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Abstract. The stability of five finite difference–time domain (FD–TD) schemes coupling Maxwell
equations to Debye or Lorentz models has been analyzed in [P. Petropoulos, Stability and phase error
analysis of FD–TD in dispersive dielectrics, IEEE Trans. Antennas Propag., 42 (1994), pp. 62–69],
where numerical evidence for specific media have been used. We use von Neumann analysis to give
necessary and sufficient stability conditions for these schemes for any medium, in accordance with
the partial results of [P. Petropoulos, Stability and phase error analysis of FD–TD in dispersive di-
electrics, IEEE Trans. Antennas Propag., 42 (1994), pp. 62–69]. To make this approach tractable for
two-dimensional and three-dimensional models, we have developed a computer algebra environment
which has a wider range of applicability.
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1. Introduction. To describe the propagation of an electromagnetic wave
through a dispersive medium, some extensions of Maxwell equations are used. They
involve time differential equations which account for the constitutive laws of the ma-
terial that link the displacement D to the electric field E or, equivalently, the polar-
ization P to E. We focus on two of these models (the Debye and Lorentz models)
which are addressed in [10] in view of specific applications to the interaction of an
electromagnetic wave with a human body. In [10], specific values for the physical and
numerical constants are chosen and numeric calculations are performed to conclude
stability or not. A survey of numerical couplings between Maxwell equations and
various matter models may be found in [16], where stability conditions are given for
Maxwell–Debye models, but there is no proof for some of them, and Maxwell–Lorentz
formulae are considered too complex to be studied. In contrast with these two refer-
ences, we are able to treat any medium which is described by these models. To this
end we use von Neumann analysis.

1.1. Maxwell–Debye and Maxwell–Lorentz models. In our context (no
magnetization) we use different formulations of Maxwell equations where Faraday
equations always read

(1.1) ∂tB(t,x) = − curl E(t,x),

where x ∈ R
N . On the contrary, the Ampère equation may be cast using variables B

and D:

(1.2a) ∂tD(t,x) =
1

μ0
curl B(t,x);
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2552 BRIGITTE BIDÉGARAY-FESQUET

or the polarization P:

(1.2b) ε0ε∞∂tE(t,x) =
1

μ0
curl B(t,x) − ∂tP(t,x),

where P(t,x) = D(t,x) − ε0ε∞E(t,x) and ε∞ is the relative infinite frequency per-
mittivity. Denoting by J the time derivative of P, we also have

(1.2c) ε0ε∞∂tE(t,x) =
1

μ0
curl B(t,x) − J(t,x).

The system of Faraday and Ampère equations is closed by a linear constitutive law,

(1.3) D(t,x) = ε0ε∞E(t,x) + ε0

∫ t

−∞
E(t− τ,x)χ(τ)dτ,

where χ is the linear susceptibility. The discretization of the integral expression (1.3)
leads to recursive schemes (see, e.g., [7], [17]). However, differentiating (1.3) leads
to a time differential equation for D which depends on the specific form of χ. For a
Debye medium,

(1.4a) tr∂tD + D = trε0ε∞∂tE + ε0εsE,

where tr > 0 is the relaxation time and εs ≥ ε∞ is the relative static permittivity. An
equivalent form of (1.4a) using variable P is

(1.4b) tr∂tP + P = ε0(εs − ε∞)E,

which can be coupled with the Ampère equation cast as (1.2b). For a Lorentz medium
with one resonant frequency ω1, we likewise have

(1.5a) ∂2
t D + ν∂tD + ω2

1D = ε0ε∞∂2
t E + ε0ε∞ν∂tE + ε0εsω

2
1E,

where ν ≥ 0 is a damping coefficient, or, equivalently,

(1.5b) ∂2
t P + ν∂tP + ω2

1P = ε0(εs − ε∞)ω2
1E.

1.2. Yee-based numerical schemes. A classical and very efficient way to com-
pute the Maxwell equations is the Yee scheme [14]. We restrict our study to existing
Yee-based schemes. In contrast to the recursive schemes, we are interested in direct
integration schemes which are based on the finite difference–time domain (FD–TD)
discretization of (1.4a) to (1.5b) (see [5], [4], [15]). Other space discretizations may be
found in the literature in the context of Maxwell–Debye and Maxwell–Lorentz equa-
tions; see, e.g., [3] for pseudo-spectral schemes or [12] for finite element–time domain
(FE–TD) schemes.

The Yee scheme consists of discretizing E and B on staggered grids in space
and time. This allows one to use only centered discrete differential operators. We
denote by h the space step (supposed here to be the same in all directions in the case
of multi-dimensional equations) and by k the time step. In space dimension 1, we
consider only the dependence in the space variable z; classically, two polarizations for
the field may be decoupled. For example, the transverse electric polarization involves
only E ≡ Ex and B ≡ By. The discretized variables are En

j � E(nk, jh) (and similar
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notations for D ≡ Dx) and B
n+ 1

2

j+ 1
2

� B((n + 1
2 )k, (j + 1

2 )h), and the Yee scheme for

the Maxwell equation reads

(1.6)
B

n+ 1
2

j+ 1
2

−B
n− 1

2

j+ 1
2

k
= −

En
j+1 − En

j

h
,

coupled with one of the following:

Dn+1
j −Dn

j

k
= −μ0

B
n+ 1

2

j+ 1
2

−B
n+ 1

2

j− 1
2

h
,(1.7a)

ε0ε∞
En+1

j − En
j

k
= −μ0

B
n+ 1

2

j+ 1
2

−B
n+ 1

2

j− 1
2

h
−

Pn+1
j − Pn

j

k
,(1.7b)

ε0ε∞
En+1

j − En
j

k
= −μ0

B
n+ 1

2

j+ 1
2

−B
n+ 1

2

j− 1
2

h
− J

n+ 1
2

j .(1.7c)

Usual Maxwell equations consist of taking J
n+ 1

2
j ≡ 0 in (1.7c) or, equivalently,

Dn
j = ε0ε∞En

j in (1.7a) and lead to a stable second order scheme under a Courant–
Friedrichs–Lewy (CFL) stability condition. Namely, if c∞ = 1/

√
ε0ε∞μ0 denotes the

infinite frequency light speed, then the CFL condition reads c∞k ≤ h/
√
N .

1.3. Scheme naming. Since we deal with many schemes, we have to distinguish
between them and name them. Numbers or names of first contributor(s) are not very
meaningful, and we prefer here to have a descriptive name. Our description gives
both the variables used (e.g., coupling (1.2a) and (1.4a) uses variables B, E, and D)
and the location of discretized variables. Space occurs only as a parameter in Debye
or Lorentz equations. To avoid interpolation, the reasonable choice is to always locate
variables D, P, and J on the same space grid as E. The different schemes therefore
differ only in the time location of variables: in (1.7a) and (1.7b) integer times are
chosen; in (1.7c) half-integer times are chosen.

Our naming convention is the following: we separate variables at half-integer times
from variables at integer times by an underscore sign, e.g., “B ED” when coupling
(1.6) and (1.7a). In Table 1.1 we give the correspondence between the article where the
schemes have been derived first, the terminology of the survey [16] and our description.

Table 1.1

Correspondence between different namings.

Contributor(s) Name in [16] Description Name in [16] Description

Debye Lorentz

Joseph et al. [4] D-DIM 3 B ED L-DIM 3 B ED
Kashiwa et al. [5] D-DIM 2 B EP L-DIM 2 B EPJ

Young [15] D-DIM 1 BP E L-DIM 1 BJ EP

1.4. Outline. The von Neumann stability analysis is recalled in section 2. We
also describe the sketch of our proofs which is common for all of the schemes. In sec-
tion 3, three one-dimensional direct integration schemes for Debye media are presented
and analyzed, carefully pointing out the physical properties needed to ensure stability
and the specific cases which have to be handled separately. Numerical applications to
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physical media are also given. The same point of view is carried out for Lorentz media
in section 4. To address two- and three-dimensional schemes which have too many
variables to compute by hand, we have developed a computer algebra environment
based on Maple, which is described in section 5. Two- and three dimensional results
are given in section 6.

2. Principles of the von Neumann analysis. The von Neumann analysis
allows one to localize roots of certain classes of polynomials, which proves to be
crucial here. We recall the main principles of this technique. Details and proofs of
theorems may be found in [13].

2.1. Schur and simple von Neumann polynomials. We define two families
of polynomials: Schur polynomials and simple von Neumann polynomials.

Definition 2.1. A polynomial is a Schur polynomial if all its roots, r, satisfy
|r| < 1.

Definition 2.2. A polynomial is a simple von Neumann polynomial if all its
roots, r, lie on the unit disk (|r| ≤ 1) and its roots on the unit circle are simple roots.

If a polynomial has a high degree or sophisticated coefficients, it may be difficult
to locate its roots. However, there is a way to split this difficult problem into many
simpler ones. For this, we construct a sequence of polynomials of decreasing degree.
Let φ be written as

φ(z) = c0 + c1z + · · · + cpz
p,

where c0, c1, . . . , cp ∈ C and cp �= 0. We define its conjugate polynomial φ∗ by

φ∗(z) = c∗p + c∗p−1z + · · · + c∗0z
p.

Given a polynomial φ0, we may define a sequence of polynomials

φm+1(z) =
φ∗
m(0)φm(z) − φm(0)φ∗

m(z)

z
.

It is clear that degφm+1 < degφm, if φm �≡ 0.
Theorem 2.3. A polynomial φm is a Schur polynomial of exact degree d if and

only if φm+1 is a Schur polynomial of exact degree d− 1 and |φm(0)| ≤ |φ∗
m(0)|.

Theorem 2.4. A polynomial φm is a simple von Neumann polynomial if and
only if

• φm+1 is a simple von Neumann polynomial and |φm(0)| ≤ |φ∗
m(0)|

or
• φm+1 is identically zero and φ′

m is a Schur polynomial.
The main ingredient in the proof of both theorems is the Rouché theorem (see

[9], [13]). To analyze φ0, at each step m, conditions should be checked (leading
coefficient is nonzero, |φm(0)| ≤ |φ∗

m(0)|, . . . ) until a definitive negative answer arises
or the degree is 1.

2.2. Stability analysis. The models we deal with are linear models. They may
therefore be analyzed in the frequency domain. We can thus assume that the scheme
handles a single vector-valued variable Un

j with spatial dependence

Un
j = Un exp(iξ · j),

where ξ and j ∈ R
N , N = 1, 2, 3. The amplification matrix G is the matrix such that

Un+1 = GUn. We assume that G does not depend on time or on h and k separately
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but only on the ratio h/k. Let φ0 be the characteristic polynomial of G; then we have
a sufficient stability condition.

Theorem 2.5. A sufficient stability condition is that φ0 be a simple von Neumann
polynomial.

This condition is not necessary. A scheme is stable if and only if the sequence
(Un)n∈N is bounded. Since we assume that G does not depend on time, then Un =
GnU0 and stability is also the boundedness of (Gn)n∈N. If the eigenvalues of G,
i.e., the roots r of φ0, lie inside the unit circle (|r| < 1), then limn→∞ Gn = 0
and the sequence is bounded. If any root lies outside the unit circle, then Gn grows
exponentially and the scheme is unstable. The intermediate case when some roots may
be on the unit circle (and the others inside) may lead to different situations. Consider,
for example, the case when G is the identity. Then Un = U0 and the scheme is clearly
stable. However, there are other examples of matrices with multiple roots on the unit
circle that lead either to bounded or unbounded sequences (Gn)n∈N. It is clearly a
property of the amplification matrix and not of its characteristic polynomial. If the
dimension of eigensubspace associated with a root is equal to its multiplicity, then Gn

is bounded (an example for this is the identity: Idn = Id remains bounded). In the
opposite case Gn grows linearly. A paradigm for this is

(
1 1
0 1

)n

=

(
1 n
0 1

)
,

which grows linearly with iterations, and only one eigenvector can be found. Such
cases (which occur for our schemes) should therefore be handled specifically.

We will stick here to locating roots in the unit circle. Another way has already
been developed in, e.g., [6], [11]. It consists of using a conformal map to locate roots
in the left half-plane. This changes the problem in a Routh–Hurwitz problem, which
reads as a list of sufficient conditions for the characteristic polynomial to be von
Neumann (|r| ≤ 1). This has been implemented in the fide reduce package.

2.3. Sketch of proofs. In the next sections, we will not give the proofs, but only
list in tables the arguments used for each situation. We describe here the general plan
and give names to specific final arguments used. The detailed proofs may be found
in [1] for space dimensions 1 and 2. The three-dimensional case has been performed
via computer algebra simulations [2].

Usually the coupled system is given in an implicit form. The first step consists
of writing it in an explicit form. This yields the amplification matrix G. Then
we compute its characteristic polynomial φ0. In order to perform a von Neumann
analysis, we compute the series (φm). In the general case, under the assumption that
the stability condition cannot be better than Yee’s, we can apply either Theorem 2.3
(Theorem 2.3 argument) or Theorem 2.4 (Theorem 2.4 argument), checking estimates
at each level until φm is a one degree polynomial. Special cases arise when εs = ε∞,
sin(ξ/2) = 0 or ±1, and sometimes for limit values of physical coefficients. In these
cases, different points of view have to be considered:

• Theorem 2.4 has to be used instead of Theorem 2.3.
• Some eigenvalues lie on the unit circle (mostly ±1 or ±i). Polynomial φ0

is at best a simple von Neumann polynomial and we have to study the
other eigenvalues which are roots of a lower degree polynomial (subpolynomial
argument).

• Some eigenvalues lie on the unit circle and are not simple. Besides the study
of the other eigenvalues (subpolynomial argument), we have to compare the
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multiplicity of the root to the number of eigenvectors found. If they are equal
(stable case), then this is usually checked directly on the form of matrix
G (G form argument). The unstable case necessitates the computation of
eigenvectors (eigenvectors argument).

If εs = ε∞, then Maxwell equations decouple from the other equations. We study
this limit as a hint of how the numerical scheme may behave when εs is very close to
ε∞. For the same reason, we will study the undamped oscillator (ν = 0) for Lorentz
media.

3. Debye media. We address successively the three discretizations of Maxwell–
Debye equations mentioned in Table 1.1.

3.1. Debye B ED scheme. In [4], Joseph, Hagness, and Taflove close sys-
tem (1.6)–(1.7a) by a discretization for (1.4a), namely

ε0ε∞tr
En+1

j − En
j

k
+ ε0εs

En+1
j + En

j

2
= tr

Dn+1
j −Dn

j

k
+

Dn+1
j + Dn

j

2
.

The resulting system may be cast in an explicit form which handles the variable (t

denotes transposition)

Un
j =

(
c∞B

n− 1
2

j+ 1
2

, En
j , D

n
j /ε0ε∞

)t

,

and the amplification matrix G reads

⎛
⎜⎜⎝

1 −λ(eiξ − 1) 0

− (1+δ)λ(1−e−iξ)
1+δηs

(1−δηs)+(1+δ)λ2(eiξ−2+e−iξ)
1+δηs

2δ
1+δηs

−λ(1 − e−iξ) λ2(eiξ − 2 + e−iξ) 1

⎞
⎟⎟⎠,

where λ = c∞k/h is the CFL constant, δ = k/2tr > 0 is the normalized time step,
and ηs = εs/ε∞ ≥ 1 denotes the normalized static permittivity. Moreover, we define
q = −λ2(eiξ−2+e−iξ) = 4λ2 sin2(ξ/2). The characteristic polynomial is proportional
to

φ0(Z) = [1 + δηs]Z
3 − [3 + δηs − (1 + δ)q]Z2 + [3 − δηs − (1 − δ)q]Z − [1 − δηs].

The proof arguments are summed up in Table 3.1, and we deduce that the stability
condition is q ≤ 4 if εs > ε∞ and q < 4 if εs = ε∞.

Table 3.1

Proof arguments and results for the Debye B ED and B EP schemes.

q εs Argument Result

]0, 4[ > ε∞ Theorem 2.3 stable
]0, 4[ = ε∞ Theorem 2.4 stable

0 ≥ ε∞ G form stable
4 > ε∞ Theorem 2.4 stable
4 = ε∞ eigenvectors unstable
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3.2. Debye B EP scheme. In [5], Kashiwa, Yoshida, and Fukai close sys-
tem (1.6)–(1.7b) by a discretization for (1.4b):

tr
Pn+1
j − Pn

j

k
= −

Pn+1
j + Pn

j

2
+ ε0(εs − ε∞)

En+1
j + En

j

2
.

The system now handles the variable

Un
j =

(
c∞B

n− 1
2

j+ 1
2

, En
j , P

n
j /ε0ε∞

)t

,

the amplification matrix G reads

⎛
⎜⎜⎜⎝

1 −λ(eiξ − 1) 0

− (1+δ)λ(1−e−iξ)
1+δηs

(1−δηs)+(1+δ)λ2(eiξ−2+e−iξ)+2δ
1+δηs

2δ
1+δηs

− δ(ηs−1)λ(1−e−iξ)
1+δηs

(λ2(eiξ−2+e−iξ)+2)(ηs−1)δ
1+δηs

1+ηsδ−2δ
1+δηs

⎞
⎟⎟⎟⎠,

and the characteristic polynomial is proportional to the same polynomial as for the
B ED scheme. All proofs are the same except those on matrix G directly, but even in
these cases the conclusions are the same. Table 3.1 is also valid for the B EP scheme.

3.3. Debye BP E scheme. In [15], Young chooses to close system (1.6)–(1.7c)
by two discretizations for (1.4b), namely

tr
P

n+ 1
2

j − P
n− 1

2
j

k
= −

P
n+ 1

2
j + P

n− 1
2

j

2
+ ε0(εs − ε∞)En

j ,

trJ
n+ 1

2
j = −P

n+ 1
2

j + ε0(εs − ε∞)
En+1

j + En
j

2
.

Although J
n+ 1

2
j is used for the computations, this not a genuine variable for the full

system which handles the variable

Un
j =

(
c∞B

n− 1
2

j+ 1
2

, En
j , P

n− 1
2

j /ε0ε∞

)t

,

and the amplification matrix G reads

⎛
⎜⎜⎜⎝

1 −λ(eiξ − 1) 0

−λ(1−e−iξ)
1+δα

1+δ−δα+3δ2α−(1+δ)q
(1+δ)(1+δα)

1−δ
1+δ

2δ
1+δα

0 2δα
1+δ

1−δ
1+δ

⎞
⎟⎟⎟⎠

with the same notations as above and α = ηs − 1 ≥ 0. The characteristic polynomial
is proportional to

φ0(Z) = [(1 + δα)(1 + δ)]Z3 − [3 + δ + δα + 3δ2α− (1 + δ)q]Z2

+ [3 − δ − δα + 3δ2α− (1 − δ)q]Z − [(1 − δα)(1 − δ)].

Table 3.2 gathers the different arguments used. The stability condition is q ≤ 4 and
δ ≤ 1 if εs > ε∞ and q < 4 if εs = ε∞.
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Table 3.2

Proof arguments and results for the Debye BP E scheme.

q εs δ Argument Result

]0, 4] > ε∞ ]0, 1[ Theorem 2.3 stable
]0, 4[ = ε∞ > 0 Theorem 2.4 stable

0 ≥ ε∞ > 0 G form stable
]0, 4] > ε∞ 1 subpolynomial stable

4 = ε∞ > 0 eigenvectors unstable

3.4. Conclusion for one-dimensional Debye schemes. If εs > ε∞, then the
pure CFL condition q ≤ 4 is the same for both models. It is exactly the condition
for Maxwell equations. However, the BP E scheme necessitates another condition,
δ ≤ 1, which corresponds to a sufficient discretization of Debye equation (1.4b). Even
if we are interested here in stability properties, such conditions are to be considered
to ensure equations to be correctly taken into account. Results are given in physical
variables in Table 3.3.

Table 3.3

Stability of Debye models for εs > ε∞ and εs = ε∞.

Scheme Dimension 1 Dimension 1

εs > ε∞ εs = ε∞

B ED or B EP q ≤ 4 k ≤ h/c∞ q < 4 k < h/c∞
BP E q ≤ 4, δ ≤ 1 k ≤ min(h/c∞, 2tr) q < 4 k < h/c∞

To compare conditions on q and δ, let us consider a simple physical case. We
assume that a matter with ε∞ = 1 (and thus c∞ � 3×108 m s−1) is lighted by a wave
of, say, wavelength 1 cm. The space step h has to be smaller than this wavelength,
and therefore q < 4 reads at least k < 1

3 × 10−10 s. In a Debye medium, relaxation
times tr are of the order of a picosecond (or even a nanosecond) which maybe of the
same order than the previous bound. A typical example is water, for which ε∞ = 1.8,
εs = 81.0, and tr = 9.4× 10−12 s [17]. Condition k ≤ 2tr comes to k ≤ 1.88× 10−11 s.
Condition q ≤ 4 yields a similar condition if h = 4.2×10−3 m. For a very coarse space
grid and with the BP E scheme, the CFL condition comes from k ≤ 2tr; otherwise,
for a fine grid and/or B ED or B EP schemes, it comes from q ≤ 4.

A quite different material is, for example, the 0.25-dB loaded foam given in [8]
for which ε∞ = 1.01, εs = 1.16, and tr = 6.497× 10−10 s. Condition k ≤ 2tr comes to
k ≤ 1.3×10−9 s and q ≤ 4 yields a similar condition if h = 3.9×10−1 m. In practice h
has to be smaller to describe a wave with 1 cm wavelength, and the stability condition
for this foam is q < 4 for both schemes.

In conclusion, the stability condition may depend on the material in classical
applications, leading us to prefer the B ED scheme, when tr is small (picosecond).
The result announced in [10] was q ≤ 4 for the B ED scheme and for water, which is
consistent with our result.

4. Lorentz media. We now address the three discretizations of Maxwell–Lorentz
equations mentioned in Table 1.1.

Each of these schemes reads the same in the undamped (ν = 0) or damped (ν > 0)
cases. However, the analysis will differ greatly since φ1 ≡ 0 for all the schemes in the
undamped case.
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4.1. Lorentz B ED scheme. In [4], system (1.6)–(1.7a) is closed by a dis-
cretization for (1.5a), namely

ε0ε∞
En+1

j − 2En
j + En−1

j

k2
+ νε0ε∞

En+1
j − En−1

j

2k
+ ε0εsω

2
1

En+1
j + En−1

j

2

=
Dn+1

j − 2Dn
j + Dn−1

j

k2
+ ν

Dn+1
j −Dn−1

j

2k
+ ω2

1

Dn+1
j + Dn−1

j

2
.

The explicit version of the subsequent system does not explicitly use the value of
Dn−1

j , and therefore this system handles the variable

Un
j =

(
c∞B

n− 1
2

j+ 1
2

, En
j , E

n−1
j , Dn

j /ε0ε∞

)t

.

The amplification matrix G reads

⎛
⎜⎜⎜⎜⎜⎝

1 −λ(eiξ − 1) 0 0

− 2δλ(1−e−iξ)
1+δ+ωηs

2−q(1+δ+ω)
1+δ+ωηs

1−δ+ωηs

1+δ+ωηs

2ω
1+δ+ωηs

0 1 0 0

−λ(1 − e−iξ) −q 0 1

⎞
⎟⎟⎟⎟⎟⎠

,

where δ = νk/2 ≥ 0 is the new normalized time step, and ω = ω2
1k

2/2 > 0 denotes the
normalized squared frequency. The other notations used for the Debye model remain
valid. The characteristic polynomial is proportional to

φ0(Z) = [1 + δ + ωηs]Z
4 − [4 + 2δ + 2ωηs − (1 + δ + ω)q]Z3

+ [6 + 2ωηs − 2q]Z2 − [4 − 2δ + 2ωηs − (1 − δ + ω)q]Z + [1 − δ + ωηs].

The proofs are summed up in Table 4.1 for the damped and the undamped case.

Table 4.1

Proof arguments and results for the Lorentz B ED scheme.

q εs Argument Result Argument Result

damped: ν > 0 undamped: ν = 0

]0, 2[ > ε∞ Theorem 2.3 stable Theorem 2.4 stable
]0, 2] = ε∞ Theorem 2.4 stable subpolynomial unstable

0 ≥ ε∞ G form stable G form stable
2 ≥ ε∞ subpolynomial stable subpolynomial stable

In the damped case the stability condition is q ≤ 2 for all εs ≥ ε∞. The εs = ε∞
undamped case needs some explanation. For q ∈]0, 2], φ0 may be cast as the product
of two second order polynomials. The roots are two couples of conjugate complex
roots of modulus 1. For the specific value q = 2ω/(1 + ω), which always lies in the
interval ]0, 2], the two couples degenerate in one double couple with only two eigen-
directions, which is the unstable case. To avoid this instability one may think to
bound q and say that the scheme is stable provided q ∈ [0, 2ω/(1 + ω)[. But if we
come back to the original variables, we see that this is not an upper bound on k but
rather a lower bound on h, which we surely do not want. It is therefore better to
avoid using the B ED scheme in this very specific case, εs = ε∞ and ν = 0. A better
scheme for this case is provided next.
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4.2. Lorentz B EPJ scheme. In [5], Kashiwa, Yoshida, and Fukai close sys-
tem (1.6)–(1.7b) by a discretization for (1.5b), namely

Pn+1
j − Pn

j

k
=

Jn+1
j + Jn

j

2
,

Jn+1
j − Jn

j

k
= −ν

Jn+1
j + Jn

j

2
+ ω2

1(εs − ε∞)ε0

En+1
j + En

j

2
− ω2

1

Pn+1
j + Pn

j

2
.

The explicit version of the system obtained handles the variable

Un
j =

(
c∞B

n− 1
2

j+ 1
2

, En
j , P

n
j /ε0ε∞, kJn

j /ε0ε∞

)t

,

and the amplification matrix G reads

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −λ(eiξ − 1) 0 0

−λ(1−e−iξ)(Δ− 1
2ωα)

Δ

Δ−qΔ−(2−q) 1
2ωα

Δ
ω
Δ

−1
Δ

−λ(1−e−iξ) 1
2ωα

Δ

(2−q) 1
2ωα

Δ
Δ−ω

Δ
1
Δ

−λ(1−e−iξ)ωα
Δ

(2−q)ωα
Δ

−2ω
Δ

2−Δ
Δ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where together with the previously defined notations, Δ = 1 + δ + ωηs/2. The char-
acteristic polynomial is proportional to

φ0(Z) =

[
1 + δ +

1

2
ωηs

]
Z4 −

[
4 + 2δ −

(
1 + δ +

1

2
ω

)
q

]
Z3

+ [6 − ωηs + (ω − 2)q]Z2 −
[
4 − 2δ −

(
1 − δ +

1

2
ω

)
q

]
Z +

[
1 − δ +

1

2
ωηs

]
.

The proofs are summed up in Table 4.2. Both in the damped and undamped cases,
the stability condition is q < 4, which is much better than the previous scheme since
we gain a factor 2 on k, and we have no problem when εs = ε∞ and ν = 0 as for the
previous model.

Table 4.2

Proof arguments and results for the Lorentz B EPJ scheme.

q εs Argument Result Argument Result

damped: ν > 0 undamped: ν = 0

]0, 4[ > ε∞ Theorem 2.3 stable Theorem 2.4 stable
]0, 4[ = ε∞ Theorem 2.4 stable Theorem 2.4 stable

0 ≥ ε∞ G form stable G form stable
4 ≥ ε∞ eigenvectors unstable eigenvectors unstable

4.3. Lorentz BJ EP scheme. In [15], system (1.6)–(1.7c) is closed by a dis-
cretization for (1.5b), namely

Pn+1
j − Pn

j

k
= Jn+ 1

2 ,

J
n+ 1

2
j − J

n− 1
2

j

k
= −ν

J
n+ 1

2
j + J

n− 1
2

j

2
+ ω2

1(εs − ε∞)ε0E
n
j − ω2

1P
n
j .
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The explicit version of the system handles the variable

Un
j =

(
c∞B

n− 1
2

j+ 1
2

, En
j , P

n
j /ε0ε∞, kJ

n− 1
2

j /ε0ε∞

)t

,

and the amplification matrix G reads

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −λ(eiξ − 1) 0 0

−λ(1 − e−iξ) (1−q)(1+δ)−2ωα
1+δ

2ω
1+δ − 1−δ

1+δ

0 2ωα
1+δ

1+δ−2ω
1+δ

1−δ
1+δ

0 2ωα
1+δ

−2ω
1+δ

1−δ
1+δ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial is proportional to

φ0(Z) = [1 + δ]Z4 − [4 + 2δ − 2ωηs − (1 + δ)q]Z3

+ 2[3 − 2ωηs + (ω − 1)q]Z2 − [4 − 2δ − 2ωηs − (1 − δ)q]Z + [1 − δ].

Table 4.3

Proof arguments and results for the Lorentz BJ EP scheme.

q εs ω Argument Result

damped: ν > 0

]0, 2[ > ε∞ ≤ 2/(2ηs − 1) Theorem 2.3 stable
2 > ε∞ < 2/(2ηs − 1)

]0, 2] = ε∞ < 2 Theorem 2.4 stable
]0, 2] = ε∞ = 2 subpolynomial stable

2 > ε∞ = 2/(2ηs − 1) Theorem 2.4 stable
0 ≥ ε∞ ≤ 2/(2ηs − 1) G form stable

q εs ω Argument Result

undamped: ν = 0

]0, 2[ > ε∞ ≤ 2/(2ηs − 1) Theorem 2.4 stable
2 > ε∞ < 2/(2ηs − 1)

]0, 2] = ε∞ < 2 eigenvectors unstable
]0, 2] = ε∞ = 2 Theorem 2.4 stable

2 > ε∞ = 2/(2ηs − 1) eigenvectors unstable
0 > ε∞ ≤ 2/(2ηs − 1) G form stable
0 = ε∞ < 2/(2ηs − 1)
0 = ε∞ = 2/(2ηs − 1) eigenvectors unstable

The proofs are summed up in Table 4.3. This scheme combines three drawbacks we
have already encountered. First, as for the Debye model, there is an extra condition
on the time step: ω < 2/(2ηs − 1). This will have to be compared to the condition
on q for physical examples. Second, as for the Lorentz B ED scheme, we need a twice
smaller k than for raw Maxwell equations: q ≤ 2 instead of q ≤ 4. Last, and also
as for the Lorentz B ED scheme, the εs = ε∞ and ν = 0 lead to an instability. This
is exactly the same story. This time q = 2ω leads to double couples of conjugate
complex roots of modulus 1, with only two eigendirections. If ω > 1, then this value
of q is, however, never reached. Else q = 2ω is rather a condition on h and therefore
not a proper stability condition. As for the Lorentz B ED, it seems better to avoid
using this scheme if εs = ε∞ and ν = 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2562 BRIGITTE BIDÉGARAY-FESQUET

4.4. Conclusion for one-dimensional Lorentz schemes. We summarize all
our results for Lorentz schemes in Table 4.4. For the undamped BJ EP scheme, if
εs > ε∞, then the condition is slightly better since q = 2 and ω < 2/(2ηs − 1), or
q < 2 and ω = 2/(2ηs − 1) also yield stable schemes.

Contrarily to Debye materials, for which all schemes compete, the B EPJ scheme
seems to overcome others for Lorentz material. First, there is a gain in CFL condition
(q < 4 is twice better as q ≤ 2), second, there are no instabilities for limiting values
of the physical coefficients, and last, there is no extra condition on the time step. In
practice, an extra condition is, however, needed to account for the dynamics of the
Lorentz equation, but not for stability reasons.

However, we can compare the relative strength of the different conditions on k
for the B ED and BJ EP schemes, and for optical waves of, say, wavelength 1μm.
The values used in [10] are ε∞ = 1, εs = 2.25, ω1 = 4 × 1016 rad s−1, and ν =
0.56 × 1016 rad s−1. Condition ω ≤ 2/

√
2ηs − 1 comes to k ≤ 2.7 × 10−17 s, which is

very small and corresponds to h = 1.13 × 10−8 m in the q < 2 condition. This space
step is more than sufficient to discretize optical waves. For such a material the extra
condition imposed by the B ED scheme is stronger than the basic CFL condition.
The B EPJ model is then more advisable.

Table 4.4

Stability of damped and undamped Lorentz models for εs > ε∞ and εs = ε∞.

Scheme Dimension 1

damped: ν > 0, and εs ≥ ε∞

B ED q ≤ 2 k ≤ h/
√

2c∞
B EPJ q < 4 k < h/c∞

BJ EP
q ≤ 2,

ω ≤ 2/(2ηs − 1)
k ≤ min(h/

√
2c∞, 2/ω1

√
2ηs − 1)

undamped: ν = 0, and εs > ε∞

B ED q ≤ 2 k ≤ h/
√

2c∞
B EPJ q < 4 k < h/c∞

BJ EP
q < 2,

ω < 2/(2ηs − 1)
k < min(h/

√
2c∞, 2/ω1

√
2ηs − 1)

undamped: ν = 0, and εs = ε∞

B ED q < 2ω/(1 + ω) condition on h
B EPJ q < 4 k < h/c∞

BJ EP
q < 2,

ω < 2/(2ηs − 1)

k < min(h/
√

2c∞, 2/ω1
√

2ηs − 1) if ω > 1

condition on h else

In [15] there is a totally different material for which ε∞ = 1.5, εs = 3, ω1 =
2π×5×1010 rad s−1, and ν = 1010 rad s−1 (these round values certainly refer to a model
material). In this case ω ≤ 2/

√
2ηs − 1 comes to k ≤ 3.6×10−12 s, which corresponds

to h = 1.9 × 10−3 m in the q < 2 condition. For this material condition q < 2 is the
strongest for optical waves. The B EPJ scheme is, however, more advisable, since it
allows q < 4 instead of q ≤ 2.

The results obtained in [10] were obtained for our first cited material and for the
B ED and BJ EP schemes. Petropoulos observed instabilities for ξ > π

2 . We note

that if ξ ≤ π
2 , then sin(ξ/2) ≤ 1/

√
2 and q ≤ 2 instead of q ≤ 4. This is exactly our

result. He found also the B EPJ scheme to be stable for q ≤ 4.

5. Automation via computer algebra. For a three-dimensional Lorentz
medium, φ0 is typically a 12th degree polynomial with polynomial coefficients of
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degree 6 in the different parameters. The previous procedure becomes awful if made
by hand. A computer algebra environment based on Maple has been developed
specifically to automate all the computational steps which may be the source of errors
[2]. It is still dedicated only to electromagnetic models but could be extended in the
future to other applications.

The schemes are defined by four parameters:
1. the space dimension Dim (1, 2 or 3),
2. the polarization Polar (TE or TM in dimension 2),
3. the physical model Model (e.g., Debye),
4. the variables used Formula (e.g., B EP).

Maxwell equations have been written once and for all and just have to be “called”:
> Faraday(Eq, Dim, Polar):

> Ampere(Eq, Dim, Polar, Formula):

For our applications, in the other equations space is only a parameter. Such equations
are written once with no spatial dependence:

> NewEq := tr*(P[n+1]-P[n])/dt

+ 1/2*(P[n+1]+P[n])

- eps0*(epss-epsinfini)*(E[n+1]+E[n])/2:

> CreateEq(Eq, NewEq, Dim, Polar):

and propagated to all the useful coordinates with the right indexes on the staggered
grid, according to the space dimension and polarization.

Then changes of variables are automatically performed to have dimensionless
variables (specific to the model), no redundant variables (specific to the scheme), and
an explicit scheme in the frequency domain. This yields the amplification matrix G.
The computation of polynomial φ0 is then performed as well as the computational
part of the von Neumann analysis: computation of the sequence of polynomials and
factorizations. On these forms the user of the toolbox can easily see which are the
specific cases to consider separately.

The comparisons |φm(0)| ≤ |φ∗
m(0)| are the real difficult points from the computer

algebra point of view; therefore it is necessary to evaluate the sign of a polynomial
in many variables (4 for a Lorentz medium) and of total degree of order say 6 for φ0,
about 10 for φ1, . . . knowing some variables are positive (like ηs − 1 or δ) and others
lie within an interval (like q). This is also automated:

> SignCheck(phi, Z, [0 < delta, 1 < etas, 0 < q, q < 4]),

but sometimes Maple does not yield a totally explicit answer. This might lead us to
migrate the whole toolbox in a C code to make use of some existing softwares specific
for the solving of interval arithmetic problems.

Finally, tools are defined to compare the number of eigenvectors and the multi-
plicity of eigenvalues in the degenerate cases.

6. Two- and three-dimensional results.

6.1. Equation setting. In a two-dimensional context where unknowns depend
only on space variables x and y, the Maxwell system may be split in two decoupled
systems corresponding to the transverse electric (TE) (Bx, By, Ez) and the transverse
magnetic (TM) (Bz, Ex, Ey) polarizations. In the one-dimensional case, Maxwell–
Debye equations were represented by three equations and Maxwell–Lorentz by four
equations. In the TE polarization, one more Faraday equation is added; therefore,
we have four equations for Maxwell–Debye and five equations for Maxwell–Lorentz.
In the TM polarization for the Maxwell–Debye model, one Ampère equation and
one Debye equation have to be added, leading to five equation systems. For the
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Maxwell–Lorentz model, there is one more Ampère equation and two more Lorentz
equations, so the system consists of seven equations.

In the three-dimensional context, equations do not decouple any more, and sys-
tems consist of nine equations for the Maxwell–Debye schemes and twelve equations
for the Maxwell–Lorentz schemes.

The principle of the stability analysis is exactly the same, but we now have larger
polynomials to study. We, however, found out that the one-dimensional polynomials
(which we denote by φ1D

0 (Z)) are a factor in two- and three-dimensional polynomials,
which reduces the formal calculations. More precisely we now denote by hx, hy, and
hz the space steps in the x-, y-, and z-directions, respectively, and by q the quantity

q = qx + qy = 4c2∞

(
k2

h2
x

sin2(ξx/2) +
k2

h2
y

sin2(ξy/2)

)

or

q = qx + qy + qz = 4c2∞

(
k2

h2
x

sin2(ξx/2) +
k2

h2
y

sin2(ξy/2) +
k2

h2
z

sin2(ξz/2)

)

according to the space dimension (recall q = 4c2∞
k2

h2
x

sin2(ξx/2) in one dimension).

6.2. Results. In the two-dimensional TE polarization, the characteristic poly-
nomial reads

φ2D,TE
0 (Z) = [Z − 1]φ1D

0 (Z)

for all the Maxwell–Debye and Maxwell–Lorentz schemes we study here. This could
be a problem if 1 is already a root of φ1D

0 (Z), i.e., if q = 0, but it happens that it is
never a problem: minimal stable subspaces are always one-dimensional.

In the TM polarization, the same factorization occurs but the remaining polyno-
mial is slightly more complicated, namely

φ2D,TM
0 (Z) = [Z − 1]ψ0(Z)φ1D

0 (Z),

where ψ0(Z) is equal to:
• Debye B ED and B EP: [(1 + δηs)Z − (1 − δηs)],
• Debye BP E: [(1 + α)(1 + δα)Z − (1 − α)(1 − δα)],
• Lorentz B ED: [(1 + δ + ωηs)Z

2 − 2Z + (1 − δ + ωηs)],
• Lorentz B EPJ: [(1 + δ + 1

2ωηs)Z
2 − (2 − ωηs)Z + (1 − δ + 1

2ωηs)],

• Lorentz BJ EP: [(1 + δ)Z2 − 2(1 − ωηs)Z + (1 − δ)].
As for the TE polarization the extra eigenvalue 1 is never a source of instability.
The other extra eigenvalues always lie inside or on the unit circle (conjugate complex
roots). The only problem is when modulus 1 eigenvalues are also eigenvalues of the
one-dimensional polynomial. This occurs only for the Lorentz B ED scheme when
εs = ε∞, and q = 2ω/(1 + ω), which is a resonant value we have already pointed out
in the undamped case for this scheme.

In the three-dimensional context, the characteristic polynomial reads

φ3D
0 (Z) = [Z − 1]2ψ0(Z)

(
φ1D

0 (Z)
)2

for all the schemes we have studied. In addition to extra eigenvalues 1, we have to
check cases when we found out that φ1D

0 (Z) is a von Neumann polynomial but not a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF FD–TD SCHEMES 2565

Schur polynomial. If εs = ε∞, then we systematically have instabilities. Other extra
instable cases depend on the scheme: q = 4 for the Debye B ED and B EP schemes,
δ = 1 for the Debye BP E scheme; q = 2 for the Lorentz D ED and BJ EP schemes,
ν = 0 for all Lorentz schemes.

We do not have any explanation for these factorizations. This is a property of
the characteristic polynomial and not necessarily of the amplification matrix, i.e.,
this may occur even if variables are not decoupled. However, there is probably some
underlying block-triangular structure, which is still to be found.

We shall not duplicate Tables 3.3 and 4.4 for two- and three-dimensional schemes.
In the two-dimensional case, if hx = hy = hz ≡ h, condition q ≤ 4 becomes k ≤
h/(

√
2c∞) and condition q ≤ 2 becomes k ≤ h/(2c∞) in the physical variables.

Besides, the Lorentz B ED model, which was leading to a lower bound on h in the
undamped case, leads also to such a bound in the damped case. These are the only
differences with Tables 3.3 and 4.4.

In short, three-dimensional conditions are also essentially the same as one-dimen-
sional conditions but inequalities always have to be strict and limiting (nonphysical)
cases εs = ε∞ and ν = 0 cannot be dealt with properly with a three-dimensional
model.

7. Conclusion. We have studied a class of FD–TD schemes for dispersive ma-
terials based on the Yee scheme for Maxwell equations and compared them from the
stability point of view. This study was inspired by Petropoulos [10] who performs the
same analysis but uses specific values for the physical and numerical constants, and
uses numeric routines to locate eigenvalues of the amplification matrix. Here we have
general results which yield the constraint on numerical constants (k and h) for any
Debye or Lorentz material. Our results confirm those of Petropoulos.

For usual Debye media, both studied schemes are stable under the same condition
as the Yee scheme for nanosecond delay materials. The B ED and B EP schemes over-
come the BP E scheme in terms of stability condition for picosecond delay materials.
Among the studied schemes for Lorentz media, the B EPJ scheme clearly ranks first
as far as stability is concerned. Its stability condition is also that of the Yee scheme.
However, to properly take into account the Lorentz model, a smaller time step may
have to be chosen, independently of stability issues. The two examples do not help
us to deduce a general strategy to locate variables in time, in order to treat other
physical models.

The computer algebra system that has been developed to handle the three-
dimensional schemes has a much wider range of application. First, it can be extended
with very small effort to other electromagnetic linear models such as cold plasmas,
collisionless warm plasmas, or magnetic ferrites. With some more work (no compu-
tation skill but knowledge of dimensionless variables), it can be practically extended
to the analysis of any linear finite-difference scheme occurring in areas other than
electromagnetism.

Acknowledgments. The author thanks Françoise Jung and Jean-Guillaume
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