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I. INTRODUCTION

Our aim is to prove some results about a nonlocal Zakharov equation introduced by Zakharov
(see [1, 2]). The derivation of this system is carried out for x € R*, however, we will suppose
that xe RY, N = 1,2, 3.

We study the following system

i + A¢p = —B(ne),
A7 — An = Ale)?,

where B = VAV,
We consider the initial value problem, that is

o(x, 0) = Py(x),
n(x, 0) = ny(x),

n(x,0) = ny(x).

The article is divided into four sections. In Section 2, we derive the equation from the
physical equations according to Zakharov (see [1]). In Section 3, we study the local Cauchy
problem for (¢, 1y, n,) € H> x H' x I*. In Section 4, we study the limit of the solution to the
equation when A tends to zero.

The nonlocal Zakharov equation may be connected with two other equations: the classical
Zakharov equation and a nonlinear nonlocal Schrédinger equation.

The classical Zakharov equation is the same one with B = —I. There is a link between the two
problems. For example, they are the same in a one-dimensional space and also if we only
consider radial solutions (because —B is the Z2-projection on the gradients (see [3]). The point
is to try to adapt the results about the classical equation. We may cite different people who
worked on this equation: Added and Added [4, 5], Sulem and Sulem [6], Schochet and
Weinstein [7], and Ozawa and Tsutsumi [&].

For the existence and the uniqueness for the Cauchy problem, we reason as in [8]. It is
possible to adapt the method because of the continuity of the nonlocal operator B in a large
number of spaces. The same results on the Cauchy problem would be obtained if we have
another operator instead of B, provided we always have these continuity results.

To pass to the limit when A tends to o, we adapt the proof in [7]. Lots of complications are
due to the nonlocal term. First of all we have to write the initial system as the dispersive
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perturbation of a symmetric hyperbolic system, the nonlocal term yields some additional terms
which make the derivation far more complicated. We then encounter some difficulties in
estimating the different nonlocal operators of this new system and need the use of the theory
of commutators to solve these new problems. As for the previous problem, we may want to
extend our results to some other operator B. We need the same properties as before, and some
others. For example, we need to be able to define an operator A such that VB® = AV,

A nonlinear, nonlocal Schrodinger equation is studied by Colin [3, 9]. It consists in taking
A = oo, He obtains some results about the local and global Cauchy problem, some finite time
blow-up results and also standing waves and their stability. The limit we obtain when A tends
to o turns out to be the solutions to this equation.

2. ORIGIN OF THE NONLOCAL ZAKHAROV SYSTEM

This article deals with some equations introduced by Zakharov (cf. e.g. [1, 2]), to describe
Langmuir plasma turbulence. The physical description follows exactly these two articles.

We consider the hydrodynamical equations, the system of the Vlasov equations for the
particle distribution functions and the Maxwell equations for the fields. This system is quite
complicated, so we first simplify it. The idea is based on the fact that we can distinguish slow
and fast processes in a plasma. We assume

e the plasma is sufficiently uniform,

e the magnetic field is sufficiently weak,

e the nonlinearity level is not too high,

e there are no transverse high-frequency electromagnetic waves,
then the fastest process is the Langmuir oscillation, whose period is 7, ~ 1/w
Langmuir frequency.

The other time scale (when there is no magnetic field) is the period of ion-acoustical
oscillations, their minimal value being v m,;/m, times higher than 7, , where m; and m, denote
the ion and electron masses.

We average the dynamical equations on a period 7; . We only consider long wave oscillations
with phase velocities far larger than thermal ones. We neglect quasi-linear effects.

We also neglect interactions between the different high-frequency oscillations, and obtain the
linearized hydrodynamical equations

pl» Wy being the

d
é—t&ne + div(ny + on)V, = 0, 1
] 3V
Sov, + 2 ysn = S, 2)
dt n m,
Maxwell’s equation reads
1 °E dne 0
237 + curlcurl E + ?(n(, + 6n)5—t6Ve = 0. 3)

Moreover, we suppose that
n=ny,+ on + on,,

on, on, <€ ny,
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where 7 is the electron density, Jrn is the given low frequency plasma nonuniformity and Jdnx, is
the density variation due to the Langmuir oscillations. E is the electric field and oV, is the
variation of the electron velocity. ¢ is the ion sound velocity. Thus, we have

3’E 3V on
— <8t2 + wp,E> + curl curl E - CZTeVdivE + w‘z’lcz—noE = 0. )

Next, we suppose that E = 2(E exp(—iw,t) + E* expliwy, 1)), where E slowly varies
(0E/at < wy, E). Neglecting 8°E/91%, we have

0°E 5 . [OE , oE*
F = —C()plE + fwp Eexp(—lwplt) + Wexp(zwplt) .
Substituting this in (4), we obtain
L, IE S | , on -
—21C—§J " + curlcurl E — . VdivE = —wplmE. 3)

We need a second equation in order to relate dn and |E|%.
We suppose that the electrons are distributed according to the Boltzmann law

(ep ¢) on _epg — ¢
n=noexp{ e‘Te n—O=LTE—<1. ©6)
The ion distribution function obeys Vlasov’s equation
af; af; en
=5 TV Ni- Vg =0, and  om = T° @a — ¢).
We set E = Vi, so divE = Ay,
3 _ 37 - )
2% L (GivE) - “SedivVdivE = — "ld <” )
¢t ot C Ay
0 3VT wk . [on
=2i ——Ldiv[ — vy ),
8 81‘ Vo2 v ny v
thus
. 2 2 . (on
AQiwyy, + 3VE Ay) = wy, div n—Vt// . @)
0

We multiply (7) by w* and integrate by parts. The imaginary part yields that

No = \ 9yl dx

is conserved.
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First hypothesis. The nonlinear phenomena have such a long period (7! < kVr) that the ions
have enough time to reach the Boltzmann distribution law in a low-frequency electric field

5” Pel
—=—e—.
Ny T;

Now, we also know that dn/ny = (ep, — ¢)/T,, therefore,

on_ ¢

) 8
ng T+T, ®
¢ equals (e*/4m,w2)|E|?, hence
on _ —¢  vyl?  —e |Vyl
ny  dmewl (T + T,) 4ng (T, + T)’
This result together with (7) yields
AQi +3VEAy) = —————div(|Vy|? V),
QRiwyw, = Ay) T T iv(| V| Vi)
: 3 VE —e* . 2
A b Ay )= ———— div(|Vy[|? V), 9
<u//, 20, w> i@+ T (Ivyl* vy) )
Ay, + 2 dpwy Ap) = —220_ Giv([9ul? vi)
cT 2P 8no(T; + T,) '

Second hypothesis. 1! kVr. For low-frequency motions the hydrodynamical
approximation is valid

O 2y oaon= 1 AlEp (10)
g T Vg T ~ 16mm; ‘

We assume that the damping rate y, is zero.

After some changes of scale, we obtain the equations, we study. For the first hypothesis, we
obtain

Ay, + Ay) = div(|Vy|* V).
We can find some results concerning this equation in [3, 9]. For the second hypothesis, we have
the following system
Aliy, + Ay) = div(n V),

1
e~ An = ATV,
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3. EXISTENCE AND UNIQUENESS FOR THE CAUCHY PROBLEM

In the study of the Cauchy problem, we will omit the constant c2. It is obvious to see that the
result will be valid for every value of ¢. Thus we study

{A(il/'/ + Ay) = V- (nVy),

(11)
i — An = A|Vy|?,

that is

i+ Ay = A7V - (n V),
i — An = A|Vyl|?,
{ivu'/ + AVy = VAV - (nVy),

i— An = A|vyl*
We set ¢ = V. This leads to the system that we are going to study

{id: + A¢ = VATV - (ne), 12

i— An = Algl%

In the study, we omit the fact that ¢ is a gradient. We nevertheless have id) + A¢ = Vfwith
f = A"'V - (n¢). Taking the Fourier transform, we get

ib, — &% = it f,
b, + iE1%6 = &1,

d%(q; e 1EPry = g fellEl

bellfP — ) = ¢ \ f&, s) el ds.

Jo

As we have ¢(0) = £§(0),

S, 1) = :(43(5, 0) e~ \ fig, sy e e ds>,
JO

and ¢ is a gradient.

These computations are quite justified. We set B = V(~A) 'V. This operator is
homogeneous of order 0 in the Fourier variable. Calderén-Zygmund’s theorem tells us that B
is continuous in I7(R™), forall 1 < p < , i.e.

3C,/Nfe P|Bfllyr < Gl flr. (13)
A simple argument tells us that B is also continuous in every W*? forall 1 < p < o

1C,,/ Ve WP|Bf [ yor < C Ml fllwre- (14)
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We now follow the work of Ozawa and Tsutsumi [8]. The system (12) reads

i¢ + Ap = —B(no),
¢ ¢ (ne) (15)
i — An = Alol*.
Setting F' = 9,¢, we formally get
('t
iF + AF = —B<a,n<¢0 + Fds> + nF>,
JO
i— An = Alo)?, (16)
rt t
¢ =(—A + 1)“{1‘F + B<n<¢>0 + 3 Fds>> + <¢0 + g Fds)}.
0 0
We consider the following initial conditions
F(0) = i(Apy + B(ngoy)) = Fy,
n(0) = ng, a7
a,n0) =n,.
We work in RY with 1 < N < 3.

We set
X = [L°U; L) O LYNUG LY @ (L5 HY N Wb L),
where I = [0, T]. We suppose that (¢,, 1y, 7,) € H> x H' x I?, and we set

a = max{[|ooll2, dolls, [Ado + Blrnodo)lrz, [mollsrr + llmyl o2}

(as we have (¢4, ny, n,) € H* x H' x I2, a is finite).
To begin with, we want to obtain the existence and the uniqueness of a solution of (16)-(17)
in X using a fixed point method. We set N = (N,, N,) with

Ut — s) {B<asn<¢0 + 3 th> + nF>} ds,
0 (V]

N,[F, nl(¢) = cos(wt)ny, + w 'sin(w?)n, + j o Vsin(w(t — s)AleE)|*ds,  (18)
0

(-A + g = {iF + B<n<¢0 + l\“;Fds>> + <¢0 + j;F@)},

where U(t) is the semigroup generated by the Schrodinger operator and w denotes v —A(/¢] in
Fourier variable).
We set

NF, nl(t) = UGF, + i

Y = {(F(t), n(t)) € X/|Fllpog. 12y < 2a, |F| pson, 4y < 264,

dn

N\l p=- = 20,
|| “L ;HY dr

< Za} .
L= LY)

We first show that N is a contraction from Y into Y. To this end we use the following lemmas.
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LEMMA 1. I? — 19 estimate (see [10, 11]). If 2 < p < w and 1/p + 1/q = 1, then [|[U(t)v|r =
@Arle YN 2 NP|vll e, £ £ 0.

LeEMMA 2. Strichartz estimate (see [12]). We set a(N) = oo if N = 1,2; aN) = 2N/(N — 2) if
N=3 If 2=g<oN) and (N/2 — N/g)r = 2, then there exists K,(&V,q) such that
[UC)Yl regirey = Killvll,2 for all v e L2

LemMa 3. (See [13])If1 = ¢',r' = 2,2 < g < oflN) and (N/2 — N/q)r = 2, then there exists
K,(N, g') such that [ Ut — s)/(s) ds”L"’(I;LZ) = Kz”f”L"(I;L‘I') vieL ;17).
LemMa 4. For all 7 € R*, for all v € I, we have

leos(wt)vllz < vll2, (1 + @) P sin(wt)vll 2 < (1 + Dol;.

First step. N maps Y into Y. The lemma 2 yields that
IUC)i(Ap + Brgdo)llpov, 14y < KillAdg + Brgdo)llz2 =< da. 19
This fixes 6. We also know that
1UC)i(Ady + Brgdo)lz=r:12) = [Adg + Blngdo)l,2 < a, (20)

because U(¢) is unitary on I2. Using the first lemma and the continuity property (13) of B, we
have

[Ny IF, m](2)| 1+

< |Ut)i(Apy + B(ngd))ll,« + \ Ut - s) {B(&m(% + j Fdr) + nF>} ds
Jo 0 4

< |U@)i(Ady + B(nydo))l,« + \ Clt — s|™V* B(E)sn<¢o + S Fdr> + nF> ds
Jo 0 L4/3

< [ U©)iAdo + Blrodo)s + \ Clt = |

Jo
X {“as Lz<

||N1[F, n] ||L8/N(I;L"')

bole + { 1L dr) . ||n||Lz||F||L«} ds.
Jo

dn N —N/4
< da + C{|— ol ol 12 — sl ds
dt |l = 12 0 YNy
dn 1 s
] vl | 1= st (| 1) s
dt || 1=q; 12 Jo Jo LYN(I)

n

t
T 3 It — s|"N4)F e ds
0

LB/N(I)}
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Now

0T
5 T—N/4 ds
0

°T ;T
j T"‘”“Q ||F||L4dr>ds
0 0

T
j TN F |« ds
0

LB/N(I)

LS/N(I)

and

LB/N(I)
Hence, we have

||N1 [F, n]“LS/N(I;L“)

dn
<da+ CTI_N/A”””L“’(I;LZ)”F“LS/N(I;L“) + CT'™N% ar
dn
+ CT* N8| — WE | psrngg. 4
dr LU 1Y) &L

< da + C(T'"N46a® + T'"V3a* + T>V46a%)

< da+ C(T" Mg + TVN857 g + T N4g)éa.

—_ ||T1_N/4HL8/N(1) - TI—N/S,

< TV N4 Fll gy, ey

L=(; L2

< [ T*M4YF| s dS“LS/N(l) = TZ_N/4||F”L5/N(I;L4)a

[l ol 4
)

We choose 7 sufficiently small so that C(T'"V*a + T'""85"'a + T>""*g) < 1. Hence

||N1[F, n] ||L8/N(I;L4) =< 24a.
Using the third lemma and (13), we obtain that
||N1 [F, "]||L°°(1;L2)

IA

IA

("t
a+ C 6,n<¢0+j Fds> + nF
0

LS/(S—N)(I. L4/3)

4

s C ||a,nan<||¢onL4 v { =P ds> + Il el Fle

0

IA

~

dn
dr

dn

dr

IA

a+C ol 4l 1l ooy + €

L>(; L)

L2 LY Jo

+ C”””L“’(I;LZ)”1||L4/<4-N)(1)||F”L3/N(1;L4),

dn -
— lpoll+ + CT>7™*
dt Lm(I;LZ)

+ CTI_N/4||”“L°°(I;L2)||F||L3/N(l;L“)
<aq + C(TI—N'/8a2 + TZ—]V/45a2 + Tl‘n’\’/4602)’

<a+ C(T'""M3q + T NM4sq + T'"N*Sa)a.

dn

dr

a+ CTI-N®

IA

L™(; L?

T
1F e ds

lU@)i(Ady + B(rodo)l = 12y + CHB<ar”<¢o + g Fds> + ”F>
0

LS/(S—N)(I)

@h

LS/(B—N)(I; L4/3)

LB/(B—N)(I)

||F”1_8/N(1;L4)
)
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We choose T sufficiently small so that C(T' V3 + T2"V*8a + T'"V*da) < 1. Hence
IV, [F, n]”L“’(I;LZ) < 2a. (22)

In order to treat the second coordinate of NV, we first estimate ¢ in L°(I; H?),

o(t) = (A + 1)-‘{1'F+ B(n(d)o + i[Fds>> + (¢0 + E Fds)},
. JO 0

K ot
(—A + Do(t) = iF + B<n<¢0 + \ Fds>> + ¢g + S Fds,
Jo

0
t t
uwmswh+CnGm[Fm)-W%M+5MMm,
0 2 0

L
rT rT
ud)“L‘”(I;HZ) = “F“L“’(I;Lz) + C””HL°°(1;L“)<||<l50||L4 + 3 [1F | 24 ds) + llpoll2 + IF |2 ds.
1] JO
Now
> T
5lmwmscrwwmwwm”
0
then
= n2y < Cla + @ + T'"V%3a* + Ta). (23)

t

No[F, nl(t) = coswt)ng + o™ 'sin(wt)n, + | o™ sin(w(t — $)A|o(s)|* ds.
JO

Using lemma 4 and (23), we have
INLE, ml O = 11 = A)2NS[F, n1(0)] 2

=< (1 + @®2 cos(wnngl 2 + (1 + w0~ sin(wt)n, || ,2

N ! I + @)@ sin(w(z — sHAISE)] 2 ds
4]

smmm+u+mmw+ju+a—mmwmwﬁm
0

a

T
s+ Ta+ | A+ DAle)?ll,2ds
JO

<1+ Ta + T + D|Al61Pllzog; 12
<1+ Ta+ CTU + Déli~u. n2
because [|Al¢1*l =, 12y < Clloli=u. n2ys

INLIF, Alll o, ey < @ + [T+ CT(L + TX1 + a + T'"V%a + T) ala.
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We choose T sufficiently small so that 7+ CT(1 + T)(1 + a + T'"¥%8a + T)%a < 1. Hence

HNZ[Fs n]“L“’(];Hl) < 2a. (24)
¢

%NZ[F, nl(t) = ~w sin(wt)n, + cos(wi)n, + { cos(w(t ~ s)A|d(s)|* ds.
Jo

Using once more lemma 4 and (23),

d (T
RG] I P R A [ PSS

0

L™(I; L%
= ””0“111 + HnIHLZ + CT”‘i’”i”([;HZ)
<a+ CT(1 +a+ T""3%a + T)a.a.

We choose T sufficiently small so that CT(1 + ¢ + T'"¥36a + T)%a < 1. Hence

gNz[F, n}

< 2a. 25
P = 2a (25)

L®(I;LY)

Collecting the four results (21), (22), (24), (25), we concude that N maps Y into itself (for T
small).

Second step. N is a contraction in Y, i.e. v (F, n), (F’, n') € Y and T sufficiently small

INIE, n} = NI, 1l < I, n) — B, )|

where [« || denotes the natural the norm of X.
The computation which follow are essentially the same as in the first step.

NIF, nl(t) — Ny[F', n'1(1)

= ij Ut — 5){B<asn<¢>0 + jstr> + nF) - B(&sn’<¢0 + j F’ d‘l’) + n’F’>} ds,
0 0 V]

N\F, n] — N|[F', n']

14

Ut — s){B((asn — 3,n")y) + B<(6Sn — d,n’) err + 6sn’<§s(F — F') dr>>
0

JO 0

=1

e,

+ B((n — n')F + n'(F — F’))} ds,

IN:LF, nl(e) ~ NALF?, n 1)l s

- T
= | (nlr - sl)““’”“{llasn = aun’ll 2l bolle + llgm ~ asn’lleE IFllzs d
Jo 0
T
ol | MF = Fllsde + ln = n'll 20 Flls + Infl 20 F - F'Ilyz ds,
Jo
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||N1[F, n] — N,[F', n/]”LS/N(I;LA,)

<cf

t
grﬂﬂmn—mﬂmwwy“u
. L¥ND)

"t rT
T | 1 - Pl
J 0 J 0 LX/N(I)
¢ ¥
o IR e
0 Jo L¥N(y
o , o
+ gr*“w—nwg £+ de
Jo Jo L¥N)
("t . °T
AT | U - e j
Jo 0 L¥ NI
el d d
= C{TI_MS —((n—-n" ol + T> N4 = (n — n") ||F”L8/N(I;L4)
dr L2, L% dt Lo 1)
d
+ TN d—”’ IF~ F'”L“”N(I;L“) + T'"N4n ”'”L“"(I;Ll)“F“LSW(I;L‘)
U =1y

+ TN | pogr ) |IF - F'”LB/N(I;E‘%

< C(T'" V¥ + T*N*6a + a) + T""V*a + a)i|l(F, n) — (F', n")l.

We choose T sufficiently small so that C{7T' % + T* ¥*%da + a) + T'™*da + a)} <

Hence
INLF, n] — N\F', nll v, oy < $ I, 1y — 7, ).

HN1[F, n] — N[F, ”’]HL“(I;LZ)
CHB((a,n — d,n ),y + B<(6,n —ad,n) | Fds + <3,n’(g F-F) ds>>>
Jo Jo

+ B((n — n"YF + n'(F = F) | pss-n, a3

A

t
@,n — 3,n") g Fds

JO

IA

C{ll(a,n = 3,1l 76w, 33y +

LS/(S_N)(I; L4/3)

*t
an' | (F-F)ds
4]

+ ||(I1 - n/)F“LS/(S—N)(I.LA/J)
L3/B=N)(f. [4/% 7

+ |n'(F - F/)||L8”‘8*N)(I;L“”3)z

257

1
3.

(26)
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T
sC@Mw—@MbMNMM%Mm+I@n—&ﬂmgﬂﬂmﬁt
o LS/(S—N)(I)
A
+ (lo,n'll2 |\ NF = F'|«ds + lln = n'll 2| Fllpall zors-mgy
Jo L3 G-N)(1y

+ [ln Nl 2 F - F/”L“”LB/(S’N)U)}

d d
= C{TI_N/S —(n—n’) lpolls + 7> N4~ (n - n") ”F”LB/N(];L“)
dt L°°(1;L2) dt L""(I;LZ)
all d _
4 -l 9 |E — F'llpsong, sy + TN = 'l =g, 2| F | covgg; o)
dr Lo LY

+T“”ﬂthﬂmF-PW”mm}

= OT'"Ma + TV*Sa + a) + T'""*©Ga + a}ll(F, n) — (F', n").
We choose 7 sufficiently small so that C(T'""%q + T*™48a + T'"46a) < L. Hence
INVF, n] = NAF', 2l 2y < IICF, ) — (F7, w0 (27)
(1) — o'(1)

Lt
= (A + 1)_‘{1'(F — F)y + B((n — n")¢y) + B<(n - n’)! Fds)

0

+B<n’ g (F—F’)ds> + \ (F~F’)ds},
JO

v0

lo(r) — ¢' ()] a2

+
LZ

sc@F—PMHWM—nwmy+
gt

= C{”F - F'||L°°(1;L2) + |n - ”'||L°°(1;L4)“¢o||L4 + |ln - n’”L‘”(I;L“)S |1Fllads

rT
(n—n’)} Fds

0

T
nfg (F - F')ds

0

2

T
+ j (F-F)ds
0

“05 - ¢/”L°°(I;HZ)

v ;T
+mwwmmqu—qum+5nF—me%.
0

0
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So
l¢ — &'l =g, 12y = Cl1 + @ + T'"%Sa + a) + TIIF, n) — F', n)l. (28)

('t

N[F, n)(1) = NIF', n'}(1) = | o7 'sin(w( — s))(Alo)|* — Ale'(s)]* ds.

JO

INLLF, n)(t) = NLIF, n' 1) g

11 + 0?0~ sin(w(r — HAlG* — Al¢'|D)|2ds

v0

=

< | A+ ¢ = s)Ale®I* = ¢ 2 ds.
JO

We have [A(I¢]* — 6"z < Clollg2 + ll¢'l2)ll¢ — @'l 2, therefore,
IN,IF, nl(#) = Ny[F', i} g = CTA + TX N2 + 6" O l@ — )OI 2,
INLIF, ] = NoIEY, 21 o
= CT(A + T)lpllzou; 12y + 1612t )@ = &'l 12t 12y
= CT( + T)a + a* + T'"™3%a* + Ta)
X (1 +a+ T'"¥da + a) + DI, n) — F', n)l.
We choose T sufficiently small so that

CT(1 + T)a + a* + T'""3a* + TaY(l + a+ T'"V¥da + a) + T) < L.
Hence
INAIE, m] = N IE, n' Wl =g,y < $ I, 1) — (F, n)I, (29)

n

d d
qp DRl nl(@) = = No[F7, () = |} cos ((f — NA(¢©I* ~ (1'(s)]*) ds,
JO

ds

d d B
o tr i) = S a0l < | 16006 - Gl as
JO

d
qp NelFsn] = No[F', 1))

Lo L?)

IA

CT ¢l =g, 12y + o'l zoar. m2)lid — X PN
< CTa + a* + T'"™%a* + Ta)1 + a + T'"N¥da + a) + TE, n) — (F', n)||.
We choose T sufficiently small so that

CTa+a" + T"V%a*+ TaYl +a+ T"V¥ba +a)+ T) < L.
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Hence

d 1
“d_t(NZ[F’ n] — N,[F", n']) =3 I, my — &', nH. (30)

(L%
Summing up all the above estimates (26), (27), (29), (30), we obtain
INE, ny — NE?, n)| < 3IICF, my — (7, n)I (31

N is also a contraction from Y into Y for T sufficiently small. N has also a unique fixed point

in Y such that
. \
Foy=Unk, +i| Ur—y9) {B(Bsn<¢o + { Fdr> + nF>} ds,
0 JO

J

n(t) = cos(wt)ny, + w ' sin(wt)n, + s w ™ sin(w(t — s)A|e(s)|* ds, (32)
s 0
*t

o)) (oo L))

F(0) = i(Agg + B(ngay)) = Fy,
n0) = ny, 3,(0) = ny,
#(0) = b -

o) = (—A + l)_l{iF + B<n<¢>o +

L%

We obtain immediately that

(F, n, ¢) satisfies (16), (17), in the integral form. F, € L* so U(¢)F, € C(; I*) N C'(I; H™?), and
8, U(t)Fy = iU(t) AF, = iINU(t)Fy). As L' « H!,

B<65n<¢0 + \ Fdr) + nF> e IMI; HY),
Jo
hence

\ Uit - 5)13<asn<¢0 + [de1> + nF>} dse U H YN WU, H?),

JO
and

3, \ Ut — s){B<8sn<d>0 + \>;Fdr> + nF>} ds
JO JO

Il
>
P
~
|
2
o
N
Y
X
TN
©-
(=]

+
C—
~
o
~
N—
+
S
N
N
&

+
o]
S
X
©-

(=1

+
T2

hn

o

P

+

3
N—

1l
~
S
~
|
%)
S
>
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so that

a,F(t) = iA(U(t)FO + i} Ut - s){B(()Sn(% + ] Fdr) + nF>} ds>
0 0
+ iB<8,n<¢>0 + 5 Fdr) + nF).
0
That is
3,F(t) = iIAF(t) + iB<6,n(¢0 + g Fdr> + nF>,
JO
i.e.

ot
iF + AF = —B<a,n<¢>0 + \ Fdr) + NF).
JO
Furthermore, n, € H', n, € I?, and A|¢|> € I*(0, T; L?),
n(t) € C([0, T}; HY, o,n(t) e €0, T; L and  3,2n(t) e C([0, T; HY)
and in H~! we have
d,2n — An = Al|?.
(F, n, $) also verifies the system (16), (17) with the equalities in H .
We shall now show that

1
F(t) e [ M e(o, T); H‘”)} N LY™MO, T; LY,
=0

J
2
n(ty e () (0, T1; H' ™), ©3)

Jj=0

¢(1) € ([0, T1; HY).
We know, in fact, thatif l = ¢', r' = 2,2 = g < afN) and (N/2 — N/gq)r = 2, then
t
\ Ut - s)f(s)ds e €10, T; L2  if fe L''(I; LY).
J0
Here we have F, € I* and

it
B<a,n<d>0 + \ Fdr> + nF> e L¥®N)I; M3y,

0

so that U(t)F, € (0, T; L*) N €X0, T; H %) (cf. Kato [14]),

st ofs(ofon s
JO

so that F(t) € C(, T; I?).

A

Fdr) + nF)% ds € €, T; I?),

JO
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We have already seen that n(f) € N}_, C/(0, T; H'™). On the other hand,
"t
B<a,n<¢0 + j Fdr) + nF> € CO, T; I** C €O, T; H™ ),
0
and AF(t) € C(0, T; H™?), so that 3,F(¢t) € (0, T; H™?%), and

"t t
Fds>> + <q§0 + E Fds> e G, T; 1%,
Jo 0

so that ¢(f) € ([0, T1; H?). Then we have the system (33).
This enables us to differentiate once more in time the equation

Fds)) + <¢0 + } Fds>.
Jo 0

9 g
(A + Dot @) =i () + B<at <¢>0 + jOFds> + nF(t)) + F(t)

(—A + Do(t) = iF + B(n(qbo +

(=A + Do(t) = IF + B<n<¢0 +

We obtain

in H72,
On the other hand,

et
Fds) + nF),
0

t
(-A + DF = iF + B<a,n<¢o + { Fds> + nF> + F.
s 0

3,F(t) = iAF(t) + iB<a,n<¢>0 +

thus

This yields (3/0¢)¢(t) = F(t) in H 2.
Furthermore,

3 gty = -a e (i n(2 (o |
ath(t) =(-A+1) <z Y + B<az <¢0 + quds) + nF(t)> + F(t)).

The right-hand term belongs to C(0, T; I?) so that ¢(¢) € €0, T; L?),

(-A + 1)o(t) = iF + B<n<¢0 + Fds>> + <¢>0 + j Fds).
JO 0

As we know that {§ Fds=¢(z) — ¢, therefore,

(A + Do) = i%‘f + B(n¢) + ¢,

which yields

99 -
la + A¢ = —B(ne).
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This gives us the existence of a solution of (15). This solution verifies

< 2a,

£

[

”’1”1_“’(1;111) < 2a,

L*; L?)

< 26a,

L3N 14y

on

— < 2a.
at

L=U; L?)

On the other hand, i¢ + A¢ = —B(n¢), this gives us the conservation law

lollz2 = lldollz2 < a.

A second conservation law may be obtained by setting

on
—-AD =3

Then we have

g(|V<i>(t)|2 + n(O)|o®)* + HVD)Y* + Ln*(t)) = const.

263

(34

(35)

There only remains to prove the uniqueness of (¢, #) in a convenient space, which is equivalent
to show the uniqueness of (F, n) in X. For the time being, we only know that (F, n) is unique

in?Y.

If we have two solutions to the problem, (F, n) and (F’, n'), we may associate a maximal time

of existence in X (7T and T'), and a value ¢ and &' such that

||F”L°°(1;L2) < 2a, ”FI”L‘”(O,T’;LZ) < 2a’,
||F”L8/N(I;L4) < 2da, ”F/”LS/N(O,T’;L“) = 26a’,
“n||L°°(0,T;H') < 2a, ”n/”L‘”(O,T’;H') < 2a',

lIn, ||L°°(1;L2) < 2a, ”nz'”L""(o,T';LZ) < 2a',

with

max{|doll 2, léoll1s, Ady + Blrgdo)ll 2, Inollz + lnyllz2) < @ and @'

We set 7 = min(7, T') and o = max(a, 2'). Then we have the above estimations with 7 and «.
Following exactly the same lines as above with Y defined using 7 and «, we obtain the

uniqueness of the solution as a fixed point of N.
The result is also as follows.
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THEOREM 1. Let us consider the problem on RY, N = 1,2, 3,
ip + Ap = VAT - (n9),
i — An = Alel?,
n(x, 0) = ny(x),
d,n(x, 0) = ny(x),
#(x, 0) = dp(x),
with ny € H', n, € I* and ¢, € H>.
Then there exists a time 7 > 0 depending only on ||ny|lg1, l7:llz2, lldollzz and N and a
unique solution (¢(z), n(t)) with
o(1) € %[0, T1; H) N el([0, T]; LY,
¢(1) € WHNO, T; LY,

n(t) € @0, T, HYH N eY([0, T]; I3 N ([0, T1; H™Y).

Remark. The former result is a result about the local Cauchy problem. Thanks to the two
conservation laws (34) and (35) we may show, as for the classical Zakharov equation (see [6]),
that the solutions are global in time in the 1-dimensional case as well as in the 2-dimensional
case for sufficiently small initial data.

4. LIMIT WHEN A — «

We consider the problem
1
n, — A(n + |E[H) =0,
/12 13 ( ] | ) (36)
iE, + AE + B(nE) = 0,
where B = V(A™)V, and
E:RF x R} — C*,
n:REx R - R.
Our goal is to show that the solutions (1, E) to (36) tend to (- |E |2, E) when A goes to infinity,
where E is the solution to iE, + VE = B(|E|*?E). We follow the work of Schochet and
Weinstein [7]. We have encountered some new difficulties due to the nonlocal term. This
complicates the transformation of the initial system and makes useful the use of commutators.
We first have to prove the existence of solutions in H® with s > [k/2] + 3 for an interval of time
which may be very small but independent of 1. To do that we proceed in two steps: the first one

consists in writing the system as the perturbation of a symmetric hyperbolic system and the
second one in computing the solution to this equivalent system as the limit of a sequence.

4.1. Transformation of the system

We want to describe the system (36) as a dispersive perturbation of a symmetric hyperbolic
system.
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We set

where
V:RF x R} - RE,
{Q: R x R} — R.
Hence, (36) formally reads
O, +Av-V—(E|») =0,
V, + AVQ = 0, (37)
iE, + AE — B(|E|*) + B(QE) = 0.
iE, + AE — B(|E|*E) + B(QE) = 0,
i'"E,E + 'AEE — 'B(|E|)E + '‘B(QE)E = 0,

i(|E?), + ‘AEE — 'AEE — 'B(|E|*E)E + 'B(|[E|*E)E + 'B(QE)E — 'B(QE)E = 0.
Moreover,
id,E, + A3,E — 8;B(EI’E) + 8,B(QE) = 0,

where 0, is the differentiation with respect to x;.
This may be written in a condensed form

iVE, + AVE — VB(|E|*E) + VB(QE) = 0,
where, for a vector (@', ..., ®¥), we have
VO = {3, ®', 9,07, ..., 3,0%, 9,0, ..., 3, D).

We will call these kz-components vectors, 2-vectors.
We also want to write the 2-vector VB® in the form AV® where A is always an operator of
order 0.

AsV- -0 = Ef: . ajfbj, we have V- ® =T - VO, where I is the 2-vector
1,0,...,0;0,1,...,0;...;0,...,0, 1)
and, hence, A = VV(A™I, (transforms a 2-vector into a 2-vector). We also have

iVE, + AVE — AV(|E|*E) + AV(QE) = 0.
Now

0,(QE"), ,(QEY), ..., 3, (QE")),
QVE + (3, QE',d,0FE?, ..., 8, QE"),
= QVE + «(E) VQ,

V(QE)

where a(®) is the matrix (k> — k) which has ® on its “‘diagonal’’ and zeros everywhere else.
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Similarly, V(|E|’E) = |E|> VE + o(E) V(|E?),

k
AEYV(EIY) = ¥ '@, E'E'E', 8, E'E'E?, ..., 3, E'E'E")

ji=1
k —_— . p—— . —_ .
+ Y 490,E’E’E', 8, E’E'E?, ..., 3, E'E'E").
Jj=1
Then we have «(E) V(|E|*) = @,(E) VE + Gu(E) VE, where @y(E) (resp. Q,(E)) is the
block-diagonal matrix (k* — k?) such that each block is equal to E'E (resp. E‘E). Hence
iVE, + AVE — A(E|>VE + QE) VE + Gy(E) VE) + A(QVE + «(E) VQ) = 0.

We now set
V2E=F+iG and V2VE=H +IiL.
Hence, we have
F,G: R¥ x R} — R%,
{H,L: RX x R} — R*".

Moreover, we notice that B and A preserve the real and imaginary parts,
(IE|?), = i(AEE ~ 'AEE — 'B(|[E*E)E + 'B(|[E|*E)E + 'B(QE)E — 'B(QE)E),
—_— k —_ . k . ——
AE-E=Y (E’ Y a,(a,E’)> ='EV - (VE),
Jj=1 I=1
where V- is the multiplication by the following (k — k%) matrix

3, 0 a, 0 % 0

0 3, 0 3, 0 3,

(IE1», = i('AEE — 'AEE — 'B(|[E|?E)E + 'B(|[E|*E)E + 'B(QE)E — '‘B(QE)E),

Il

i(—i’GV -H+i'FV-L - I'IB((|F|2 + |GIP)F + IG)F — iG)
‘B . .
+ T((|F|2 + |G|13)F - iG)KF + iG)

+ I'B(Q(F + iG)F — iG) — i'B(Q(F — iG)(F + iG)>

(G35~ F5-1) + (<2 WFP + 1GPNG + ZFF + IGPGF)

+ (‘B(QF)G - 'B(QG)F).
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t
B
Q +AV-V+FV-L-'GV-H+—WF+I|GHFG

- EB((IF|2 + |GI)G)F ~ '‘B(QF)G + 'B(QG)F = 0,

V,+ AVvQ =0,
i(F + iG), + A(F + iG) — 1B((IF)* + |G|>(F + iG)) + B(Q(F + iG)) = 0,
F, + AG - 3B(F|* + |G)G) + B(QG) = 0,
G, ~ AF + }B(IF* + |G|))F) - B(QF) = 0,

i(H + iL), + A(H + iL)
- ’;((|F|2 + |GIHH + iL) + Q)(F + iG)H + iL) + Gy(F + iG)YH — iL))

+ A(QH + iL) + «(F + iG)VQ) = 0.
In order to treat @, and @,, we have
E'E = (F + iG)(F - iG) = F'F + G'G + i(G'F — F'G),
E'E = (F + iIG)(F + iG) = F'F - G'G + i(G'F + F'G),

Let 9N be the operator which creates a (k> — k?)-dimensional block-diagonal matrix with
identical blocks. Then

Q(F + iG)H + iL) + G,(F + iG)(H — iL)
= M(F'F + G'G)H — M(G'F — F'G)L + MF'F — G'G)H + M(G'F + F'G)L
+ I[IUF'F + G'G)L + MG'F — F'G)H — M(F'F — G'G)L + MG'F + F'G)H]
= 20UF'F)H + 29M(F'G)L + 2i[M(G'G)L + MUG'F)H],
H, + AL — AG(F® + |GIH)L + MG'G)L + M(G'F)H) + A(QL + o(G) VQ) = 0,
L, — AH + AG(FI? + |GHH + MF'F)H + MF'G)L) — A(QH + a(F)VQ) = 0.

Summing up, we have the following system

t
B
Q +AV-V+FV-L~'GV-H+—((F + |GHFG

- —?((IFI2 + |G)G)F — ‘BQF)G + ‘B(QG)F = 0,
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V,+ AVvQ =0,

F, + AG - 3B((|F|* + |GIHG) + B(QG) = 0,

G, — AF + }BW(F|* + |GI)F) — B(QF) = 0,
H, + AL — AG(F? + |GPL + MG'G)L + M(G'F)H) + A(QL + a(G) VQ) = 0,
L, — AH + AG(F* + |GHH + MEF'F)H + MF'G)L) — A(QH) + o(F) VQ) = 0,

which also reads

t
B
Q +AV-V+FV-L-'GV-H+ S ((FP+|GPHFIG

~ ZWEP + [GPGF ~ 'BOFIG + 'BQGF = 0, 38)
V. + V0 = 0, (39)

.~ LB(IF]® + |GG) + BQG) = —AG, (40)

G, + LBF? + |GP)F) - B(OF) = AF, @1)

H, — AG(F* + |GPHL + MG'G)L + M(G'FYH) + AQL + «(G)VQ) = —AL, (42)
L, + AG(F® + |GHH + MEF)H + MF'G)L) — A(QH + «(F)VQ) = AH. (43)

We introduce :he vector with 1 + 3k + 2k* components: U = (Q, V, F, G, H, L), and we want
to write the above system in the form

k
U + Y (RAWU,) + ACU) + SBUU) = KAU, (44)
Jj=1

where R and S are nonlocal operators.
Let us describe all the operators

000 00 O

0600 00 O

000 -0 O
K =

0607 00 O

0600 00 -J

0600 01 O
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0 ‘&

J

o o o o 2
o o o o o
o o o o o o
© o o o o ©
oo o o o o ©
S o o o o o

where &7 is the jth vector of the canonical basis of R¥.

0 0 0 0 —aG)e) "(a(F)e’)
0 0 0 0 0 0
) 0 000 0 0
AU) =
0 0 0 0 0
—a(G)e! 0 0 0 0 0
alF)e 0 0 0 0 0
I 000 0 0
07 00 0 0
0070 0 O
R =
000 I 0 0
000 0 -4 0
0000 0 -4

We denote by Ej(U) the jth column of BJ-, and we have
B,(U) = B,(U) = 0,

—4'BUIF|* + |G[)G) + ‘B(QF)
0
0
—3(F?+1GH+Q
0
0

By(U) =
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YB((F|* + |GIHF) - ‘B(QG)

0
B | HFPeioP -0
0
0
0
0
0
_ 0
Bs(U) = 0
M(G'F)
—3(F* + |GI) — MFF) + Q
0
0
- 0
Bg(U) = 0
F(FI? + |G| + MG'G) - Q
—IMUF'G)
B(U) has a nonlocal term in its first component
I 0 0 0 0 0
0 17 0 0 0 0
0 0 -B 0 0 0
5= 0 0 0 -B 0 0
00 0 0 -4 0
00 0 0 0 -4

4.2. Existence of a regular solution for an independent time of A
We set N = 2k? + 3k + 1. We consider the following iteration scheme
U'x, t) = Up(x),
aUp+1 k ) ) -
5+ L IRAWUNUE™) + ACUET + SBUAHUPTY = KAUPT,
j=1

UP*(x, 0) = Uyx).
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We set
Waells = Mleells, 7 = sup_flu(-, )l
tel0,T)

In what follows, we assume that s > [k/2] + 3.

Moreover, we set [|Uyll; = € and let § > . We argue as follows

ovp=0|Ul,r=<é.

e vp=0|Uur* — UPllyr < CIIUP — UP"Hlg,7 with C < 1.

o Then

U” - U inL°0,T; L%,
UP? is bounded in L*(0, T; H®).

Thanks to the convexity of the || |, norms, we have

u? - ., o, = 0 vs' <.

As s > k/2 + 1, we may choose s’ > k/2 + 1. Then U € C([0, T]; €") and the solution is a
classical one. Moreover, we have

U € Lip([0, T]; H*™%),
Ue (0, Tl; H) N CY([0, T]; H* ).

There remains to specify the first two points.

4.2.1. A lemma. In what follows, we use the following result. Let us consider the problem
ou + a(u) = f,
with a(u) = Y5_, {R(A(v) d;u) + AC’ d,u} + S(B(v)u) — K Au, where ||vll,,7 < 5,
(@, w) + ((a(), w)) < | fllollully.

C‘ is symmetric with constant coefficients, so we have (1C’ 8 ;u, u)) = 0. This leads to a result
which does not depend on A. K being antisymmetric, ((K Au, u)) = 0. Hence,

k
(a@), w) = ¥ (RA@)3;u), w)) + (SB(v)u), u)),

j=1
l(SBu), w)| < [SBwwllolulle = Cllull?,

where C only depends on &.
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There also remains to estimate ((R(4(v) d;u), w)) forall 0 = j <k,

(R(A/(v) 3;u0), w)) = ((RQ;(A'()w)), w) — (RUA'(v), 8,]u), w))
N e’

o

f

((3;R(A(V)u), ) — «

Il

—((R(A(v)u), 8,u)) — «

fl

—((A(v)u, R(3;u)) — &
—((u, A/(W)R@;W) — «

Il

—((u, R(A(v) 3;u))) — a — ([A(v), R1(3;u), u))
—((RUA (), 3;]u), u)) — (1A (v), R1@3;u), w)).

Hence 2((R(A'(v) 3;1), w)) = (R([3;, A/()]w), w)) + (IR, A/W)|@3;w), w)). [0;, AW)] is a
commutator of order 0, hence

[(R(13;, AW)]w), w)] =< Clulg,

and the constant only depends on d. [R, A/(v)] is a commutator of order —1, therefore,

2((R(A’(v) 3;u), w))

(IR, A/ ()] 3;u), W) < Cliullg,

and the constant only depends on 4.
Also, we have

d
3 14015 = Clumllg + 21 7 lollulo, (*)

where C only depends on J.

4.2.2. Estimation for the large norm. We are going to show the result by induction: we
consider the following assumption.

(Hp) vO=</=pllU'llsr=o
This is valid for p = 0 (because £ < 9).

We want to show that (H,) = (H,,,) (for a good choice of T). We choose a such that
la| < s, and we set UP*! = D*UP*,

k
3 UL + ¥ (RAIUPY 3, UE* Yy + ACY §; U™} + S(B(UPYUE™") — K AU

Jji=1
k
= ( Y [RA(U?)8;, D] + [SB(U”),D"]>U”“.
J=1

The commutator Y¥_, [RA/(U?)d;, D*] + [SB(U?), D*] is an operator of order |c.
This equation is in the form

3 UL + aUE™ = £,
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with v = U” (and hence [|v||, 7 = d), and £, = [L5_ | RAY(UP) 9, + SB(U?), D*JU**!,
1Al = Clur*tl g = Cllu?*'l,,
and C only depends on J. Using (x), we obtain
d
& fue= s = cuz= oy + U7 ITUE o)
Hence,
d
17 ol = clur ols,
U 0l = eI UPHO)F < e'e?,

and C only depends on d.
We choose T sufficiently small such that

U™ (t)|, <6 vO=t<T.

T does not depend on p (nor on A) because C does not depend on them. Therefore, we have the
estimation for the large norm.

4.2.3. Convergence in low norm.

k
U + ¥ ARA(UPYUDTY + ACIUE™Y + S(BUPUP*Y — K AUP* = 0,

J=1
k . . —~
.U + T (RAUPHUL) + 10U} + SBWUPHUP) — KAUP = 0.
J=1
Setting V? = UP*! — UP, we obtain
k . . —~
3V + T IRAUPIVE) + ACIVEY + SBUPYV?) — K AV?
J=1
= — Y R(A(U?) - Aj(Up—l))Ufj) - S((BWUP) — BUP~Y)UP),

Jj=1

V20, x) = 0.

This equation is in the form
aj VP + a(Vp) :fz,

with v = U?, and f, = —¥5_, R(A/(U?) — A/(UP~NUP) - S(BUP) — BUP~HUP).
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A’ is linear and B only consists in terms of the first, second and third order, we have also

|R(ANUP) — A/UP~WUBy < CllUP — UP ol U2l

= Cllu? — U ol U |l;

< Cllu? — U,

|

IS(BWUP) — BUP~NUP)|o = ClUP = UP Yl U |l

< Cclu? — ur Y U”|l,

< Clur = v,

where the constants only depend on 4.
Using (*), we have

d _
Y Ivee)lg < clvelg + DIve ol vel,.
Hence

d D?
—|\ve 2 < VP ? P12 VP2,
S vl = clvelg + lve1s + 2 vels
We consider 8 such that C + D?/48 = g (48> — CB — D* = 0 admits a positive solution 8)

d -
3 1VPOl8 = glvels + B1ve=1s,

then
Iv2lE < e® vl + € — DIVvP'Ol3.
(4]

We choose T sufficiently small such that e® — 1 < 1 v0 < ¢t < T. Hence we obtain the conver-
gence in the low norm.

4.2.4. Return to the initial problem. We suppose that the Cauchy problem is posed for the
following initial data

n(0, x) = ny(x),
9,10, x) = ny(x), 45)
E@0, x) = Eyx).

V, + A VQ = 0is one of the given equations. F, — +B((|F|* + |G|)G) + B(QG) = —AG, and
G, + 1B((|F)* + |G|»)F) — B(QF) = AF immediately yields

E, + AE — B(|[E|’E) + B(QE) = 0,

where we have set E = 1/V2(F + iG).
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Let us set W = (VF — H,VG — L), this is zero at time t = 0 and, therefore, for all ¢,
hence VE = 1/V2(H + iL) and using the last equations of the perturbated hyperbolic system we
have Q, + AV : V — (IE|?), = 0. Therefore, we find again the initial equations.

We can also get some regularity

E e (0, T]; H*Y nel(o, T1; HY,
ne C0, T1; H) N e[o, T); H*~H N eX[o, T1; HY).

Hence

1
,12 n, — A(n + ’Elz) =0,

iE, + AE + B(nE) = 0,

and the solutions are classical ones.
In what follows, we call (n*, E*), the solutions to the initial system (36) which is associated
to the parameter A. Then we have the following estimation

IEMgzser + NEM s + in*lgs + |1n, lezs-r + /12 2]l 45-2 = const. (46)
We may state the following theorem.

THEOREM 2. Let s = [k/2] + 3. There exists a unique solution to (36), (45) on a time interval
[0, T, T not depending on A but only on || 7]l g, |7,]l gs-1 and || Eg]| ggs+1, which we suppose are
finite.

Moreover, for all ¢t € [0, T] we have the estimation (46).

4.3, The limit when A tends to o

THEOREM 3. When A tends to oo, n* + |[E*? - 0 in GO([O T] x [R") v(n* + |[EM* - 0 in
CO([0, T1; H %), E» = Ein C([0, T] x R*) N ({0, T]; C?), where E is the unique solution to

iE, + AE — B(|E*E) = 0.

The proof is carried out as follows. We differentiate with respect to the time the equation
(44), and obtain

U, + Z R(AJ(U)Uv .+ AUHU, D+ AC’UX J+ SB,(U)YU + BUYU,) = KAU,.
Jj=1
As in the former proof, we may then show that
UMO)ggs-2 = € = |JUNO)||gs—a = C' veel0,T].

Indeed, let « be such that |a| <5 — 2,

k
(Ui) + L RAUNUL,) + ACHUL), ) + BUNU,, — K AU,

ta
J=1

k k
= D"‘(- Y RAUHU,) + S(E(U)U)) + < Y [RAU)9;, D" + [SE(U%D"?)Uz-
Jj=1

Jj=1
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We set

k
fi= D‘*(az RA(UYU,) - S(E,(U)U)),

J=1

k
Si= ( Y [RA;(U)d;, D" + [SE(U),D"]>Uz
Jj=1
“f4”o = C”Ut”s—Z’
k
Y RAUYU,) + S(BU)YV)

j=1

1Al =

5-2

k
< C Y 14U, ll;-2 + CIB(HU);-,
j=1 '

= C” Ut ||s~2 .
We have an equation in the form

WU, + a(U,) = f3 + fa,

with v = Uand |fs + filo = CIU,|l,_5. (%) vields
d 2 2
a ||Ulu(t)”0 = “ Uta(t)Hﬂy

Ui = e“I U,

and ||U,(0)||2_, is finite using the initial regularity and equations (38)-(43). V, + AVQ =0,
then ¥V* € L°([0, T; H*™%) = AVvQ* e L™(0, T]; H™?),

= Q" eoo,rix sty = CID QD QN+~

< CAR2s=n
and
||VQ)\||(‘ZO([O,T];HS“2) < Cci L

When 4 tends to +o, ||Q)\||eo([o,r]><uek) — 0 and ||VQ>\||(‘30([O,T];HS‘2) - 0, hence n* + [EM?* = 0
in %[0, T] x R¥).

This allows us to obtain the first two results of convergence. To obtain the last one, we set
v = (F*, G, H*, [Y). {v") is bounded in C%([0, T1; H®), {v}} is bounded in C°([0, T1; H*?)
(which yields the equicontinuity of ©*). Therefore, using Ascoli-Arzela’s theorem, we have the
convergence of a subsequence in C°([0, T1; H:22).

Using interpolation and the boundedness in €°([0, T']; H®), we have the convergence of a
subsequence in C°([0, T1; Hi2%) v & > 0. Let (F, G, H, L) be the limit of this subsequence.
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Thanks to the equations governing (F, G}, H}, I}), we obtain the convergence in the sense

of CY([0, T1; H:.*™%), V& > 0. The equations pass to the limit
F, = {BW(|F* + |G1)G) = -AG,

G, + 1B((F)? + |G|DF) = AF,

H, — AG(F)? + |GHL + MG'G)L + MGF)H) = —-AL,

L.+ AG(F? + |GHH + MEFF)H + MEF'G)L) = AH.

(47)
(48)
(49)
(50)

The regularity of the solutions enables us to return as before to the initial equations and we have

iE, + AE = B(|E|*E).

Remark. The different constants which are used in this section are said to depend only on &
(they, of course, also depend on the space dimension). We may be more precise and give

additional information about how these constants depend on J in order to estimate 7.

In the proof of the lemma, we obtain in fact the following estimate
d 2 3 2
Y luHlz = K6 + 3)lw@g + 20 S llollallo -

During the estimation in large norm we have the following estimates

[ fillo = K,(6 + 53)|Up+l||s,
d
a lUP* Ol < K + SHIUPH O3,

||Up+l(t)“§ < eK,,(5+a3)t£2_

We also have the following estimate on T’

7]
T=< m log P
Studying the convergence in low norm, we have the following results
I1£2lle = K26 + 6HVZ~ o,
B = Ky (0 + %),
VPOl < € = DHIv>-'@l.

As we want 8T < log 2, this yields
log2

T < ——7F———r.
< K@ + 8%



278 B. BIDEGARAY

Taking everything into account, we obtain that

T2 0.9
SK06+ 0 B

In the rest of the section, no other restriction on 7 is made.

We may think of some extensions of this study. For example, the same arguments as in [8]
enable us to study the Cauchy problem for (¢, Ay, 1) € H™ X H™ ' x H™ 2, There are
opened problems for the Zakharov equation which are opened for this equation too. We may
for example think of the global Cauchy problem in three dimensions.

Acknowledgements—I1 want to thank J. C. Saut for suggesting to me this subject and his encouragement, and T. Colin
for helpful discussions.

REFERENCES

1. ZAKHAROV V. E., Collapse and self-focusing of Langmuir waves, in Basic Plasma Physics II (Edited by A. A.
GALEEYV and R. N. SUDAN). North-Holland, Amsterdam (1984).

2. ZAKHAROV V. E., Collapse of Langmuir waves, Soviet Phys. JETP 35(5), 908-914 (1972).

3. COLINT., Sur une équation de Schrédinger non linéaire et non locale intervenant en physique des plasmas, C. r.
Acad. Sci. Paris, Serie I 314, 449-453 (1992).

4. ADDED H. & ADDED 8., Equations of Langmuir turbulence and nonlinear Schrddinger equation: smoothness
and approximation, J. funct. Analysis 79, 183-210 (1988).

5. ADDED H. & ADDED 8., Existence globale de solutions fortes pour les équations de la turbulence de Langmuir
en dimension 2. C. r. Acad. Sci. Paris, Serie I 299, 551-554 (1984).

6. SULEM C. & SULEM P. L., Quelques résultats de régularité pour les équations de la turbulence de Langmuir,
C. r. Acad. Sci. Paris 289, 173-176 (1979).

7. SCHOCHET S. H. & WEINSTEIN M. 1., The nonlinear Schrédinger limit of the Zakharov equations governing
Langmuir turbulence, Communs math. Phys. 106, 569-580 (1986).

8. OZAWA T. & TSUTSUMI Y., Existence and Smooting Effect of Solutions for the Zakharov Equations. (1990).

9. COLIN T., On a Nonlocal, Nonlinear Schrédinger Equation Occuring in Plasma Physics, Publication CMLA,
ENS Cachan 9208 (1992).

10. GINIBRE J. & VELO G., On a class of nonlinear Schrddinger equations I: the Cauchy problem, J. funct. Analysis
32, 1-32 (1979).

11. GINIBRE J. & VELO G., Scattering theory in the energy space for a class of nonlinear Schrédinger equations, J.
Math. pures appl. 64, 363-401 (1985).

12. STRICHARTZ R. S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
equations, Duke math. J. 44, 705-714 (1977).

13. YAJIMA K., Existence of solutions for Schrédinger evolution equations, Communs math. Phys. 110, 415-426
(1987).

14. KATO T., Nonlinear Schridinger equations, Lecture Notes for Physics, Vol. 345. Springer, Berlin



