of ii)
Most of the useful estimates have been derived in the course of the proof
of i). We now follow Cazenave and Weissler’s proof [3] for the Schrödinger
equation in L2 with the critical exponent.
Let (q, r) be an admissible pair.

‖I‖Lq(0,T ;Lr) ≤ C4‖ϕ‖L2 ,

‖II‖Lq(0,T ;Lr) ≤ C ′T 1/2‖ν‖L2‖Ã‖L4(0,T ;L4),

‖III‖Lq(0,T ;Lr) ≤ Cmin

(
T

τ
, 1

)
‖Ã‖3

L4(0,T ;L4).

We first choose r = q = 4 and with the same sort of estimates for the differ-
ences, we find out that Φ is a contraction in BL4(0,T ;L4)(0, R) for some small

enough T and R such that C4‖ϕ‖L2 be lower than
R

2
.

This yields existence and uniqueness of a solution in this space. Now consid-
ering any admissible pair (q, r), we find that Ã belongs to C([0, T ];L2) and
Lq(0, T ;Lr).

Proof of iii)
The proof for the continuity with respect to the initial data is similar to that
of theorem 1 using the same type of estimates than above.

Remark : In the proof of theorem 2, right hand sides only depend on norms in
L∞(0, T ;H1). Hence we might have done the same analysis in L∞(0, T ;H1)
only. We use L∞(0, T ;H1) ∩ L4(0, T ;W 1,4) because this space is needed for
global existence proofs.
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2.2.5 Regularity result.

In what follows, we show that the existence time of the solution to Maxwell-
Debye equations for some given initial data is the same in all the spaces Hs,
s > 1. This result is given by

Theorem 3 Let (ϕ, ν) ∈ H1+ε×H1+ε, ε > 0, and Ã be the maximal solution
to Maxwell-Debye equations in H1+ε. Let T1+ε be its existence time. Let us
moreover assume that (ϕ, ν) ∈ Hs×Hs with s > 1 + ε, then Ã is solution to
Maxwell-Debye equations in L∞(0, T1+ε;H

s).

Proof :
To prove this, we consider the integro-differential form of Maxwell-Debye
equations :

∂Ã

∂t
− ic

2kn0

∇2
1Ã+ i

ω0

n0

{
ν +

∫ t

0

n2

τ
|Ã(ζ)|2e

ζ
τ dζ

}
e−

t
τ Ã(t) = 0.

Let Js be the operator (1−∇2
1)

s. We denote by 〈·, ·〉, the scalar product in
L2(dx, dy).

Re 〈∂Ã
∂t
, JsÃ〉 =

1

2

d

dt
‖Ã(t)‖2

Hs ,

Re 〈i∇2
1Ã, J

sÃ〉 = 0,∣∣∣〈νe− t
τ Ã(t), JsÃ〉

∣∣∣ ≤ 〈Js/2νe−
t
τ Ã(t), Js/2Ã〉,

≤ ‖Ã(t)‖Hs‖νÃ(t)‖Hs ,

≤ C‖Ã(t)‖Hs

(
‖ν‖L∞‖Ã(t)‖Hs + ‖ν‖Hs‖Ã(t)‖L∞

)
,

∣∣∣∣〈∫ t

0

|Ã(ζ)|2Ã(t)e
(ζ−t)

τ dζ, JsÃ〉
∣∣∣∣ ≤ 〈Js/2

∫ t

0

|Ã(ζ)|2Ã(t)e
(ζ−t)

τ dζ, Js/2Ã〉,

≤ ‖Ã(t)‖Hs

∫ t

0

‖|Ã(ζ)|2Ã(t)‖Hsdζ,

≤ C‖Ã(t)‖Hs

∫ t

0

(‖Ã(ζ)‖Hs‖Ã(ζ)‖L∞‖Ã(t)‖L∞

+‖Ã(ζ)‖2
L∞‖Ã(t)‖Hs)dζ,
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≤ C‖Ã(t)‖Hs‖Ã(t)‖L∞

∫ t

0

‖Ã(ζ)‖Hs‖Ã(ζ)‖L∞dζ

+C‖Ã(t)‖2
Hs

∫ t

0

‖Ã(ζ)‖2
L∞dζ.

We assumed that Ã ∈ L∞(0, T ;H1+ε) (i.e. T < T1+ε,) and that ‖ν‖Hs and
‖ϕ‖Hs are finite for s > 1 + ε. Using the fact that H1+ε ↪→ L∞, and setting

y =

∫ t

0

‖Ã(ζ)‖Hsdζ, we obtain the differential inequality :

y′y′′ ≤ C(y′
2
+ yy′).

As y′ = ‖Ã(t)‖Hs > 0, we may divide by this quantity and set z = y + y′. z
is solution to the equation z′ ≤ (C + 1)z with z(0) = ‖ϕ‖Hs , therefore

‖Ã(t)‖Hs = y′ ≤ z′ ≤ ‖ϕ‖Hse(C+1)t.

2.3 Limit as the delay tends to 0.

2.3.1 Existence of solution on a time interval independent of τ .

The former estimates are uniform with respect to τ (as it tends to 0). Indeed
for the study in Hs, we have

‖ΦÃ‖X ≤ ‖ϕ‖Hs + CT‖ν‖Hs‖Ã‖X + CT‖Ã‖3
X .

‖(ΦÃ− ΦB̃)‖X ≤ CT
{
‖ν‖Hs + ‖Ã‖2

X + ‖B̃‖2
X

}
‖Ã− B̃‖X .

We notice that the situation is the same (with other powers for T ) in the
case of H1 estimates. Therefore we may state that the solutions to Maxwell-
Debye equations (in the two former functional contexts) exist on a time
interval [0, T ] which does not depend on τ . With this result, we may study
the limit of the solutions to Maxwell-Debye equations as τ tends to 0. Since
equations formally tend to the cubic Schrödinger equation

∂Ã

∂t
− ic

2kn0

∇2
1Ã+ i

ω0n2

n0

|Ã|2Ã = 0, (2.4)

we hope that the solutions will tend to the solution to this equation.

17



2.3.2 Passing to the limit for strong solutions.

Theorem 4 We assume that the initial data (for Ã and ñ) are uniformly
bounded in X = L∞(0, T ;Hs), s > 3, and that as τ tends to 0, the initial data
ϕ strongly tend to ψ in Hs. Let A be the solution to the cubic Schrödinger
equation associated to these initial data ψ. Then, as τ tends to 0, the sequence
of Ã strongly tends to A in X.

To show this theorem, we will use as main ingredient Ascoli-Arzela’s the-
orem.
The assumptions on the initial data in theorem 4 ensure that the sequence
of solutions is uniformly bounded in X. Moreover
∂Ã

∂t
(t)− ic

2kn0

∇2
1Ã(t)+

+i
ω0

n0

{
νe−t/τ Ã(t) + n2

(
h ? |Ã|2

)}
Ã(t) = 0.

We consider the case when Hs−2 is an algebra (for more simplicity in the
computations), i.e. s > 3. Then∥∥∥∥∥∂Ã∂t

∥∥∥∥∥
Hs−2

≤ c

2kn0

∥∥∥Ã(t)
∥∥∥

Hs

+
ω0

n0

‖ν‖Hs−2 e
− t

τ

∥∥∥Ã(t)
∥∥∥

Hs−2

+
ω0n2

n0

‖h ? |Ã|2‖Hs−2

∥∥∥Ã(t)
∥∥∥

Hs−2

≤ c

2kn0

∥∥∥Ã(t)
∥∥∥

Hs

+
ω0

n0

(
‖ν‖Hs−2 + n2‖Ã‖2

X

)
‖Ã(t)‖Hs−2 .

For some small enough T , this is bounded uniformly in τ in X. By Ascoli-
Arzela’s theorem, we may state that there exists a sub-sequence Ã which
tends in C(0, T ;Hs−ε) for all ε > 0 to a function A as τ tends to 0.
There remains to check that this limit is solution to the cubic Schrödinger
equation (2.4).

We easily notice that νe−
t
τ Ã(t) tends to 0 as τ tends to 0. The only term

which sets us a problem is the nonlinear one. We also want to show that
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∫ t

0

1

τ
|Ã(ζ;x, y)|2e

ζ−t
τ dζ tends in a certain sense to |A(t)|2.∫ t

0

1

τ
|Ã(ζ)|2e

ζ−t
τ dζ − |A(t)|2

=

∫ t−η

0

1

τ
|Ã(ζ)|2e

ζ−t
τ dζ +

∫ t

t−η

1

τ
|Ã(ζ)|2e

ζ−t
τ dζ − |A(t)|2,

=

∫ t−η

0

1

τ
|Ã(ζ)|2e

ζ−t
τ dζ +

∫ t

t−η

1

τ
(|Ã(ζ)|2 − |A(ζ)|2)e

ζ−t
τ dζ

+

∫ t

t−η

1

τ
(|A(ζ)|2 − |A(t)|2)e

ζ−t
τ dζ − e−

η
τ |A(t)|2.

We very easily estimate each term of this sum in the Hσ norm where σ is
lower than s.
By the convergence result, for all α there exists some τ0 such that for all
τ < τ0, ∥∥∥∥∫ t

t−η

1

τ
(|Ã(ζ)|2 − |A(ζ)|2)e

ζ−t
τ dζ

∥∥∥∥
Hσ

≤ α.

By continuity and hence uniform continuity on [0, T ] for A∥∥|A(ζ)|2 − |A(t)|2
∥∥

Hσ ≤ α

as soon as ζ − t < η and therefore∥∥∥∥∫ t

t−η

1

τ
(|A(ζ)|2 − |A(t)|2)e

ζ−t
τ dζ

∥∥∥∥
Hσ

≤ ε.

For some given ε this fixes η. For this η,∥∥∥∥∫ t−η

0

1

τ
|Ã(ζ)|2e

ζ−t
τ dζ

∥∥∥∥
Hσ

≤
∥∥∥Ã∥∥∥2

X

(
e−

η
τ − e−

t
τ

)
,

which tends uniformly to 0 on [0, T ]. And last
∥∥∥e− η

τ |A(t)|2
∥∥∥

Hσ
tends to 0 as

τ tends to 0.
We notice that all these results are uniform with respect to the time, hence
we obtain the strong convergence in L∞(0, T ;Hs−ε).
Thus we did prove that a sub-sequence (and consequently the whole se-
quence) of Ã converges in L∞(0, T ;Hs−ε) to the solution to the cubic Schrö-
dinger equation.
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2.3.3 Passing to the limit for weak solutions.

We proceed in a similar way to the smooth solutions case. We may not
use the algebra structure any longer, but estimates are still easy to obtain.
Indeed :∥∥∥∥∥∂Ã∂t

∥∥∥∥∥
L∞(0,T ;H−1)

≤ C

2kn0

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;H1)
+
ω0

n0

∥∥∥νe− t
τ Ã(t)

∥∥∥
L∞(0,T ;H−1)

+
ω0n2

n0

∥∥∥(
h ? |Ã(ζ)|2

)
Ã(t)

∥∥∥
L∞(0,T ;H−1)

,

≤ c

2kn0

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;H1)
+
ω0

n0

∥∥∥νe− t
τ Ã(t)

∥∥∥
L∞(0,T ;L3/4)

+
ω0n2

n0

∥∥∥(
h ? |Ã(ζ)|2

)
Ã(t)

∥∥∥
L∞(0,T ;L3/4)

,

≤ c

2kn0

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;H1)
+
ω0

n0

‖ν‖L3/2

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;L3/2)

+
ω0n2

n0

∥∥∥h ? |Ã(ζ)|2
∥∥∥

L∞(0,T ;L2)

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;L4)
,

≤ c

2kn0

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;H1)
+
ω0

n0

‖ν‖H1

∥∥∥Ã(t)
∥∥∥

L∞(0,T ;H1)

+C
ω0n2

n0

T 1/2
∥∥∥Ã(t)

∥∥∥3

L∞(0,T ;H1)
.

The rest of the argument is analogous to the former one. We may state the
following result :

Theorem 5 We assume the initial data (for Ã and ñ) to be uniformly
bounded in X = L∞(0, T ;H1), and that as τ tends to 0, the initial data
ϕ strongly tends to ψ in H1. Let A be the solution to the cubic Schrödinger
equation associated to the initial data ψ. Then, as τ tends to 0, the sequence
Ã strongly tends to A in X.
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3 Maxwell-Bloch equations.

3.1 Modelization.

We will now write Maxwell-Bloch equations which describe the interactions
of an unidirectional electromagnetic wave with a medium of gas of two-level
atoms. As we neglect the Doppler effect, polarisation reads

~P = na(~p12ρ12 + ~p21ρ21).

We moreover suppose that the field is polarized in a unique direction
which is perpendicular to its propagation direction z. Without any loss of
generality, we may assume that the direction of the dipolar matrix element
is parallel to that of the electric field. Hence we have

~E = ~A(x, y, z, t)ei(ω/c)ze−iωct + c.c.

(where c.c. stands for the complex conjugate) and

~P = ~L(x, y, z, t)ei(ω/c)ze−iωct + c.c.

Moreover we make the slowly varying envelope approximation. Then equa-
tion (1.3) becomes

∂ ~A

∂z
+

1

c

∂ ~A

∂t
− i

c

2ω
∇2

1
~A+

κ

c
~A =

iω

2ε0c
~L

where κ describes losses due for example to mirrors.
Let us denote by ê the polarization direction of the field ( i.e. ~A(x, y, z, t) =
êA(x, y, z, t) ) and p the modulus of ~p12. Then we have

napρ12 = L(x, y, z, t)ei(ω/c)z−iωt.

Writting Bloch’s equations for ρ12 and ρ22 − ρ11 =
N

na

(we neglect terms

containing second harmonics e±2iωt ), assuming that γ11 = γ22 and setting
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ω12 = ω1 − ω2 > 0, we get

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2

1A+
κ

c
A =

iω

2ε0c
L,

∂L

∂t
+ (γ12 + i(ω12 − ω))L =

ip2

~
AN,

∂N

∂t
+ γ11N =

2i

~
(A∗L− AL∗).

We have to pump energy to the medium in order to keep it active, i.e. we
force a part of the atoms to be in an excited state. The simulation of this con-
tribution is given by the constant term γ11N0 in the equation governing the
inversion number N . Maxwell-Bloch equations governing an unidirectional
wave, polarized in a single direction, in a medium constituted by two-level
atoms are also 

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2

1A+
κ

c
A =

iω

2ε0c
L,

∂L

∂t
+ (γ12 + i(ω12 − ω))L =

ip2

~
AN,

∂N

∂t
+ γ11(N −N0) =

2i

~
(A∗L− AL∗).

(3.1)

3.2 Study of the quasi-steady state equation.

Neglecting time variations for L and M (adiabatic approximation) we obtain
new equations : 

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2

1A+
κ

c
A =

iω

2ε0c
L,

(γ12 + i(ω12 − ω))L =
ip2

~
AN,

γ11(N −N0) =
2i

~
(A∗L− AL∗).
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Carrying out substitutions, we get

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2

1A+
κ

c
A =

iω

2ε0c
L (3.2)

where

L =
ip2

~
(γ12 − i(ω12 − ω))N0A

γ2
12 + (ω12 − ω)2 + 4p2γ12

~2γ11
|A|2

. (3.3)

If we set ξ = ct − z and A(x, y, z, t) = Ā(ξ, t;x, y) and analogous notations
for L̄ and N̄ , we obtain

∂Ā

∂t
− i

c2

2ω
∇2

1Ā+ κĀ =
iω

2ε0
L̄.

We easily notice that

1

2

∂

∂t

∫
R2

|Ā(t)|2dxdy + κ

∫
R2

|Ā(t)|2dxdy

= − ωp2

2ε0~

∫
R2

γ12N0|Ā(t)|2

γ2
12 + (ω12 − ω)2 + 4p2γ12

~2γ11
|Ā(t)|2

dxdy.

(3.4)
Hence there exists a constant D such that

∂

∂t

∫
R2

|Ā(t)|2dxdy ≤ D

∫
R2

|Ā(t)|2dxdy.

The second member has the same sign than −N0.
In the case when N0 ≥ 0, we may use 0 as upper bound and setD = −2κ < 0.
In the case when N0 < 0, we use

− ωp2

2ε0~
γ12N0

γ2
12 + (ω12 − ω)2

∫
R2

|Ā(t)|2dxdy

as upper bound and set D = −2κ− ωp2

ε0~
· γ12N0

γ2
12 + (ω12 − ω)2

, which is nonpos-

itive if

κ >
ωp2

2ε0~
· −γ12N0

γ2
12 + (ω12 − ω)2

.
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By Gronwall’s lemma∫
R2

|Ā(t)|2dxdy ≤
(∫

R2

|Ā(0)|2dxdy
)
eDt. (3.5)

On a finite time interval, the L2 norm remains bounded. This bound is
independent of time and tends to 0 as time tends to +∞ in all the cases
when we may choose D < 0.
We clearly have local existence and uniqueness of a solution in L2 and (3.5)
ensures that this result is in fact a global one.
To establish a theory in H1, it suffices to notice that

∇1L =
CN0∇1Ā(α+ β|Ā|2) + CN0A(α+ β[Ā∇1Ā

∗ + Ā∗∇1Ā])

(α+ β|Ā|2)2

where C =
ip2

~
(γ12 − i(ω12 − ω)), α = γ2

12 + (ω12 − ω)2 and β =
4p2γ12

~2γ11

.

Estimating in the same way than in the course of the study of Maxwell-Debye
equations in H1, we obtain the local existence and uniqueness of a solution
to this quasi-steady state equation in H1.
An other possible estimate is
∂

∂t

[
1

2
(γ2

12 + (ω12 − ω)2)

∫
R2

|Ā(t)|2dxdy +
p2

~2

γ12

γ11

∫
R2

|Ā(t)|4dxdy
]

+

[
κ(γ2

12 + (ω12 − ω)2) +
ωp2γ12

2ε0~
N0

]∫
R2

|Ā(t)|2dxdy

+4κ
p2

~2

γ12

γ11

∫
R2

|Ā(t)|4dxdy=0.

If D < 0, the quantity

κ(γ2
12 + (ω12 − ω)2) +

ωp2γ12

2ε0~
N0

is positive. 4κ
p2

~2

γ12

γ11

is also always positive. Then there exists a constant C

such that
∂

∂t

[
1

2
(γ2

12 + (ω12 − ω)2)

∫
R2

|Ā(t)|2dxdy +
p2

~2

γ12

γ11

∫
R2

|Ā(t)|4dxdy
]

+C

[
1

2
(γ2

12 + (ω12 − ω)2)

∫
R2

|Ā(t)|2dxdy +
p2

~2

γ12

γ11

∫
R2

|Ā(t)|4dxdy
]
≤ 0,

24



and by Gronwall’s lemma[
1

2
(γ2

12 + (ω12 − ω)2)

∫
R2

|Ā(t)|2dxdy +
p2

~2

γ12

γ11

∫
R2

|Ā(t)|4dxdy
]

≤
[
1

2
(γ2

12 + (ω12 − ω)2)

∫
R2

|Ā(0)|2dxdy +
p2

~2

γ12

γ11

∫
R2

|Ā(0)|4dxdy
]
e−Ct.

Hence L2 and L4 norms of A(t) decrease with time.

Moreover we notice that ‖L̄(t)‖L2 ≤ p2

~(γ2
12 + (ω12 − ω)2)1/2

|N0|‖Ā(t)‖L2 .

Theorem 6 The Cauchy problem is globaly well-posed in L2 and in H1 for
the adiabatic approximation of Maxwell-Bloch equations. Moreover, for cer-

tain values of the parameters

(
κ >

ωp2

2ε0~
· −γ12N0

γ2
12 + (ω12 − ω)2

)
, L2 norms of Ā

and L̄ tend to 0 when t tends to +∞.

Remark : This damping is clearly due to the positive coefficients κ and γ12.

3.3 The local Cauchy Problem.

3.3.1 Setting.

Let us consider again Maxwell-Bloch equations in the form :

∂A

∂z
+

1

c

∂A

∂t
− i

c

2ω
∇2

1A+
κ

c
A =

iω

2ε0c
L,

∂L

∂t
+ (γ12 + i(ω12 − ω))L =

ip2

~
AN,

∂N

∂t
+ γ11(N −N0) =

2i

~
(A∗L− AL∗).

Maxwell-Bloch equations, rewritten after the change of variables ξ = ct − z
and with the same notations than for the quasi-steady state equation, are in
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the form : 

∂Ā

∂t
− i

c2

2ω
∇2

1Ā+ κĀ =
iω

2ε0
L̄,

c
∂L̄

∂ξ
+
∂L̄

∂t
+ (γ12 + i(ω12 − ω))L̄ =

ip2

~
ĀN̄ ,

c
∂N̄

∂ξ
+
∂N̄

∂t
+ γ11(N̄ −N0) =

2i

~
(Ā∗L̄− ĀL̄∗).

(3.6)

We set M̄ = N̄ −N0 hence :

∂Ā

∂t
− i

c2

2ω
∇2

1Ā+ κĀ =
iω

2ε0
L̄,

∂L̄

∂t
+ c

∂L̄

∂ξ
+ (γ12 + i(ω12 − ω))L̄ =

ip2

~
(ĀN0 + ĀM̄),

∂M̄

∂t
+ c

∂M̄

∂ξ
+ γ11M̄ =

2i

~
(Ā∗L̄− ĀL̄∗).

We write this in an integral form using the operator U associated to the

linear equation
∂A

∂t
− i

c2

2ω
∇2

1A = 0 and considering as initial time t0 = 0.

Initial data for Ā, L̄ and M̄ are respectively called ϕ, λ and µ.

Ā(ξ, t;x, y) = U(t)ϕ(ξ;x, y)

+

∫ t

0

U(t− θ)

[
−κĀ+

iω

2ε0
L̄

]
(ξ, θ;x, y)dθ,

L̄(ξ, t;x, y) = λ(ξ − ct;x, y)

+

∫ t

0

[
−(γ12 + i(ω12 − ω))L̄+

ip2

c~
(ĀN0 + ĀM̄)

]
(ξ − c(t− θ), θ;x, y)dθ,

M̄(ξ, t;x, y) = µ(ξ − ct;x, y)

+

∫ t

0

[
−γ11M̄ +

2i

~
(Ā∗L̄− ĀL̄∗)

]
(ξ − c(t− θ), θ;x, y)dθ.

(3.7)
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Proposition 2 If Ā, L̄ and M̄ belong to L∞(ξ; 0, T ;L2) then problems (3.6)
and (3.7) are equivalent.

We want to use a fixed point method, therefore we set

ΦĀ(ξ, t;x, y) = U(t)ϕ(ξ;x, y)

+

∫ t

0

U(t− θ)

[
−κĀ+

iω

2ε0
L̄

]
(ξ, θ;x, y)dθ,

ΦL̄(ξ, t;x, y) = λ(ξ − ct;x, y)

+

∫ t

0

[
−(γ12 + i(ω12 − ω))L̄+

ip2

c~
(ĀN0 + ĀM̄)

]
(ξ − c(t− θ), θ;x, y)dθ,

ΦM̄(ξ, t;x, y) = µ(ξ − ct;x, y)

+

∫ t

0

[
−γ11M̄ +

2i

~
(Ā∗L̄− ĀL̄∗)

]
(ξ − c(t− θ), θ;x, y)dθ.

3.3.2 Existence and uniqueness of smooth solutions.

We will seek a solution belonging to (L∞(ξ;L∞(0, T ;Hs(x, y))))3 =: X3 for
s > 1.

Theorem 7 i) For all (ϕ, λ, µ) ∈ L∞(ξ;Hs)×L∞(ξ;Hs)×L∞(ξ;Hs), equa-
tion (3.7) has a unique solution in X3 = (L∞(ξ, 0, T ;Hs))3 for a small
enough T .
ii) The solutions depend continuously on the initial data in a similar sense
to theorem 1.

Proof :

‖ΦĀ(ξ)‖L∞(0,T ;Hs(x,y)) ≤ ‖U(t)ϕ(ξ)‖L∞(0,T ;Hs(x,y))

+

∥∥∥∥∫ t

0

U(t− θ)

[
−κĀ+

iω

2ε0
L̄

]
(ξ; θ)dθ

∥∥∥∥
L∞(0,T ;Hs(x,y))

,

≤ ‖ϕ(ξ)‖Hs(x,y)

+ K

∥∥∥∥−κĀ(ξ) +
iω

2ε0
L̄(ξ)

∥∥∥∥
L1(0,T ;Hs(x,y))

,
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≤ ‖ϕ(ξ)‖Hs(x,y)

+ KT
(∥∥Ā(ξ)

∥∥
L∞(0,T ;Hs(x,y))

+
∥∥L̄(ξ)

∥∥
L∞(0,T ;Hs(x,y))

)
.

Hence
‖ΦĀ‖X ≤ ‖ϕ‖L̄∞(ξ;Hs(x,y)) +KT

(∥∥Ā∥∥
X

+
∥∥L̄∥∥

X

)
.

‖ΦL̄‖X≤‖λ‖L∞(ξ;Hs(x,y))

+T

∥∥∥∥−(γ12 + i(ω12 − ω))L̄+
ip2

~
(ĀN0 + ĀM̄)(ξ − c(t− θ), θ)

∥∥∥∥
X

,

≤‖λ‖L̄∞(ξ;Hs(x,y)) +KT
(∥∥L̄∥∥

X
+

∥∥Ā∥∥
X
N0 +

∥∥Ā∥∥
X

∥∥M̄∥∥
X

)
.

In the same way

‖ΦM̄‖X ≤ ‖µ‖L∞(ξ;Hs(x,y)) +KT
(∥∥M̄∥∥

X
+

∥∥Ā∥∥
X

∥∥L̄∥∥
X

)
.

Hence setting

R

2
= sup

(
‖ϕ‖L∞(ξ;Hs(x,y)) , ‖λ‖L∞(ξ;Hs(x,y)) , ‖µ‖L∞(ξ;Hs(x,y))

)
,

Φ maps the ball BX3(0, R) in itself for a small enough T .
Concerning the contraction, we consider two solutions (Ā1, L̄1, M̄1) and (Ā2, L̄2, M̄2)
to the system with the same initial data at time t = 0, we obtain (omitting
variables x and y)
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(ΦĀ1
− ΦĀ2

)(ξ; t) =

∫ t

0

U(t− θ)

[
−κ(Ā1 − Ā2) +

iω

2ε0
(L̄1 − L̄2)

]
(ξ, θ)dθ,

(ΦL̄1
− ΦL̄2

)(ξ; t) =

∫ t

0

[
−(γ12 + i(ω12 − ω))(L̄1 − L̄2)

+
ip2

~

(
(Ā1 − Ā2)N0 + (Ā1 − Ā2)M̄1 + (M̄1 − M̄2)Ā2

)]
(ξ − c(t− θ), θ)dθ,

(ΦM̄1
− ΦM̄2

)(ξ; t) =

∫ t

0

[
− γ11(M̄1 − M̄2)

+
2i

~

(
(Ā∗

1 − Ā∗
2)L̄1 − (Ā1 − Ā2)L̄

∗
1

+(L̄1 − L̄2)Ā
∗
2 − (L̄1 − L̄2)

∗Ā2

)]
(ξ − c(t− θ), θ)dθ.

Carrying on the same type of estimates than before, we obtain (after a pos-
sible restriction of the time interval) the fact that Φ is a contraction in the
ball, we consider. This yields existence and uniqueness in X3, i.e. the first
part of the theorem. We show the continuity with respect to the initial data
as in the case of Maxwell-Debye equations.

As for Maxwell-Debye equations, the existence time is the same in every
Hs. This result is given by the theorem

Theorem 8 Let (ϕ, λ, µ) ∈ L∞(ξ;H1+ε)×L∞(ξ;H1+ε)×L∞(ξ;H1+ε), ε > 0,
and (Ā, L̄, M̄) be the maximal solution to Maxwell-Bloch equations in H1+ε.
Let T1+ε be its existence time. Let us moreover suppose that (ϕ, λ, µ) ∈
L∞(ξ;Hs)×L∞(ξ;Hs)×L∞(ξ;Hs) with s > 1 + ε, then (Ā, L̄, M̄) is solution
to Maxwell-Bloch equation in (L∞(0, T1+ε;H

s))3.

Proof :
The method is the same than in the case of Maxwell-Debye equations, but
this time we are not dealing with a single equation.
We keep the initial form for the equation for A and we consider the equations
for L and M after a method of the caracteristics, we choose a single carac-
teristic curve and we define Ã, L̃ and M̃ as for Maxwell-Debye equations,
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then we obtain :

∂Ã

∂t
(t) = i

c2

2ω
∇2

1Ã(t)− κÃ(t) +
iω

2ε0
L̃(t),

L̃(t) = λ+

∫ t

0

[
−(γ12 + i(ω12 − ω))L̃+

ip2

c~
(ÃN0 + ÃM̃)

]
(θ)dθ,

M̃(t) = µ+

∫ t

0

[
−γ11M̃ +

2i

~
(Ã∗L̃− ÃL̃∗)

]
(θ)dθ.

(3.8)
We multiply the first equation by JsA and take the real part of the scalar
product in L2. This yields the first estimate

1

2

d

dt
‖Ã(t)‖2

Hs + κ‖Ã(t)‖2
Hs ≤ C‖L̃(t)‖Hs‖Ã(t)‖Hs ,

and taking into account the fact that κ is positive,

‖Ã(t)‖Hs ≤ ‖ϕ‖Hs + C

∫ t

0

‖L̃(θ)‖Hsdθ.

Then we compute the Hs norm of the two equations for L and M , together
with the fact that the H1+ε norm is bounded on the interval of time, we
consider, which yields :

‖L̃(t)‖Hs ≤ ‖λ‖Hs

+ C

∫ t

0

{‖L̃(θ)‖Hs + ‖Ã(θ)‖Hs + ‖M̃(θ)‖Hs}dθ,

‖M̃(t)‖Hs ≤ ‖µ‖Hs

+ C

∫ t

0

{‖M̃(θ)‖Hs + ‖Ã(θ)‖Hs + ‖L̃(θ)‖Hs}dθ.

Then we get

‖Ã(t)‖Hs + ‖L̃(t)‖Hs + ‖M̃(t)‖Hs ≤ (‖ϕ‖Hs + ‖λ‖Hs + ‖µ‖Hs)

+ C

∫ t

0

(
‖Ã(θ)‖Hs + ‖L̃(θ)‖Hs + ‖M̃(θ)‖Hs

)
dθ

and by Gronwall’s lemma, the existence time of the solutions to Maxwell-
Bloch equations for initial data in Hs is the same as in H1+ε.
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4 Conclusion

Except for the adiabatic Maxwell-Bloch equations, all the results we obtain
are local in time. A natural question would be the global well-posedness of
the Cauchy problem both for Maxwell-Debye and Maxwell-Bloch systems.
This problem is usually studied for a H1 regularity. The case of Maxwell-
Bloch equations seems very difficult since there is no conservation law and we
do not dispose of any H1 local well-posedness result. Concerning Maxwell-
Debye equations the situation is a little better since the L2 norm of A is
conserved and we have local H1 results. Unfortunately we do not have any
H1 conservation law. All attempts to overcome this difficulty have been vain
until now mainly because of the non local in time character of the equations
and the fact that many terms we want to estimate have no definite sign. This
question is also connected to that of finite time blow-up.
Other results are in preparation as the existence of solitary waves.

The models we present here are among the simplest in nonlinear optics.
There exists numerous other systems which are similar to Maxwell-Bloch one
but with a larger number of possible excited states. For a three-level atom,
we obtain coupled Schrödinger equations with six transport equations :(

∂

∂z
+

1

c

∂

∂t

)
A1 +

i

2k
∇2

1A1 + α1A1 = i
ω1

2ε0c
nap1mσm1,(

± ∂

∂z
+

1

c

∂

∂t

)
A2 +

i

2k
∇2

1A2 + α2A2 = i
ω2

2ε0c
nap2mσm2,

∂

∂t
σ11 + γ1

‖(σ11 − σ0
11) =

i

~
A∗

1p1mσm1 −
i

~
A1pm1σ1m,

∂

∂t
σ22 + γ2

‖(σ22 − σ0
22) =

i

~
A∗

2p2mσm2 −
i

~
A2pm2σ2m,

∂

∂t
σmm + γ3

‖(σmm − σ0
mm) =

i

~
(A1p1mσ1m + A2pm2σm2)

− i

~
(A∗

1p1mσ1m + A∗
2p2mσ2m),

∂

∂t
σ1m + (γ1m + i(ω1 + ω1m))σ1m =

i

~
p1mA

∗
1(σmm − σ11)−

i

~
p2mA

∗
2σ12,

∂

∂t
σ2m + (γ2m + i(ω2 + ω2m))σ2m =

i

~
p2mA

∗
2(σmm − σ22)−

i

~
p1mA

∗
1σ21,

∂

∂t
σ12 + (γ12 + i(ω1 − ω2 + ω12))σ12 =

i

~
p1mA

∗
1σm2 −

i

~
pm2A2σ1m.

Maxwell-Debye equations also admit generalizations. This is the case when
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we replace the monodirectional wave by two counter-propagating waves :
~E = ê

(
A1e

i(kz−ωt) + A2e
−i(kz−ωt) + c.c.

)
. Then we obtain two Schrödinger

equations coupled with two delay equations :(
∂

∂z
+
n0

c

∂

∂t

)
A1 −

i

2k0

∇2
1A1 = −iω0

c
(δn0A1 + δn1A2) ,(

− ∂

∂z
+
n0

c

∂

∂t

)
A2 −

i

2k0

∇2
1A2 = +i

ω0

c
(δn0A2 + δn∗1A1) ,

τ
∂

∂t
δn0 + δn0 = n2 (A1A

∗
1 + A2A

∗
2) ,

τ
∂

∂t
δn1 + δn1 = n2A1A

∗
2.

For these equations, the study of the Cauchy problem may be done following
the model of those carried out in the present article.
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