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1. Introduction

Bloch equations are a very common model to describe the time evolution of a system of electrons in
different contexts such as gas of electrons, glasses, crystals. Mathematical results have been obtained
in these contexts which ensure in particular that the variable of Bloch equations, namely the density
matrix, keeps through the time evolution some properties, such as hermicity and positiveness (of
diagonal elements and of the matrix as an operator) [1,2]. In the above contexts, the indices in the
density matrix are integers which distinguish between the different electron levels. Diagonal entries
model the population of the levels, while off-diagonal entries model coherences between two levels.

Bloch equations have also been derived for quantum wells [5,6]. They look very similar but the
variables are different. In the quantum well context, we distinguish between two species of electrons
(valence and conduction electrons) and variables are indexed by (two-dimensional) wave vectors.
Electrons can interact directly only if they have the same wave vector, which induces intra-band
coherences to be zero and valence and conduction electrons to be coupled two-by-two. This is not
a mathematical problem since at first order, i.e. without considering relaxation effects, such a system
is a juxtaposition of two-level models.
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The model for quantum wells has been extended to quantum boxes [4]. Due to the three-dimen-
sional confinement of electrons, variables are now again indexed by integers. Valence and conduction
electron levels are not coupled two-by-two any more and any valence electron can interact with any
conduction electron. But in the propounded model intra-band coherences are still considered as zero.
This destroys the Liouville structure of the system which in other respects resembles much the gas
model. Another puzzling point is the fact that levels are supposed to have any degree of degeneracy.
This is not much coherent with the Pauli exception principle that electrons (which are fermions) are
supposed to follow. This induces also mathematical and modelling problems which we also address
here.

In this paper, we are interested in the derivation of a raw Bloch model for a quantum box system.
This model will be derived carefully from computations involving creation and annihilation operators
for both species of electrons. Our goal is to obtain a model with appropriate mathematical properties
in order to be able to prove the conservation of certain physical properties through time. Our study
will be restricted to the leading order terms in the Hamiltonian, leaving extra contributions such as
Coulomb effect or electron-phonon interaction to future works. More precisely this is not a restricted
study but the first step towards a broader study, since the properties proved on the first-order terms
are necessary to study the higher terms.

The outline of this paper is as follows. In Section 2, we derive carefully a one-species Bloch model
such as the one for gazes. The structure of this model is analysed. Positiveness results are recalled and
boundedness of the populations is discussed. This motivates Section 3 where the problem of degen-
eracy is thoroughly addressed. Section 4 is devoted to our central problem, i.e. the derivation of a
two-species Bloch model. This model has the desired mathematical properties. The details of the com-
putations and an analogy with a boson model are postponed to various appendices.

2. The case of one species of electrons
2.1. Commutators and Heisenberg equation
Let A and B be two operators, we define their commutator by

[A,B] =AB - BA

and their skew-commutator by
{A,B} = AB + BA.

For an operator A, we will define the associated observable (A)
(A) = Tr(SoA)

by averaging with respect to the initial state density Sp of the system. If the system is described by an
Hamiltonian H, the time evolution for this observable is given by the Heisenberg equation

ihd (A) = ([A, H)).
Bloch equations are the Heisenberg equation of motion when the observable is the density matrix.

2.2. Operators and commutation rules

We suppose there is only one species of electrons, like in the case of gas atoms, and that levels are
indexed by integers i € I. For the ith level, we define the creation and annihilation operators c} and c;.
Electrons are fermions and should respect the Pauli exception principle. The corresponding skew-com-
mutation rules are

{ci,¢} = {cj,c}} =0, {ci,c}} = dij.
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This implies in particular that
cclei=c¢, clacl =cl, cc=clc =0,

this last equality meaning clearly that it is impossible to create twice or annihilate twice the same
electron. This is the Pauli exception rule. Let A and B be the products of n4 and np such operators which
all skew-commute two-by-two, then

A.B = {ZAB if ny or ng is odd,
0 else.

Since we only use two-operator observables, we will mostly always be in the second case.

2.3. Hamiltonian and observables

We define the Hamiltonian as the sum of a part due to the electrons and only, and a part due to
their interaction with an external electric field E(t): H = H® + H- with

HE =" acja,

kel

where ¢, is the energy of an electron in the kth level and

H =5 Z (E(t) - Mycjc, + E*(t) - Myclcy),
(kel?

where My, is an element of the dipolar moment matrix M. The 1/2 coefficient is due to the fact that
interactions are counted twice in this sum. The dipolar moment My, can be expressed as (y;|r|y;)
in terms of the wave functions associated to each level and the local position vector r. This implies
in particular that the case k = [ does not contribute to the sum since My, = 0. We will also use the fact
that M is hermitic: My, = M.

The observable we are interested in is the density matrix, which elements are the Py = cjc,» Ctis
clear that this matrix is Hermitian. In the computations, we distinguish between diagonal terms of this
matrix also called populations p; = (cl¢;) and off-diagonal terms, pyi # j also called coherences.

2.4. Computation of the raw Bloch equations

We have to compute the commutators of the density matrix with both Hamiltonians. The details of
the computations are given in Appendix A. We obtain

<[c}c,-.,He]> = (& — &)py, and
2([clei, H'] ) = ReE(t)- IZ(M,»kpk,- —Mypy).
kel

Gathering these results and the Heisenberg equation, raw Bloch equations read

ihdep;; = (€ — €)py + ReE(t) - > (Mupy; — Mypy).

kel
If we denote E = diag ({€;}ic;), this can be cast as a Liouville equation
ihd.p = [V(t),p], where V(t) =E + ReE(t) - M. (1)

In Appendix B, we show that considering electrons as bosons leads to exactly the same equation,
although the intermediate computations are different. This is not true any more if you consider extra
contributions to the Hamiltonian such as Coulomb effect or electron-phonon interaction, but this is an
other story.
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2.5. Positiveness and trace results

Eq. (1) clearly preserves the Hermitian structure of p. We can give an exact solution to Eq. (1),
namely

p(t) = exp (—% /;V(r) d‘c)p(O) exp (% /O.tV(r) d‘C).

This evolution equation preserves positiveness. Indeed, if p(0) is a non-negative operator, that is for all
X e A(I), X' p(0)X > 0, then

X p(t)X =X exp (—% /Ot V(t) dr)p(O) exp <% /Ot V(r)dr)X

H t
—Y'p(0)Y, where Y = exp (% / V(r)dr>x.
0

Therefore X p(t)X > 0. A corollary of this is that for all time ¢, and all level j, p;(t) > 0.
The total population is the sum of populations, which can be described by the trace of the density
matrix. Since commutation is a trace preserving operation, we have

iho Trp = Tr[V(t), p] = 0.

Hence Trp(t) = Trp(0) = Nior. The raw Bloch equations are trace preserving. In other words the total
number of electrons is preserved through the time evolution. This together with non-negativeness en-
sures that for all time ¢

0 < () < Neor.

We want also to know whether each level remains bounded by 1, which would be the expression of
the Pauli exception principle. This is indeed the case. If we set p = Id — p, where Id is the identity ma-
trix with the same dimensions as p, then

V.1d— p) = [V.1d) - [V, p] = ~[V. .
o(ld — p) = —0;p.

Therefore p is also solution to the raw Bloch equations, and in particular p;(t) > 0, which means
pilt) < 1.

3. Degenerate levels

In [4], levels are supposed to be degenerate, with a degeneracy order that depends on the levels. In
a fermion description levels cannot be degenerate since each level population is bounded by 1. This
would a priori be possible in a boson description. Let us first investigate this situation.

The same proof as above shows that if p is solution to the raw Bloch equations and the level pop-
ulations are initially bounded by the same constant (say d), then p;(t) < d. To derive a d-degenerate
raw Bloch model, it is therefore possible to consider electrons as bosons and impose a condition on
the initial data. But this solution is not very satisfactory from two points of view. First this cannot
be extended to the case when the degeneracy depends on the level, i.e. the ith level is d;-degenerate.
Second if we want to look at other contributions in the Hamiltonian, bosonic and fermionic commu-
tation rules do not lead to the same model.

The question is therefore: can we derive a degenerate model from fermion calculations with level
dependent degeneracies?

3.1. Deriving a degenerate model

Forielandn=1,...,d; we denote by ¢/" and ¢} the creation and annihilation operators associated
to the nth degenerate sub-level of level i. To ensure a coherent degenerate model we have to assume
the following commutation rules:
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{c?,c}“} = {c?*,c}”*} =0, {c?,c}’”} = 3ij0nm-

The energy ¢; does not depend on the sub-level index n. Since the levels are exactly the same (and not
just have the same energy), the associated wave functions are the same and therefore the dipolar mo-
ment entries only depend on the levels and not on the sub-level. We still denote them by M. The
Bloch equations governing pj™ = <c’f’”c’?> is the Full Degenerate Bloch (FDB) model

iho,pi" = (€ — €)™ + ReE(t Z Z (Mtkp/g Mkjp?kp)- (2)

kel p=1

We notice that natural quantities that arise in the right-hand side are

dy
p;jmzzpijtn’ Zplk
p=1

and we write the equation for pj*

4
lhafpz+:1hatzp:}m _6] anm+REE Z( lkzpk] _MkJZPm)
m=1

kel
= (6~ )P} +ReE(t) - > (Mupyy — Mydiply ).,
kel

where we have introduced

Py = ZZPU :

n=1 m=

and we obtain a closed set of equations for the density matrix p**, which is the Condensed Degenerate
Bloch (CDB) model

di
iho,py+ = iﬁathg+ = (6 —€) Zp"* + ReE(t Z ( ,kZpk] - Myd; prk >
n=1

kel
= (6 - g)p;" +ReE(D) > (Mudipy” — Mygdipji”).
kel

It is not exactly the same equation as for non-degenerate levels since the degeneracies occur in the
equation coefficients. If we set

++
Ojj = pl] y Nij = M,’j didj,
did;
we recover the usual Bloch equation
iha[O','j = (6,’ — 6])0',']‘ + ReE(t) . Z(N,-kakj — Nij',‘k). (3)

kel

This ensures in particular that ¢ (and therefore p**) defines a non-negative operator if this is valid at
the initial time.

3.2. Boundedness of degenerate levels

The diagonal elements are ¢; = p;*/d; and we would expect this model to ensure o;(t) <1 (i.e.
pit < d;) for all time. By the same arguments as above applied on Eq. (3), this is true if this holds
at the initial time. The problem is that this condition is not natural when dealing with the variables
of the FDB model (2). Indeed the diagonal entries of the CDB model are not the sum of the populations
of a given level but also include intra-level coherences. An other consequence of the non-negativeness



B. Bidégaray-Fesquet /Annals of Physics 325 (2010) 2090-2102 2095

of p is that |p;| < /p;p; (for the variables of Eq. (1), see [2]). If plugged in the definition of gy this

yields
d; d; d; d;
Tii <%Z P < g 2 D \/pimein <;<;\/pﬂ") (;\/p?"’) <d.

Since there can be configurations where ¢;; = d;, the only way to ensure that ¢;(0) < 1 is to impose that
intra-level coherences are initially zero. This certainly is valid in most experimental situations. Under
this vanishing condition, the CDB model preserves the natural property p;* < d;. In the opposite sit-
uation, it is not possible to preserve the property p;* < d,-2 which reverts to preserve ¢; < d; and is the
same problem as deriving a degenerate model based on a boson derivation of Bloch equations, the ini-
tial problem that we have eluded.

4. The case of two species of electrons
4.1. Conduction-valence notations

To be closer to the above computations, we will first present the model of two species of fermions
considering electron operators (and not electron and hole operators, as in [4]). For i € I (a set of inte-
gers, indexing conduction electrons), we keep the notations ¢} and ¢; for the creation and annihilation
operators associated to conduction electrons. For i € IY (indexing valence electrons), we will use the

non-conventional notation v,T and ; for the creation and annihilation operators associated to valence
electrons. Along with the already defined commutation rules for conduction electrons

{ci,¢} = {cj,c}} =0, {c,-,c}} = dyj,
we have the same rules for valence electrons
{vi, v} = {U,T, v}} =0, {Uh v}} = dij
and commutation rules between the two species
[ci, yj] = {cL yj} = [Ch 1/]7} = [CI., Uj} =0.
We now consider the Hamiltonians

HE = Z escier, H' = Z € v} v,

kel® kelv
1 i} L
HS =2 > (E(O)-Myca+E (0 Mjcjc),
(khe(Ic)?
HY == Y (E(t) - Myojv +E'(t) - M o] wy),
(kDe(r)?
H< = 3" (E(t)-Mcv +E (1) My ojcy).
(ke <1’

The density matrices we are interested in are intra-band densities

P = <C}Ci>, pij = <V}Ui>7

and inter-band densities

pz’cjv = <1};Ci>7 pxc = <C}Z/,‘>.
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We will not write the equations for p¥ but an appropriate definition of M ensures that

ptot _ ( pC pCV>
pCV* pv
is Hermitian.

We now have to compute the commutators of these matrices with the three above Hamiltonians.
This is done in Appendix C.

4.2. Towards a two-species Bloch equation

Gathering all the computations of Appendix C we obtain

ihd:p5 = (€5 — € ) p§ + ReE() - > (Miupfy —~ Migog,) +E(0) - Y M pls —E'(0)- > MY pit,

kel® kel” kel”

ihafp; = (6 — € >pu + ReE(t Z (M:kpk] MX;P}D ZM;Q oy —E(f) - ZMi‘l’*pk]

kel' kel® kel®

lhatp;" = (Elc — €; )pl} + ReE (Z Mlkpkj Z Mkj,l),k > (Z Mlk pk] Z Mk] plk)

kel® kel kel” kel
If we denote E° = diag({cf}idc>, E'= diag({e}’}idv> and
0 <E° +ReE(t)-M°  E(f)-MY )

E*(t) - M*" E' + ReE(t) -M"
we have the Bloch equation in Liouville form

ihatp“’t — [V(t),pmt} .

We can in a straightforward way apply our discussion about the degeneracy of levels to this two-spe-
cies context.

4.3. Electron-hole formulation

Since all valence electrons do not play a role in the interaction with conduction electrons, only
those who interact are described and not by their presence but their absence: a hole in the valence
band. We formulate anew the former notations and results, denoting for i € I' = I by d! = v; the cre-
ation operator of a hole (annihilation of the corresponding electron) and d; = 111‘ its annihilation oper-
ator. The hole energy is the opposite of energy of the corresponding electron € = —¢Y. Moreover,
did; =1 — did}] = 1 — v} v;, hence the Hamiltonian for holes is derived from the Hamiltonian for valence
electrons via

=S drln = - (1-dd) => -+ ehdid.
kel' kel kel ke
The first term is a constant that will not play any rdle in the commutators, hence we define
_ hd’rd
=2 Gyl
kel

The intra-band and inter-band density matrices involving holes are defined by p}} = (d}d,—) =
9 — p}; and pfjh = (djci) = p§’. The system for these variables read
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lharplc, = ( i 6 pl] + ReE Z (Mickpk] Mlgpﬂ() + E ZMICI?pQJC * Z ]Cl?xplcl?7

kel kel kel
ihoep} = (e — ) p + ReE(t) Z( 0% — Miaply) +E(D) - Mol —E'(0)- > M pff,
kel kel® kel®

ihafpi - (6 T € )pu +ReE ZMl’(pkj ZMkjplk

kel® kel

SoM (05— o) — Do Mg5 |

ke kel®

which has lost the Liouville structure. Here we have chosen to denote M}} = M;j and ijh = Mj but no
other choice would help to recover this structure. Mathematical results have to be obtained from the
electron-electron formulation. The electron-hole formulation should be only kept for simulation or
intuition in introducing new terms such as electron-hole recombination.

4.4. Vanishing intra-band coherences

In comparison with the model proposed in [4], a natural question is now whether we recover their
model by imposing vanishing intra-band coherences, i.e. p§; = pj; = 0 for i # j . In this reference, the
variables are n¢ = p§, n}‘ = pj‘-} and p;; = p,?jh (with a subtlety about coupling with forward and back-
ward propagating optical fields, which we do not separate here). With this set of variables and vanish-
ing intra-band coherences, the system (4) now reads

iharn,-e = ZMlk ka Z Cl?*pkw

ke kel
ihon} = E(t) - M'pj —E'() - > M by,
kel® kel®

ihop; = (e + €l )p], +ReE(t) - [ > Mipy — ZMEjpki +E(1) ~ijh<l —n' - n?).

kel® kel

The difference with the equations announced in [4] (apart from extra terms describing phenomena out
of the scope of the present paper) are the terms involving M¢ and M".

Instead of assuming that intra-band coherences are zero, we could assume that M® and M" are zero
(or, since this is certainly not true, that the Hamiltonians H** and H*" should not be taken into account
in the derivation), we also then do not recover the equations in [4] because of extra terms in the equa-
tion for p;;. Under this only assumption intra-band coherences are not zero, even if taken to be zero at
the initial time.

The equations in [4] have therefore lost the Liouville structure and are not suitable for the math-
ematical analysis. The model we propose is far better in this respect. If assuming zero intra-band
coherences is not coherent with the Liouville structure, we can easily have them very small by simply
assuming them to be initially zero and adding in their equations strong damping terms. As shown in
[2], positiveness results can still be obtained in this context. Besides the frequencies of E are chosen to
be close to the gap frequency, in order to match valence-conduction transition frequencies. The intra-
band coherences are hence not directly excited by such a wave.

5. Conclusion
We have derived raw Bloch equations for quantum boxes, i.e. two species of electrons. These equa-

tions have the Liouville form which allows to prove positiveness results. We have also discussed the
problem of level degeneracy and derived a condensed degenerate Bloch model in which diagonal en-
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tries remain bounded by the corresponding level degeneracy through time evolution, even when the
degeneracy order is level dependent.

Positiveness and boundedness results are necessary to prove similar properties when extra terms
are added in these raw equations. They are also required to prove sharp existence results when cou-
pled with a model for wave propagation (e.g. Maxwell equations) as already done for one species of
electrons [3].

Future work will consist in introducing with the same care extra contributions to the Hamiltonian
to model Coulomb effect, electron-phonon interactions, electron-hole recombination, etc. Our goal is
to obtain a model close to that of [4] but with anew possible other contributions, and full equations for
intra-band coherences.

Appendix A. Detail of one-species fermion computations

Let us first compute the commutator with the free electron Hamiltonian. We compute separately
the cases i # j and i = j but notice afterwards that results reads the same in both cases namely

Foogely P TP BN SN B S U
{[clei,H]) = Z ex(cleicier — cjerclc) = ecleicic — cleicie) = 0,
k
T AN | £t f o fode\ P\
<[cjci,H ]> = El-(cjc,-cici — CiCiCjCi> + Ej<CjCiCjCj — CjCjCjCi> = e,-<cjc,-> — ej<cjc,-> = (€ — ej)pij.

Now we compute the commutators with H':

2< [c}c,, HL] > ZM,, (cleicle — clecle) + E'( Z M;({clcicjc; — cjcicley)
1#i
Z Myi(cleicici — cieiciei) + E*(t) - Y My(clcicjc, — claclci)
k#i k#i
=E(t)- EM,»,<c3c,> t)- > My(cjci) —E(t)- > Mu(cici)
I#i 11 k##i
+E() > My(da),
k#i

<[c}c,-,HL}> ReE(t ZM,kpk, ReE(t ZMlkp,k,
2<[c}ci7HL]> ZM,,<CTC,CTC, c*c,cc,>+E* Z <cjcicfcjfc,*cjc}ci>

ZMkI<C cichej — c*c,c c,>+E* ZMk1<C ciclex— c*cchc,>

k=i
+E(t)-M; <cjc,-cjcj - c}cjc}ci> +E(t)- M}§<c}cicjc, - c}cjcjci>

t)-ZM,-,<c]T (1—clee— cTc,c*cl>+E* ZM},<C}C,-C,*CJ-—C}(1—c}cj)q>

[

(t)-ZMkj<c}'cichj—cL(l >+E* ZM,(,< (1—clei)er cjckc}ci>

k#i k#j

+E(t)-M,J<cT(1 clei)e—cl(1—cle)c i>+E*(t)-M}< 1(1-cle)c— c*(1—c;cj)ci>

t)-ZM,—,(c}q) ZM cjei) - ZM,Q i) +E(t ZM,“<C ck>

I1#j 1#i ki k#j

+E(t)-M,-j<c}'cj—c'i"c,->+E*( )- M‘<c G- c‘c,—>,

(i 1) = ReBie)- 3~ Mupy, ~ReE(0) > Moy
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Appendix B. Boson computations

If electrons are considered as bosons, or in other words without Pauli exception rule, the definitions
for the operators, Hamiltonian and density matrix are the same as for fermions, but the computations
differ because of commutation rules between creation and annihilation operators which are now

wol=[dc] =0, [a] =

We still have ([c[c;,H]) = 0. We first compute the commutators of the density matrix elements
with the electron Hamiltonian

<[c}ci,He] > =y 61<<CJTC1C/T<CI< - C}(ckc}c,-> = e,—<c}c,—c}c,- - c}c,—c}c,—> + 6j<cjc,-c}cj - c}cjc}ci>
k

= e,< (1 +cle)ei — c}cic}ci> + ej<cjcic;cj —da+ cjcj)c,»> = e,»<c}ci> - ej<cjci>
= (€ — )Py

Then we compute the commutators of the density matrix elements with the laser Hamiltonian

2<{c}ci,HL}> ZM,, cleicle —clecie) +E(t ZM,, (cleicjci—cjeiclci)

I#i =i
()Y My(cleicici—cjeicici) +E (1)) My (cleic/c - cjcc]ci)
k#i k#i
(6)- 3 Mu(c) (1 +cler)er—clacie) +E (6)- Y My(cicicjei—c}(1+clci)ei)
I#i =i
ZMk, {cleickei—ch(1+cle)e) +E( ZM {cl(1+cle)ex —cleclci)
k##i ki

=E(t)- > My(clc)) —E"(t)- Y M;{clci) —E(t)- > My{chei) +E*(t)- > My (clc)
I#i I#i k#i k#i

t)- Z Micpy; —E'(£)- ZMkipik ZMklpxk +E( ZMszIa

k##i k#i ki k#i

(lcieiH]) = Reke )+ 2 Mupy —ReE(D): 3 Mipy.
2

< {c}ci,HL} > ZM,I<CTC,CTC[ CTC[CTC,> +E*(t) -ZM}‘,<C}C,-C}CJ- fc}cjc}c,»>

I1#j
ZM,(,<C ciclci— CTCJC C,> +E(t ZM <C;CiC:ka —cjckcjc,->
k#i k#j

+E(t) -Mij<cTcicch —cchcTci> +E(t)- M*<c*c cle—clec cl>
X:M,,<cT (1+cle)e—c| clcTc,> +E(t Z <c}cicl ¢—ci(1 +cjcj)c,»>

1% I1#i
ZMk,<c cichei—cl (1 +c‘c,)c,> +E( ZM,“<CT (1+clci)cx cfckcjc,->
+E(t) -Ml-j<cj (1 +CTC,-)C]- —c +cch)c,-> +E*( ) -M-*-<CT(1 +cTci)cj —CT<1 +cch> ci>
S T SR R W
I I#i k=]

+E(t)'Mij<C;Cj*CICi>+E*(t)'M}§<C;CJ*C,TC1‘ =E(t 'ZMikij* £)-> Mypy
= i

ZMkJsz+E ZM’I‘pkj+E( )M (0 — pi) +E"(t) - My(0;5 — Py)

k=i k#j
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([gjeiH]) = ReEt ZM,kp,q ReE(t ZMk,p,k

Although calculations are different, we find the same results as in the boson case. If we consider the
Pauli exception rule or not we obtain the same raw Bloch equations.

Appendix C. Detail of two-species fermion computations
Because conduction and valence operators commute, we clearly have
(et = o) = (1) = (st <o
Besides we have already computed in the one-species case

(gentr]) = (=)ot {[ott])= (et =)o
<[C;C17HLC]> =ReE(t)-) ( Pl — ijpick)7

kel®
<[v}vi7HLv]> =ReE(t) - ) (M;,kpxj‘ - ij}/k)'
kel¥

We now compute

<[v}c,~,H“}> = Z e§<z/;cic,tck - c}(ckv}c,-> = e§<v}c,-c}c,- —cle; z)}c,-> = e§<v}ci> = €py,

kel®

AoV \ V/ et gt P N I A S D s S P 2y A D P U q 1
<[vjc,,H]>_Zek<vjc,vkvk v,(vkvjc,>_ej<vjc,vj7/, vjv]vjc,>_ 6j<7/jC,>— €p5.
kelV

These computations are valid also for i = j, which is a case which has to be treated apart for the follow-
ing computations:

<[cjci,HLc"]> =E()- Z w(clacko — clvcle) +E(t) - Z o (claivia— vjecle)

(ke x1¥ (ke xI’
=E(t)- Z 3 (cleiclv — clucle) + E(t) - Z o (cleivje — viecle)
lel¥ lel¥
- E(t)-ZM (clv)) — ZMC"* vjci)
el lelV
=E(t)- Y _M{'pic —E'(t)- Y _M"py,
lel’ lel¥
<[c}ci,Hch]> =E(t)- Z i‘l’<cjcic£vl - cf(vlc;ci> FE(D)- Z CV*<CTCI Vi — v,ckCtC,>
(ke xI’ (kDelExI?
£y My <c‘c,c1 v —c vlc‘cl> +E(t) Y M <c cicj v — c*v,crcl>
lelY lel¥
+E(t)- [z: C"*<c*c, vici — v{c,-c}c,-> +E(t)- lz: C"*<c‘cI vi¢ — vjgc] ci>
eI’ clY
_ i . s /ot
=E(t) - lz: iclv<cj 7/1> -E(t)- lz: i (vci) =E(t)- 12: i Pif
elV el’ el¥

* CV*
_E Z il p117

lel¥
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<[vj vi,HLCV]> =E(t)- > My (dvciy - cuov)
(kl)elcxl"
+E(t)- Y My (vvivja - vjav)v)
(keI xI"
ZM (vivichv; — chvivlivy)

keIC
+E() Y My (vjviv)c - viavv)
kel®
t)- > M(cvi)
kel®
+ E* Z MCV*<UICk>
kel®
=—E(t)- Y Mgpl +E(t)- > M pf,
kel kel® )
<[v}vi,Hch]> = Z My zﬂv,ckv, cl Ll v)
(ke 1’

+E(t) - Z C"*<zﬂy,v,ck v}ckv}vi>

(keI 1"

Z M <v]' vichv — ¢y 21; v,->

kel®
t)- ZME/<UJ vichv; — cLvvf v,—>
kel®
+E() ) C"*<1ﬂ1/l1/’ck - zﬂckzﬂvl>
kel®
+E(t)- Z C"*<v*1/11/‘ck - v‘ckzﬂv,>
kel®
= —E(t)- > My (o) +E'(©)- > My (v
kel® kel®
= —E(t)- > M pi +E'(t)- > My pf.
kel® kel®

Once more by different computations we obtain the same result for both cases i =j and i # j. Now

2< MQ,HLCD =E(t)- Z Mi,<vjc,«c£c, —cle ZJJTC,»> +E(1) - Z §7<vjcicfc,c - c}ckvjci>

(ke (khe(I)?
ZM,,<1/ cicle — c*c,zﬁc,> +E(t ZM <zﬁc,ckc, cici v}c,»>
lel® kel®
+E(1)-) fl*<v;cic}ci —de v}c,-> +E(1)-) §j<v}cicjck —cley v}c,->
leI* kel®
=2ReE(t) - > M <yjc,> = 2ReE(t) - > Mp,
lel® kel®
L .
2< [z};c,-,H "D =E(t)- ) M}j,<v}c,-zx£v, - v;(vlv}c,v>
(ke(y?
+E(t) - Z M) <v}civ;vk - v}vkv}'c,»>
(kDe(Iv)?
Z <zﬁc, vio — ! vlzﬁc,> +E(t ZMk]<v vy — vy u}ci>
lelY

* Vi [ T i), .ol e. * P i P
+E (t)-z i <vjc,1/, v — v v,vjc,>+E (t)-z ,q<v vl v — vjvkvjc,>

lelY kel”

= —2ReE(t) - Y My (vjci) = —2ReE(t) - Y Myp§.

kel” kel”
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Last
<[UJTQ7HLC"]> =E@0)- Y i}’<v}ciciv, - ch,v}ci>
(ke xI¥
+E@0)- Y C"*<z/ Civ)Ci — v}ckvjci>
(k)el xI¥
_ o/ et fy ot
=E(t)- > _Mj <vjcici v - v,vjc,->
lelY
oot f) ot
+E(t)- > My <v cichy; — chjvjc,»>
kel®
—E(t)- ij"<z/]Tc,-c,T v —cly v}ci>
+E(t Z MC"*<1/ civjci — vjci v}c,->
lel¥
* CV* T T T T
+E*(t)- Z b <v]!civjck - vjckvjci>
kel
v [t teot
—E(t) - M; <1/jci7/jc,» - v]!civjci>
_ /i 1
—E(t)- z 7 (vjo - ducler)
lel
t) . Z Mi}’<5,k1/; vj — CLC,'>
kel®
—E(t) ~M§"<vj v — C}c,->
v/
-S> M <vj 1/,> £)- > Mg{cic)
lelY kel®
(4% (4%
=E(t) - (ZM P — > Mg pfi
kel" kel®
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