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Abstract 

We construct invariant measures for Hamiltonian systems such as the nonlinear Schrrdinger equation or the wave equation 
in order to prove Poisson's recurrence. The particular case of schemes (finite dimensional spaces) is also treated in order 
to explain the recurrence phenomenon which is observed during numerical simulations. 

1. Introduction 

Fermi-Pasta-Ulam recurrence phenomenon has first been noticed in the context of  the numerical study of  a 

chain o f  balls with nonlinear interactions. This phenomenon has also been observed experimentally by Yuen, 

Lake and Ferguson [23] in the frame of  deep water waves governed by the cubic nonlinear Schrfdinger 

equation. This phenomenon may be described as follows. The energy of  an initial data with a finite number of  

modes spreads to higher modes and after a certain lapse of  time we observe a return to the initial modes. Such 

a behavior is "almost" periodic in time. 

The propagation o f  energy to higher modes is connected with another phenomenon which also occurs 
when dealing with certain equations with periodic boundary conditions: Benjamin-Feir instability, This new 

phenomenon is the instability of  spatially uniform solutions for perturbations with a certain frequency. 
The link between both effects is made clear in [21] by Yuen and Ferguson. Their numerical results tend to 

prove that a simple recurrence seems to appear only in the case when the higher modes of  the perturbation are 

stable according to a Benjamin-Feir analysis. These observations are carried out in the 1-dimensional case and 
generalized by the same authors to the 2-dimensional case in [22].  However, this time, they do not produce 
the link with Benjamin-Feir  instability. This link is given in the article [ 16] by Martin and Yuen. Thanks to a 
multiple scale method for the time variable, Janssen (cf. [ 11 ] ) proves the recurrence for certain perturbations 
of  the uniform solution and shows that in such a case the recurrence time is connected with the amplitude in a 
straightforward way. Using an Ansatz on the form of  the solutions (3 Fourier modes) Infeld in [ 10] shows the 
recurrence in time of  these modes. In [20] Weideman and Herbst use such an approach for this equation but 
they consider it as schemes and not as Ansatz. Recurrence for the Davey-Stewartson equations has also been 
studied by K. Rachid using different methods. 
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In [ 3 ], Bourgain shows that the solution to the Korteweg-de Vries equation is almost periodic in time for 
initial data in L 2 using the theory of Hill's operator with a periodic L 2 potential. The same sort of result has 
been previously obtained by McKean and Trubowitz [ 15] for initial data in C a .  

Lax in [ 12] constructs some particular solutions to the Korteweg-de Vries equation verifying a minimization 

problem with constraints. He proves that these solutions are quasi-periodic, i.e. they return to their initial shape 

up to a translation. Some numerical results due to Hyman correspond to this theoretical result (cf. [ 12] or 
[91). 

Our point of view is completely different. The matter is to find invariant measures on Hilbert spaces which 

are the phase spaces of Hamiltonian systems with at least two conservation laws. Next we use this construction 
to prove a Poisson's recurrence-like theorem. Such a construction has first been carried out by Friedlander [6] 

for the wave equation with a cubic nonlinearity but some details in the proof seem obscure. It is also Zhidkov's 
point of view in different articles. In [25], he carries out this study for the equation iut +Uxx + f ( x ,  [ul2)u = 0 

where the nonlinearity is very weak. This study is generalized to the equation iut + uxx + lul2u = 0  in [27], 

except that the existence result of solutions to this equation in L2(0, A) can not be deduced from Tsutsumi's 

results in [ 19], who makes use of L P ( R )  -Lq(R) estimates which are not valid in the periodic case. On the 

other hand, we may now base the proof on a result of Bourgain [2]. In [281, Zhidkov studies in the same way 

the wave equation u ,  - Uxx + f ( x ,  u) = 0, once more for weak nonlinearities. The article [29] is the insertion 
of all former results in a wider frame of certain Hamiltonian systems. 

The present paper is the enlightenment of this last article as well as the application to new classes of examples, 
in particular to numerical schemes. In connection with that we give a brief survey of Hamiltonian Schemes 

for approximating nonlinear partial differential equations of Hamiltonian type. The outline is the following. In 
Section 2, we construct invariant measures for Hamiltonian systems and we prove the Poisson recurrence. The 

process we use is exactly the same as Zhidkov's but it!s more explicit. Section 3 is devoted to the study of a 

few fields of application of this general theory. Finally Section 4 deals particularly with recurrence in the case 
of schemes which is the phenomenon one actually observes during numerical simulations. 

We may regret the fact that this kind of study does not fulfill the original aim. Indeed we do not really prove 

recurrence but the fact that the solutions come infinitely often near the initial data (with time intervals which 
may be not constant). Moreover the notion of proximity to the initial data is not the one we may commonly 

observe on numerical computations; we test whether two neighborhoods (one for the initial data and one for 

the solution at time t) which may have a very complex structure have a nonempty intersection. In return, the 
results which are proved here may be applied to a far wider class of initial data than perturbations of spatially 
uniform solutions. 

While finishing the drafting of this article we have been informed of Some very similar work done by 

Bourgain (cf. [4] ) for the nonlinear Schrtdinger equation inspired by the work done by Lebowitz, Rose and 
Speer [ 14]. 

2. Construct ion  of  invariant  measures  

The construction of invariant measures is made up of many steps. The first one consists in associating to 
the initial equation and the initial functional spaces projected equations on nested finite dimensional functional 
spaces. In these spaces we construct invariant Gaussian measures for the projected problem. The last step 
consists in passing to the limit as the dimension of the spaces tend to + ~ .  This makes up the construction of 
so-called cylindrical measures on the whole of the phase space X. 
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2.1. Setting the problem 
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We study the following Canchy problem: 

ti(t) = J H ' ( u ( t ) ) ,  
u(to) = ~b E X, (2.1) 

where X is a Hilbert space such that 79 (= C~)  is dense in X*. 

Let Y be a Hilbert space which is dense in X, and let us assume that 
- the functional H is C 1 from Y into •, 

- the functional J is linear from X* into X, 
- for all g,h  E 79, g(Jh)  = - h ( J g ) .  
These properties imply that H ( u ( t ) )  does not depend on t. This yields a conservation law in X for the system 

(2.1). Besides, we assume that X may be endowed with a norm which is as well invariant. This is crucial in 
order to prove Theorem 9. 

We split H in two parts 

g(u) = H(u)  - ½(Su, u)x.  

The part g(u) has to contain all the nonlinearity of the initial equation and has to be defined for functions 
belonging to X. 

The operator S is assumed to be positive and self-adjoint on X and g defined on X, real valued and continuous. 

We assume (H2.1) that we know how to solve the problem (2.1) in X and that the solution is continuous 

with respect to the initial data, that is: for every to E JR, e > O, T > O, there exists 6 > 0 such that 

Ilul ( t o )  - u2(t0)IL~ < ~ ~ Ilu~ ( t)  - u2(t)IIx < 

for all t C I = [to - T ,  t o + T ] .  
We associate to this problem a sequence of finite dimensional problems. With that aim we construct a 

sequence of Hilbert subspaces of Y: 

XI C X 2 C . . . C X n C . . . c Y C X  

where dn < ~ is the dimension of the space Xn and we assume that Un x~ is dense in Y. 
We denote by Pn the orthogonal projector from X onto X~, and we obtain a new problem set on this space: 

{ ~n(t) = P~[JHt(Pnu~(t))] '  (2.2) 
un(to) = Pndp E Xn. 

As in the case of (2.1), this system admits an invariant which is H(Pnun(t)) .  
We assume (H2.2) that un(t) exists globally in time for every initial data ~ E X and that for all to ~ R, 

e > 0, T > 0, there exists 8 > 0 such that for all n 

[ l u ? ( t 0 )  - u~(to)llx < ~ ~ [ [ u ? ( t )  - u~(t) llx < 

for all t E I. The fact that 6 does not depend on n is fundamental in the proof of Theorem 8. 

We impose compatibility conditions over the different problems: 
(H2.3) The solution u n to (2.2) converges to the solution u to (2.1) in C(I; X) (uniformly with respect to n 
(cf. Theorem 8) ). 
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Remark 1. The two former uniformity properties H2.2 and H2.3 imply the aforementioned property H2.1 of 
continuity with respect to the initial data for the problem (2.1). 

(H2.4) The operator S -1 is nuclear (which means for example that the sum of its eigenvalues is convergent) 
and maps Xn into Xn. 
(H2.5) The operator J is defined on X~ and PnJ = JP~. 

2.2. Invariant measures in finite dimension 

To begin with, we will construct an invariant measure for each finite dimensional system. The construction 
is based on the classical Liouville theorem (see for example Arnold [ 1 ] ): 

Theorem 2 (Liouville). Let us consider the equation £ = f ( z )  and p ( C )  = fc a ( z ) d z  where A is a positive 
function and C is a Borel set of ]R m. 

Then p is invariant if  and only i f  y]~iml ~ ( a f i  ) = O. 

We will now carry out the construction of the invariant measure ben on the phase space of the finite dimensional 
system on Xn. 

Let (el . . . . .  ed,) be the eigenvectors of S which generate Xn (cf. S -1 : Xn --+ Xn) and let F be a Borel set 
of  ]R d'. Then we define the cylindrical set M by: 

M = {x C X / [ ( x ,  e l ) x  . . . . .  (x, ea,)x] C F}. 

Let ,An be the algebra whose elements are these cylinders and let wn be the function defined on ,An by 

an 

wn(M) = (2~r)-a"/211aJ/Zle J=' dy, 
, I  

j=l F 

where aj is the eigenvalue of S corresponding to the eigenvector ej. 
In that way we do have constructed a measure Wn on An. We set un(t) = ~ja"= 1 aj ( t )e j ,  a = (al . . . . .  ad,,) 

(v,d,, ) and h(a)  = H \z-.,j=l a j ( t )e j  . 

For every Borel set A of ]R d', we define the measure 

dn 

betn(A ) = (2~-) -a , /21-I  A~/2 ; e-h(a)da, 
j=l A 

d 

and notice that 

gt(t) = JVah(a ) .  

We apply Liouville's theorem with A(a) = e -h(a),  which yields the invariance of be~ on the Borel sets of  ]R d'. 
The inverse change of coordinates implies that ben is invariant on .An where 

dn 
= (2~-) -d,/2 ]-I -J'~!/2 ; e_H(U)du. ben(M) 

d 
j=l M 

This ends the construction of invariant measures in finite dimensional spaces. 
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2.3. Invariant measures in infinite dimension 

Let -A = [.J, .An. We associate to this new algebra .A the minimal Borel o--algebra AA containing .A. 

For each M belonging to 3 t ,  we set wn(M) = wn(M f)X,,). This allows us to extend the measures wn over 

the whole of  31.  Such a construction is licit since M N Xn belongs to 31.  The o--additivity of  the measure 

is conserved thanks to the following lemma (cf. Dalecky and Fomin [5] ) and the fact that wn is a Gaussian 
measure with S-1 as correlation operator. 

Lemma 3. The measure wn is o--additive on the algebra .h4 if and only if S - 1  is a nuclear operator. 

The proof  of  this lemma may be found in Appendix B. 

We notice that for a fixed element M in -A, and from a certain range n, the sequence w n ( M )  is constant. We 
take this value as the value of  w(M)  and we extend w over the o--algebra .M. 

Lemma 4 (Zhidkov).  The sequence {w,} is weakly convergent to w in X. 

Proof The only possible limit for wn is w since w n ( M  ) tends to w(M) for each element M of  -A and the 
extension to .h4 is unique. There is also only left to prove that the sequence {wn} is weakly compact. For that 
aim we use Prohorov's  theorem. 

Theorem 5 (Prohorov).  A subset N" of  the set of  finite positive Borel measures on a complete separable metric 
space (X, p)  is precompact if and only if 

(i) there exists M < c~, such that u(X)  < M for all u E Af, 

(ii) for all e > 0, there exists a compact set K~ in X, such that u(X\K~) < e for all l, E .hr. 

We take A/" = {Wn}. It is obvious that for all n, wn(X) = 1, therefore (i) is true. 

Concerning (ii),  the construction of  the compact set K~ is carried out as follows. 
Since S -1 is a nuclear operator, TrS  -1 = ~ , t ~  -1 < oo. 

There exists a function p defined on [0, eo[  such that limx~+oop(x) = + c o  and ~ k  Ak-lP('tk) < c~. 

We set T = p ( S )  and Q = S-1T. 
Hence TrQ = ~ k  "tk-lP(Ak) ( <  +c ~  according to the assumption). 

Let Bn = {u E X/lIZl/Eullx < R} and/3  = ffRR x. 
a m Let Cm = ~-~k k ~0k, be a sequence of  elements of  Bn, ~k denoting the eigenvectors of  S. 

Now Tl/20m = ~_,kp(hk)l/2a~ok and JZl/2~pmlx = I ~ k P ( & ) ( a k n ) 2 j  1/2 ~< R. 

In order to prove the compactness of /3 ,  we only need to show that it is possible to make an estimate of  the 

remainders of  the series 0m which is uniform in m. 
+oo N--~ +oo p (Ak) (a~') 2 Indeed ~ - ~ :  [a~l 2 = z-,k=K p(ak) " 

We choose K such that for all k > K, p@ak) < g 
This shows that for all e, there exists an integer K such that for all m 

I+oo [2 

k=K X 

Then/3  is compact for all R. 
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Now, (cf. Lemma 13 in Appendix B) for a Gaussian measure /-tB with B as correlation operator we have 

tXB{X : (Ax, x)x >_ 1} < TrAB. 
We take B = PnS -1 and A = T, hence 

Wn{X/(Tu, u)x > 1} < TrPnS-1T < TrQ, 

TrQ 
w//(X\O) ~_ wn(X\OR) =Wn{X/(Tu, R)X >_ R} ( R---if-. 

Therefore Wn (X\B) < Y~2. For each e, we set R = ~ and Ks = B. 
Consequently and thanks to Prohorov's theorem, w// is weakly compact and w// tends weakly to the only 

possible limit, w. [] 

As in the case o f  w//, we se t /xn(M)  = tz//(M A X//), for each element M of  A4. For each Borel set 12 o f  X, 

let us set 

1,z(12) = / e-g(U)w(du). 
o 

Then we get the following result: 

Lemma 6. Let 12 be an opened set of  X such that ~(£2) < oo. Then 

liminf/zn(12) _>/z(12). 
?/'--+0(3 

Proof Let 12 be an open Borel set of  X, then for every e, there exists a function 0 defined on X, with 

0 <_ O(u) _< 1, such that 

f O(u)e-g(U)w(du) >_ ix(12) - e. 
12 

Let us set M = 12 A Xn and let F be the Borel set o f  R d" which is associated to M, 

dn 

#//(12) = (2¢r) -d,,/2 I I  ~.J/2 f e-h(Y)dy, 
j=l F 

,t,, 
-g( ~ yjej ) d,, 

f e  J*~ (2qT.)-d,/2"r-'r 1:2 _ ! - .  ? = I I A j  / e 2aJY-idy, 
F j = l  

= f e-g(~)w"(du)' 
aq 

lim inf/xn (12) = lim inf [ e -g(u) Wn (du), 
//----+0(3 //---~ OO . ]  

/2 

>_ liminf f O(u)e-g(U)wn(du), 
a'2 
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= f O(u)e-g(U)w(du)'  
/2 

> _ / x ( / 2 )  - 6.  

Letting s tend to 0, we obtain l iminfn~ ~ / x , ( / 2 )  > / z ( / 2 ) .  [] 

Corollary 7. Let @ be a closed set of  X. Then 

l i m s u p / x , ( ~ )  < /x(q~) .  
? / - - - + ~  

We finally state the theorem for the invariance of  measure /z .  
We denote 

f(~b, t) = u(t  + to) where u is the solution to (2.1),  

f~(dp, t) = un(t + to) where u ~ is the solution to (2.2).  

Theorem 8. Let /2 be an opened set of  X and /2t = f ( / 2 , t ) .  Under assumptions (H2.1) to (H2.5) ,  we have 
the property 

t z ( / 2 )  = g ( / 2 , ) .  

Proof The continuity assumption with respect to the initial data yields that /2t  is as well an open set of  X. We 
only make the proof  in the case when /x(/2) and /x( /2 t )  are assumed to be finite. Then for all ~ > 0, there 
exists a compact  set K such that ~ ( / 2 \ K )  < 6. It is obvious that Kt C/2t  is compact. 

Let ce = min{dist(K,O/2);dist(Kt,a/2t)}. For each element u in K, there exists an open ball B(u)  with 
center u E /2 such that dist(fn(U, t ) ; fn (v ,  t ) )  < ~, for all v E B(u)  and for all n according to the continuity 
assumption with respect to the initial data for the problem (2.2).  

We set /28 = {v E /2t/dist(v,O/2t) > / 3 } ,  and we choose a finite covering B(u l )  . . . . .  B(ut)  of  K. We set 
D = U li=l B(ui) .  Since u"(t)  converges uniformly with respect to n to u(t) ,  f . ( D ,  t) C /2~ for a sufficiently 
large n, 

br(/2) <_/z(D) + s, 

<_ l i m i n f / z n ( D )  + 6, 
r/----+ O O  

_< l i m i n f / z . ( D  n Xn) -'[- 6, 
n -.,-+ (X) 

_< l iminf / z .  ( f .  (D  M X.,  t) ) + 6, 
n---*  (x3  

< l im sup/z .  ( /2ff)  + 6, 
n - - - - + o o  

_</z(/2t) + 6. 

Hence / . t ( /2 )  _</-t(/2t), and since time has no privileged direct ion, /z( /2)  = /z ( /2 t ) .  [] 

2.4. Poisson 's recurrence 

Theorem 9. For almost every initial data q~, the trajectory f(~b, t) is Poisson recurrent. 
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Proof  Thanks to Theorem 8, for each neighborhood "~ of the initial data, /z();) =/z(~Yt). 

Let B(xi, ~) be a finite covering of the phase space which is weakly compact thanks to the first conserved 
quantity. There exists an increasing sequence tn tending to infinity and xi such that/.t()Yt, N B(x i ,  ~))  > O. 

Let K be a compact subset of the union of the ))t,. There exists a finite sequence tn, such that {~,,, } is a 
finite covering of K. Hence there exists an index j and a subsequence t~n of tn such that/z();t,,j N ~;t;, ) > 0. 
Let us set T,, = t~ - tnj, this defines a sequence which tends to infinity and such that/z(~) N ~)T,,) > 0. So the 
solution comes for almost every initial data infinitely often near its initial value. [] 

Remark 10. This last argument is still valid in the case of schemes with a time discretisation (cf. Section 4). 
This last theorem is the only one which uses an invariant quantity in X. The construction of measures holds 

even if this condition is not fulfilled. Theorem 9 is also valid in the case where the total measure is finite 
(/z(X) < c~). 

3 .  A p p l i c a t i o n s  

Different classical equations may be written in the form (2.1). This is for example the case of  the Schrrdinger 
or the wave equations. 

These applications are nevertheless limited by the following facts: 
- The nonlinearity of the equation has to be defined for functions belonging to X. 
- The space X endowed by the norm which is the invariant defined for the less regular functions has to be a 

Banach space. 
- The operator S -1 has to be nuclear. 
Each of the following examples will be explained in two steps: 
- the setting up of the equation into an Hamiltonian form. We determine explicitly the invariants of the equation, 

the spaces X and Y, the operators J and S as well as the functional g. 
In this section we will have to check the following hypotheses: (H3.1) X and Y are Hilbert spaces, and 

we have appropriate density results, 
(H3.2) H : Y --+ ~ is C 1, 

(H3.3) J : X* ~ X is linear and skew-adjoint, 
(H3.4) there is at least one invariant norm, 
(H3.5) g(u )  is continuous and defined on X, 
(H3.6) S > 0 is self-adjoint, 
(H3.7) S -1 is nuclear, 

(H3.8) J : X* --+ Xn and PnJ = JPn; 
- the testing of the remaining hypotheses, that is: 

(H3.9) there exist solutions in X and Xn, 
(H3.10) these solutions are continuous with respect to the initial data. 
(H3.11) un tends to n in C ( I ; X ) .  

Since the study of Cauchy problems is not the aim of this article, we only refer to other articles for the 
testing of these hypotheses. 



348 B. Bid~garay / Physica D 82 (1995) 340-364 

3.1. Setting up 

3.1.1. The nonlinear Schr6dinger equation 
We consider the problem 

i u t + A u + f ( x , [ u l 2 ) u = O ,  x E ( O , A ) , t E I R ,  
u(O,t) = u ( a , t ) ,  (3.1) 

u(x ,  to) = uo(x).  

We transform this problem setting u = (ul,  u2). The partial differential equation becomes 

Ul t + AU2 -t- f ( x ,  (Ul) 2 + (u2)Z)R2 = 0, 

U2 t -- ~Ul -- f ( x ,  (/21) 2 ~- (U2)2)Ul 0. 

We set F(x ,  s) = ½ Jo f ( x ,  o-)do-. We know two invariants for this equation 

A 

u2) -- ½ [ 2 + (u2) 2} dx, 
o 

A 

H(u1,/22) = / {½((V/21) 2 + (Vu2) 2) - F(x,  (Ul) 2 + (u2)2)} dx. 

o 

The gradient of  this last invariant is: 

( --AR 1 "~- f ( x ,  (Ul) 2 + (N2)2)Ul)  
Ht(Ul,U2) = ~,_Au2 + f ( x , ( u l ) 2  + (u2)2)u 2"  . 

The functional spaces we will consider are X = L 2 × L 2 and Y = H 1 x H l, the operators J e t  S being respectively 

equal to 

J = ( ? l l o )  and S = (  - A  0 ) 
0 - d  " 

This allows us to compute 

A 

g(Ul,/22) = -- / F(x ,  (Ul) 2 -~- (u2)2)dx. 
, 2  

o 

3.1.2. The wave equation 
We consider the problem 

Utt- -Uxx- t - f (x ,u)  = 0 ,  XE ( O , A ) , t E N ,  
u(O, t) = u(A,  t),  (3.2) 

u( x, to) = uo(x),  ut(x,  to) = vo(x) 

We transform this problem setting v = ut. The partial differential equation becomes 

U t -  V = O, 

vt - uxx + f ( x ,  u) = O. 
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We set F(x,u) = 1 u fo f ( x ,  s)ds, and we may find an invariant in the form: 

A 

H(u,v) = / { ½ ( ( v ) 2 +  (Ux) 2) + F(x,u) } dx. 
, J  

0 

The computation of its gradient yields: 

H'(u'v) = ( - A u  + f ( x ' u )  ) 

We consider the functional spaces X = L 2 x H -1 and Y = H 1 × L 2. The operators J and S are respectively 
equal to 

(o,) 0) 
J= 0 - A  " 

The computation of g gives 

A 
/ *  

g(u, v) = / F(x, u)dx. 

o 

3.2. Testing the hypotheses 

3.2.1. The nonlinear SchrOdinger equation 
The global existence of solutions to (2.1) for an initial data in L 2 is given in an article by Bourgain [2] and 

the conditions that should be imposed on the nonlinearity f are studied in appendix A. Concerning the finite 

dimensional problem (2.2), it may be written in the form 

a n = Pn \ - A u ~  + f ( x ,  (u~) 2 + (u~)2)u~ " 

Since Xn is supposed to be stable with respect to S, the operator representing the linear part is the same one 
and the estimates obtained for the continuous case are still valid. The assumption on the nonlinear part still 
holds. Hence there exists a unique global solution. 

The continuity with respect to the initial data may be studied in a classical way thanks to estimates which are 

analogous to those of the proof for the local existence. The nonlinearities we choose here verify for example 

Ilf(x, lul2)ll2 <_ c~--~.]luI[~ and 
y 

IIVsf(x, lu[2)[I4_<c  sup whenucB(0,M), 
71 uEB(O,M) 

the sum over y and ~7 dealing with a finite number of terms with 0 _< y and - 1 _< ~7- 
These conditions are weaker than those initially chosen by Zhidkov (cf. [29] ), that is 

[f(x,s)l + l(l + s )V, f (x , s )[  < C fo ra l lx ,  s. 

He also carries out the application of the method to the cubic nonlinear Schr6dinger equation. In the present 
paper our aim is to find the weakest assumptions under which the construction i s possible. The method used by 
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Zhidkov for the cubic SchrSdinger equation is slightly different. He defines a sequence of SchrSdinger equations 
with very weak nonlinearities which tend in a certain sense to the cubic nonlinearity. He constructs an invariant 
measure for each of these equations and then passes to the limit over the measures. This yields an invariant 
measure for the cubic SchrSdinger equation. 

3.2.2. The wave equation 
Here we will keep Zhidkov's hypotheses on the nonlinearity, that is 

I f ( x , u ) l  < c ( 1  -}-/,/2) 1/2 

and 

[Ouf(X, u) I < C. 

We may remark that these conditions are non fulfilled in the case of the cubic wave equation which is the case 
studied by Friedlander [6]. 

We refer to Zhidkov's article [28] for the proof of the well-posedness for this this equation. The well- 
posedness for the discretized equation is made with the same type of arguments as in the case of the nonlinear 
Schr6dinger equation. 

3.3. Why this approach fails in the Korteweg-de Vries equation case 

In [29] Zhidkov treats the case of a Korteweg-de Vries equation, but it is a linear one: 

U t "-}- ( a ( x ) U ) x  --~ Uxx x = O. 

This induces us to study the usual Korteweg-de Vries equation. We will show why it's is impossible to apply 
the general theory to this problem. We will also consider the equation 

ut + Uxxx + ukux = O, X C ( O, A ) , t E N, 
u(O, t) = u ( a ,  t ) ,  (3.3) 

u(x ,  to) = uo(x) .  

This equation has the following invariants: 

A 

Ho(u , = f udx, 
0 

A 

HI(U) = ~ u2dx, 

0 

A 

H 2 ( u ) = f { 1  2 _  1 2) uk+2 } 7Ux ( k +  1 ) ( k +  dx, 
o 

and in the case when k = 1, there are some additional invariants, the first one being 

A f 1 2 5 U 4 )  d x .  _~ { 2 Ux x 5 2 - guu x + 
0 
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Their gradients are respectively equal to 

H'1 (u) = u, 

1 uk+l 
H~(u)  = -Uxx - -  , 

( k + l )  

5 2 5UUxx H~(u)  = Uxxxx + gUx + + ~ u  3. 

The following problem faces us. The nonlinear part imposes X to be included in H 1. Since we dispose of 
various invariants we could take / /3  as Hamiltonian (in the case k = 1), unfortunately it is not possible to set 
the Korteweg-de Vries equation in a Hamiltonian form with this invariant. We know of two Hamiltonian forms 
for the Korteweg-de Vries equation. The more classical one is the following: 

u t = O x ( U x x +  ½u 2) 

which is associated to H2 taking -/2 = -Ox, $2 = - A  and 

A 

f 1 lulk+2dx" g2(u) = - ( k +  1 ) ( k +  2) 
0 

Another Hamiltonian form is described by Olver [ 17] : 

this time considering n 1 a s  Hamiltonian and taking J1 = - (Ox 3 + ~UOx + ½Ux), $1 = - I  and g l (u )  = O. 
None of those two forms is compatible with our different assumptions on the different operators. 

4. Part icular  case  o f  numerica l  s chemes  

In the case of schemes, only the finite dimensional construction is useful. The choice of spaces becomes 
now indifferent since all norms are equivalent. This solves also the limitations on possible nonlinearities and 
the operator S -1 becomes necessarily nuclear. In the case when S is singular, we have to consider its reduction 
to the orthogonal space of its kernel and choose a nonlinearity such that the dynamical systems preserves this 
subspace. In the examples presented here S is a discretization of the Laplacian which happens to be singular in 
the periodic case (the kernel is the constants) and nonsingular in the zero boundary case. 
We will now consider equations with two invariants and try to find a discretization which conserves analogous 
invariants. That way we may hope that the observed phenomena which are connected to the existence of 
invariants for the discretized equation may extend to the continuous case. The case of  semi-discretisations in 
space by a Galerkin method in bases of  eigenvectors of S has already been treated in the theoretical part (cf. 
Section 2.2). We will produce here other types of discretisations. 

4.1. The nonlinear SchrOdinger equation 

We remind that the cubic Schr6dinger equation 

ut = iUxx + iq]ul2u, (4.1) 
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considered on the interval [ -  ~, ~ ] with periodic boundary conditions admits two classical invariants: 

L 
2 

1 f lu[2dx = cl, 
L 

2 

L 
2 

1 

L 
2, 

(luxl 2 - ½q[ul4)dx = c2. 

(4.2) 

4.1.1. Space discretisations 
In what follows we will denote by (3 the forward-space derivative 

(3uj = h-l(Uj+l - uj) ,  

and (32 the second central-space derivative 

(32Uj = h-2(Uj+l - 2Uj + Uj-1). 

(4.3) 

(4.4) 

(4.5) 

The indexes for the space variable will be j ,  for the Fourier variable k and the superscript for the time variable 
will be n. We discretise [ - ~  ~ ] in K equal intervals. Let h = L 

K" 

We consider here three types of space discrefisations: finite difference schemes, spectral schemes and pseudo- 
spectral schemes. 

Finite difference scheme. Let Uj(t) be an approximation of u ( - ~  + ( j -  1)h , t ) .  The most classical finite 
difference scheme is given by 

(Jj = i82Uj + iqlUj[2Uj. (4.6) 

Spectral scheme. We make the following Ansatz: u is reduced to a finite number of frequencies, i.e. it may be 
written in the form 

K/2 

u(x, t)  = Z Ak(t) exp(i/zkx) • 
-K/2 

Hence we obtain 

Ak = --itz~Ak + iq ~ AtlAI2AI*3. (4.7) 
ll+12--13=k 

Pseudo-spectral scheme. It is based on the fact that we may use a FTT to solve the problem numerically. 
Therefore we define an analogue of the Fourier transform 

1 ( K / 2 ) - 1  
F k U j = A k = ~  ~ Ujexp(--ilzkXj), 

--K/2 

and of the inverse Fourier transform 

( K / 2 )  --1 

F]-IAk = Uj = ~ Akexp(ilxkXj). 
-1(/2 
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The equation may also be discretised using 

Ag = -itz~Ak + iqF~(UjIUjl 2) (4.8) 

or equivalently 

(Jj = - - i F k l  ( Iz2 Fk ( Uj ) ) "q- iql Uj[2Uj. (4.9) 

A variant of  the finite difference scheme is the following (cf. Herbst and Ablowitz [8] ). 

Integrable scheme. 

(Jj = i~2Uj + i½q[Uj[z( Uj+l + Uj-1). (4.10) 

4.1.2. Analysis of space discretisations 
Finding two conservation laws allows the use of the general theory for these schemes. Each of the three 

first schemes have two invariant quantities which are similar to those of equation (4 . l ) .  The setting in an 
Hamiltonian form according to the notations of Section 2 is very similar to the continuous case. 

Finite difference scheme. 

h h 1 
~ IUsl 2 = c,,a, ~ I~OjI = -  ~qlOj] 4 = C1,2. 

--K/2 --1(/2 

We set U = (V-K/2 . . . . .  V(K/2)-I, W-K/Z . . . . .  W(K/2)_I) r where Uj = Vj + iWj. The scheme (4.6) becomes 

{ ~ =-~wj-  q(Vj ~ +w~)wj, 
l~j = 82Vj + q(Vj 2 + W 2) Vj. 

Then 

( 0 h~K) and S = (  -D~  02K ) 
J = --hlK 0 - D  ' 

where 

-2 1 1 / 
1 1 "'. "'. 

1 1 2 
and H'(U) = ( . . . .  82Vs . + q(Vj 2 + W~)Vj . . . . .  82Wj + q(Vj 2 + W~)Wj . . . .  )r. 

Spectral scheme. 

L x/2 
~ Iakl2 = C2,,, 
-x/2 

f K/2 } 
L ~ ~ tz~,lAkl2 _ ½q ~ AllAl2Al*3Al*l+12_13 = C2,2- 
2 I,-K/2 --K/2<ti,t2,t3<_K/2 
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Pseudo-spectral scheme. 

h (K/2)-1 
-~ ~ Igj]2 = C3,1, 

-K/2 

(K/2)-1 (K/2)-I 
L 

t~klA~l - l qh  Z Is j l  4 = C3,2. 
~-K/2 j=-K/2 

Integrable scheme. In the case of  the integrable scheme we may also find two invariants but the second one 

does not seem to have a counterpart at the level of  the continuous equation: 

Iujlz = c4,1, 
-K/2 

(/(/2)-1 
h 
-2 Z {U](Uj+I + U j - 1 ) - 4 q - l l n ( 1  + lqlujl2)} =C4,2. 

- K / 2  

Remark 11 (Another proof o f  recurrence). A direct and straightforward proof of  the periodicity of  these three 

schemes for a small number of  modes as well as the expression of  the recurrence time thanks to an elliptic 

integral may be found in the article of  Weideman and Herbst [20] .  

4.1.3. A ful l  discretization 
For the effective computation of  the former schemes we have to choose a time discretization which has to 

conserve the differentquantities. We may use the mid-point scheme which is a finite difference scheme in both 

the time and the space variables: 

un+l n n - 2u~ + n U,,+l -- 2uT+l + gn+l 
j - -  Uj _ i U j + l  U j - 1  + i j+l j-1 + .q ,!+1] (4.11) 

At 2h 2 2h 2 ' ~  (lu712 + 1u7+112) (uff + u I , .  

4.1.4. Analysis o f  the ful l  discretization 
Two quantities are conserved 

(K/2)-I (K/2)-1 
h h 

- r /2  -K/2 

(x12) - 1  h h (x/2)-i  
-2 ~ (18u~12 -- lq]u~14) = 2 ~ "(l~un+ll2j ' - -~lqlun+ll4~j J "  

-x/2 -K/2 

Recurrence has been actually observed for this scheme but it seems nevertheless impossible to apply the above 
theory to such full discretized schemes, indeed setting for example Un = (V-l~/2,n • • • , v(x/2~-l~ . . . .  wn-K/2," 
W(K/2)_In )T where ujn = vjn + iw~j we may use the same operator S as in the space discretization case. On the 
other hand it is not possible to find an operator J satisfying 

u n + l  _ U n 
- jHI  ( U  n+l) .  

At 
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This is the only restriction since we noticed (cf. the end of Section 2) that Theorem 9 also holds for schemes 
with a time discretization. 

4.2. The wave equation 

4.2.1. A space discretization 

Let us consider a nonlinear wave equation in the form: 

utt - Uxx + f ( u )  = 0. (4.12) 

A space finite difference discretization is possible: 

iij - 62uj + f ( u j )  = 0. (4.13) 

Setting F ( s )  = ½ fo  f (o - )do ' ,  we obtain the following invariant quantity for (4.13): 

(/(/2)--1 

• --K/2 

Let vj = @, setting U = (u-x /2  . . . . .  U(lq2)_l) r and V = (v-x /2  . . . . .  v(K/2)_l) T, we set the discretized wave 
equation in the the Hamiltonian form using 

H(U, V) =-½(D2KU, U) + ½(V,,V) + F ( U ) ,  ( ) (o 
--D2K U-t- f ( U )  J = - h I x  0 0 IK H'  ( U, V)  = V ' ' " 

4.2.2. A ful l  discretization 

To obtain an invariant for a full finite difference scheme for the wave equation, we have to restrict ourselves 
once more to a smaller family of nonlinearities that is f ( u )  = A u  2 " - 1 .  Then we use for example the scheme: 

u n + l _  2u~ + n-,  A 2"-~ 
j Uj l~2un+l 1,',2 n - - 1  .n+l,,2"--l--/r n - - l , l  - -  - -  ) ~uj  ) At  2 ~ j 3o uj + (uj  = 0. (4.14) 

l=O 

For this scheme the invariant quantity is: 

A } (K/2)-1 lu j --uff] 2 1 )2 o, 
E ~72 + ~ (]auff +'[2 + I&Yl 2) + ((U; ÷1 "}- ( U ; ) 2 " )  = C. 
-K/2 

Inthis  case we are facing the same problem for the setting in an Hamiltonian form as in the case of the full 
discretization of the cubic nonlinear Schr6dinger equation. 

4.3. The Zakharov equations 

4.3.1. The continuous equations 
In the context of plasma physics, Zakharov [24] has introduced the following system: 

iEt q- Exx = NE,  
02 

N .  - N x x  = Fx2 (IEI2)" 
(4.15) 
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Setting M = Nt and x/~E = F + iG, we obtain the following formulation: 

Ft = -Gxx + NG, 

Gt = Fxx - NE 

Nt = M, 
1 3 2 2 

Mt = Nxx + ~ x e ( F  + G2). 

(4.16) 

Considering these equations with periodic boundary conditions on the interval L L [ - - ~ '  7 ]  and setting v = -Ux 

where Uxx = Nt, we formally get two invariant quantities 

L 
2 1/ 

2 (F2 q- G2)dx = c 1 ,  

L 
2 

(4.17) 

L 
2 1/ 

((Fx) 2 + (Gx) 2 + v a + N 2 + N ( F  z + G2)) dx = ca. 

L 
2 

(4.18) 

Making an attempt at setting (formally) this system in an Hamiltonian form with the notations o f  Section 2 

we set: 

X = L 2 x L 2 x H -1 x H - 2  

and 

Y = H 1 x H 1 x L 2 x H -1, 

S =  0 --A 0 and u =  ( F , G , N , M ) ,  
0 0 - A  

0 0 0 

and we get 

L 
2 

l(Su, u)x= 1 f ~ ( ( F x )  2 -}- ( G x )  2 q- v 2 "4- N 2) dx  

- i  

and thus 

L 
2 1/ 

g(u) = ~ N ( F  2 + GZ)dx. 

L 
2 

With 
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J= 

0 1 0 0 ) 

--1 0 0 0 and 
0 0 0 -Oxx 
0 00xx 0 

I -Fxx + NF ) 
-Gxx + NG 

H'(u) = N+ ½ ( F 2 + G  2) 

j(! ) - M ( f ) d (  d ~  

0 

the system (4.16) is written in an Hamiltonian form with the second invariant (4.18) as Hamiltonian. 
The hope of getting a result for this continuous equation in such a large space as X is very small, but we 

can study numerical schemes. 

4.3.2. A space discretization 
Using notations (4.4) and (4.5) for the space derivative as for the previous finite difference schemes, it is 

possible to discretise (4.15) in the following way: 

{ i[~j + 82Ej = NjEj, 
~rj _ 82Nj 82(IEjl2), (4.19) 

or setting V~Ej = Fj + iGj and Mj = Nj, 

Pj = -~zc j  + NjCj, 
@ 82Fj - NjFj, (4.20) 
Nj Uj, 
M] (32N] + ½62( F~ + G2). 

It is possible to find two invariants for this scheme, namely 

(x/z) -1 
h 

E {F~ + G  2} =C1, (4.21) 
--x/2 

(K/Z) --1 
h "2 E {(SFJ)Z + (~GJ)2 + (Suj)2 ÷ N} + Nj(F} +G~) } =C'' (4.22) 

--1(/2 

where SZuj = 1Vj. The setting into an Hamiltonian form is made through the following notations: we set 
U = ( . . . .  Fj . . . . .  Gj . . . . .  Nj . . . . .  Mj . . . .  ) and 

H(U) = -~ (-(D~F,,F) - (D2G, G) + (D~u,u) - (GM, M) + (N,N) + h E Nj(F ~ + G 2) , 
J 

S= 0 0 i) 0 -D~ 0 
0 0 IK 
0 0 0 

where 

Xi(1 -- "~-) 
Gij 

xj(1 - L ) 

i f  x i < x j ,  

i f  x j  < xi.  
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The Hamiltonian form is obtained with: (o,o o) 
--D2K G +  N . G -11( 0 0 0 

H ' ( U ) =  N + I ( F . F + G . G )  ' J =  0 0 0- -D2K ' 

--~M 0 0 D 2 0 

where u .  v denotes the vector whose components are the UjUj. 

4.3.3. A full discretization 
The following full discretization of  the Zakharov equations is due to Glassey [7] :  

•n+l b~,n l ~ 2 E ; + l  1 n n+l n n+l "=J --=J -- i62"n + =~(N~+N} )(E~ + E~ ), 
t At ± 2 Jz) - . (4.23) 

n+l n n--1 
g~ - 2 N ~ + N ~  l ~ 2 g n + l  1 2  n - - 1  2 n 2  

At e - g j - ~6 g~! - 8 (IEffl). 
As in the nonlinear Schr6dinger case, we want to write this scheme in an Hamiltonian form. With this aim we 

Nj~ --N':-' 
which yields the new scheme: set as in the continuous case vr2E~ = F~ + iG~ and M~ = At 

FJ n+l - FJ n _£.~2~n l~2~n+l I n N~+I (I.,+I 
At = 2 ~ j - - ~ j  +-~(N~ + . )(G~-q=_j ), 

G,,+ 1 n j -G~ 
At 

Nn.+l n • ,j - N ~  

At 

1 ~$2 Fn+  1 ½62F; + g j _ I ( N  • n+, n n+l - +U~ )(,F~ +V)  ), 

_ Mn+l ,v, j 

(4.24) 

My + 1 n 
At-- Mj = 1B2 A / n + 1 2  v "'J + gl 82Nn-lj + _182 ((Fin) 2 + (G~.) 2) 

~-~(K/2)--I 1 = 0 (zero mean) the numerical scheme is well Glassey proves that for initial data M} such that z--j=-K/2 Mj 
posed at each step. 

For this scheme we have similar invariants to (4.17) and (4.18):  

(K/2)--I 
h 

--1(/2 

(4.25) 

h ( K ~ - I  ( ( ~ F ; + l ) 2  _]." ( ~ a ~ + l ) 2  .q - ( ~ u 7 ) 2  

2 j=-m/2 

1 n Nn+l  -~ ) +½((N~)2+ (Ny+') 2) + ~(N) +. . j  .((F2+')2+ (Gy) 2) = C2. 

Nn+l N n 

where 2 n ] -- J 8 Uj = At 

(4.26) 
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4.4. The Korteweg-de Vries equation 

359 

We do not know of any finite difference scheme for the Korteweg-de Vries equation with two laws of 
conservation corresponding to H1 and//2.  In return, problems connected with the nature of the nonlinearity are 
solved. 

As far as we know, the only numerical method which allows a large number of conservation laws is the one 
developed by Hyman (cf. [9] ). This method is based on the work of Lax [ 12] who shows that a certain class 
of  solutions to the Korteweg-de Vries equation are solutions to a minimization problem. The main idea is to 
minimize the Nth invariant quantity under constraints which are the previous invariants. This is done thanks 
to an augmented Lagrangian method. This method is not based on an Harniltonian form of the equation. So it 
is impossible to study it as the restriction of a continuous problem on a finite dimensional phase space. The 
argument which is used for the different numerical schemes for the nonlinear Schrrdinger equation does not 
apply in the present case. 

5. Conclusion 

It seems very difficult to make some great improvements for applying Zhidkov's theoretical frame to partial 
differential equations. Two facts are responsible for that. First, there are some strong limitations on the nature 
of  both the linear operator and the nonlinearity. Second, in general we need an existence theory in a large space 
like L 2 and such results are known for a very limited number of  equations especially for periodic boundary 
conditions. Bourgain has for example also proved some existence results for the Kadomtsev-Petviashvilli II  

equations in L 2 for periodic boundary conditions. It seems very difficult to write an Hamiltonian numerical 
scheme for these equations since it is some generalization of the Korteweg-de Vries equation. 

Appendix 

For the sake of completeness, we cite here the proofs of some results which are only stated in the body of 
the article. It concerns global existence and uniqueness for the Cauchy problems for the different equations we 
have studied. We also give useful measure theory results. 

Appendix A. Global existence and uniqueness results 

We retranscript here Section 4 of Bourgain's article [2] with the adaptation to other nonlinearities. We use 
the estimates on tori which are explicated in the second part of the same article. 

We consider the NLS equation 

Au + iOtu + f ( x, lul2)u = 0, 

u(x,  O) = 4~(x), 

where u is periodic in the x variable. 
Let us set w = f ( x ,  lU[2)U, the associated integral equation is 
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t 
i 1  

u( . ,  t) = U(t)cb + i ~  U(t - ~')w(., r)dT", 
,J 

o 

where U ( t ) = e ira. 
We want to use estimates on tori, hence it is useful to make a t ime localization. For that aim we introduce 

a cut-off function 491 which is equal to 1 on [ - 6 ,  6] with a support in [ - 2 6 ,  26].  It also possible to write the 
integral equation in the form 

t 

( -, t) = 491 ( t )  U( t )  q$ + i491 ( t )  / U( t - ~') w( -, ~') dr. u 
d 
0 

Using the Fourier transform, we find 

+oo 

U ( X , t )  = 4 9 1 ( t ) Z ~ ( n ) e 2 Z r i ( n x + n 2 t ) +  i 4 9 1 ( t ) Z e  2¢ri(nx+nzt) f e2~r/(~--nZ)/~-I 
J 2 ¢ r i ( A -  n 2) ~ (n ,  A)dA. 

nEZ nEZ --oo 

We introduce a new cut-off function 492 which is equal to 1 on [ - B ,  B] and with support in [ - 2 B ,  2B] .  Hence 
we get 

+oo . 2 +oo 
f e2~n(a-n )t __ 1 V ~  (2~-i) kqsltt)tk. . f 

491(t) d A - ~  w(n '  a ) d a  = + z--~ ~ !  492( A -  nZ) ( A -  n2)k-lC.(n,~)dA 
J --cx~ k>l --cx~ 

+ f  e2~ri( )t--n 2) t 
+491(0 d ( 1 - 4 9 z ) ( a - n 2 )  ~Z~5 ¢.(n,a)da 

- - 0 0  

--491 (t) S ( I -- 492) (A -- n 2) ff(n,A - n z ~) d,4. 
--00 

It is also necessary to estimate the following terms: 

I = 491 (t) ~b(n)e2~ri(nx+n't), 

nCZ 

//=~--~k>~l ~,, t/~,1 ~1(') ~ 492(A--n2) ~ 2B J 

- I - 00  

III = 491(t) ~ ~ e  2~inx i (1 - 492)(a- n 2) "A Z n2 e2~riatl~(n, A)dA, 
nGZ --oo 

- t - O 0  

IV  = --491 ( t )  Z e27ri(nx+n2t) f 
nEZ --oo 

( 1 - 492) (A -- n 2) e2~riat~(n ' A)d2. 
A - n 2 

In the same way as in [2] ,  we get 

k l ] } 
~ ( n .  A)dA e 2rri(nx+nzt) , 

[lI[[L4Cdxdt) ~ clI~II2, 
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IIHIIL4(~xat) _< c~nl]wllL4/3(~xa,), 

[llIIHL,(axat ) < cn-1/4llwllL4/~(axat), 

IIIVIIL4(~x~,) <_ cn--1/allWl]LZ/3(dxdt). 

With the aim to have the same sort o f  estimates than Bourgain we impose for example that 

Iiw114/3 _< C ~ [lul14 ~, 

Ilwl - w=114/3 _< c ~ (llu1114 + Ilu2114) ~ Ilul - u=l14, 
y 

where wi = f ( x ,  Iluill2)ui, i = 1,2, the sums over /3  or y containing a finite number of  terms and 1 _</3, 0 < e. 
Let us set 

q-oo 2 

Zu(x,  t) =01 (t)  Z ~(n)e2~ri(nx+n2t) -k-i01 (t) ~ e 2rri(nx+n2t) f e2Zri(~-n ) t _  1 
J 2qri(A -- n2)" ~ (n ,  A)dA. 

n E Z  n E Z  _ ~  

The proof  o f  the global existence in  L 2 is carried out as follows: 

- there exists a constant M such that T maps B(0,  M) in itself; 

- on this ball T is a contraction (for these two points we have to impose conditions on ~ and B) ;  
- thanks to a fixed point argument the problem is locally well posed in L2; 

- according to the conservation o f  the L 2 norm for this equation, the solution is global in time. 
Les us check the first two points: 

which may be brought to be lower than M, for a sufficiently large M, since it is possible to fix 6B and B -1/4 
arbitrarily small. 

Hence 11.114 -< M implies that Ilrull4 ___ M, 

I[Tul - -  Tu2]14 _< cl(c3B + B -1/4) Z (llu~l14 + Ilu2114) ~ Ilul - u2ll4 
?, 

<_ 2c~ (~B + B-V4) Y'~(M)~llu~ - u2114. 
Y 

The quantity 2Cl(~B + B -1/4) y '~ r (M)r  may be brought to be lower than 1 up to a new decreasing of  ~B and 

B -1/4 which is compatible with the former one. 

We now give a few fields of  application for this result. 

The case which is studied by Bourgain is w = [ul'~u. He shows that the two hypotheses on w are verified in 

the case when 0 < ce < 2. The two nonlinearities Zhidkov proposes are w = ~ and w = 1 - e -~u. In the 
frame we adopt here, we want that 

I I f (x ,  lu12)ul14/3 < C ~ Ilul14 ~, 
B 
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I I f (x ,  lulb,,, - f(x, Iv12)vl14/3 <_ C Z (llull4 + IIv[14)3' Ilu -  114. 
Y 

The first est imate is true i f  

Ilf(x, [ul 2) 112 < C ~ IlullX. 
3' 

The second may be fulfilled under one of  the two following conditions: 

sup IlVsf(x, lul2)ull2 <_f ff . sup Ilull  whenu n(O,M) 
uEB(O,M) " ~  uEB(O,M) 

ItVsf(x, lul2)ll4<_c~-~ sup Ilull  whenuCB(O,M), 
uEB(O,M) 

the sum over r / con t a in ing  a finite number of  terms and - 1  < r/. 

o r  

Appendix  B. Gauss ian  measures  on a Hilbert  space 

The fol lowing ingredients are contained in Dalecky and Fomin ' s  book [5] .  This appendix is by no means 

meant to be an abstract about Gaussian measures in Hilbert  spaces, we only give some hints to make clear the 

p roof  of  Lemma 3. 

Let us begin with a theorem which gives a condit ion for a premeasure to be o--additive. 

Let l, be a premeasure on an algebra b / o f  subsets of  a set X. We say that a class /C C H approximates t, 

from below if  for each A E L/ and each e > 0, there exists a K E /C such that K C A and ]vI(A\K) < e. 
According to this definition, we may state: 

Proposition 12. Let v be a premeasure on an algebra L / o f  subsets of  a topological  space X and let 5 r C H be 

a class of  closed subsets of  X, which is closed under intersection and approximates v from below. 

I f  for every e > 0, there exists a compact  set K~ such that for all F ~ 5 t', 

FnK~ = O =~  Ivl(F) < s ,  

then v is o--additive, i.e. it is a measure. 

On a Hilbert  space, we can define particular measures called Gaussian cylindrical measures. The construction 

is carried out  as follows. 

Let  v be a measure on ~n,  its characteristic functional X~ is given by the formula 

= f e¢'Xp(x) dx, X~(~) 
,J 

~ n  

where p is the density of  v with respect to Lebesgue 's  measure dx. The measure v is said to be Gaussian i f  its 

characteristic functional may be expressed in the form 

X~(Y) = exp {-½(BY, y) + i( oz, y) }, 

where B is a posit ive operator. I t  is said t o  be centered i f  a is zero. 
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In a Hilbert space X we call cylindrical a set in the form 

C = {x C X;Px  E J~} ,  

where P is a projection onto a subset of  a finite dimension of  X, and jk4 is a Borel set of  this subspace called 
the base o f  C. 

We define a cylindrical measure v over X by the measure of  the cylindrical sets o f  X. The measure of  a 

cylindrical set C is chosen to be equal to the measure o f  the base .M of  C in PX. Such a measure is said to be 

a centered Gaussian measure if  each projection onto a finite dimensional space is a centered Gaussian measure. 
Hence its characteristic functional is in the form 

Xv(Y)  = e - b ( y ' y ) / 2  ' 

where b is a nonnegative bilinear form which is continuous on every finite dimensional subset and is called the 

correlation o f  v. I f  b(y , y )  may be written in the form (By, y) ,  B is called the correlation operator of  v. We 

will denote by v8 the centered Gaussian cylindrical measure with correlation operator B. 
Now we have the lemma 

Lemma 13. Let A be a positive operator then 

PB{X : (Ax,  x ) x  >_ 1} _< TrAB, 

v s { x :  l(Ax, x) -TrABI < c~/TraB} >_ 1 ~llAnllx. 

It is now possible to prove Lemma 3 which gives a necessary and sufficient condition o f  o--additivity for a 

centered Gaussian cylindrical measure. 

Lemma 3. A centered Gaussian cylindrical measure v on X is o--additive if and only if its correlation operator 

is in the form b(yl ,  Y2) = (Byl,  Y2), where B is a nuclear positive operator X. 

Sufficient condition. I f  u is o--additive then its characteristic functional and its correlation are continuous on X, 
hence b(y, y) = (By, y) with B C 13(X). Let us show by contradiction that B is nuclear. I f  it is not the case, 

we may find a projection onto a finite dimensional subspace such that its trace Tr PBP = R is arbitrarily large. 

Then we set 

c = {x ~ x :  IIIexll~ - RI < ~v/-R}. 

The intersection of  this cylinder with the ball of  center 0 and radius R - av/-R is empty. 
According to Lemma 13, we have 

21lbll = _1 if we take a = 2 ~v/T~. v ( C )  > 1 a2 2 

We may consider balls of  X centered in 0, with an arbitrarily large radius and with a measure which is lower 
than ½. This is impossible since v (X) = 1. 

Necessary condition. Let C be a cylinder which does not intersect the ball in X with center 0 and radius R. Its 
base A/ /a l so  does not intersect the ball of  center 0 and radius R in PX. According to Lemma 13, we get 

Tr PBP T rB  
v ( C )  < R-----5~ _< R---T-, 
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which is finite since w e  assume that B is nuclear. We use proposition 12 with H equal to the Borel  o--algebra 

of  X and U to the set o f  cylinders in X. 
TrB For all e > 0, there exists K~ = B ( 0 ,  R) with e = - ~ -  such that, for all F E $- such that F N B ( 0 ,  R) = (~, 

then ~, (F)  < e. []  
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