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In this article we study the local-in-time Cauchy problem for the Schrödinger-Debye
equations. This model occurs in nonlinear optics and describes the non-resonant de-
layed interaction of an electromagnetic wave with a medium. We extend the study to
nonphysical cases such as the three-dimensional case or more general nonlinearities.

1. Introduction

The modeling of the propagation of an electromagnetic wave in a non-resonant
medium where the material response time is relevant is usually (see Ref. 6) given
by Schrödinger-Debye equations


i
∂

∂t
A +

c

2kn0
∆A =

ω0

n0
νA,

τ
∂

∂t
ν + ν = n2|A|2.

(1.1)

In these equations, A denotes the envelope of a light wave that goes through a
medium which response is non-resonant. However a change ν is induced in its
refraction index (initially n0 for an electromagnetic wave of frequency ω0) with a
slight delay τ . The magnitude (and the sign) of the nonlinear coupling of the matter
with the wave is described by the parameter n2. The light velocity in the vacuum
is denoted by c and k is the wave vector of the incident electromagnetic wave.

In order to simplify proofs, we will use the following dimensionless equations
keeping, however, a parameter τ which for applications has to be thought as small
although this fact is of no consequence in this paper, and replacing n2 by ε = ±1
to model both focusing and defocusing situations. Results will be exactly the same
for the physical system.
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2 The Cauchy Problem for Schrödinger-Debye equations


i
∂

∂t
A + ∆A = νA,

τ
∂

∂t
ν + ν = ε|A|2.

(1.2)

This problem has already been studied in Refs. 1 and 2. Here we will enlarge
the results obtained in these references. For the sake of completeness let us first
cite these results, which are valid in the case of a two-dimensional space:

Theorem 1 (i) For all (A0, ν0) belonging to Hs×Hs with s > 1, Eq. (1.2) for the
initial data A(0) = A0, ν(0) = ν0, has a unique solution in X = L∞(0, T ;Hs) for
a small enough T and solutions depend continuously on the initial data.

(ii) For all (A0, ν0) belonging to H1 × H1, Eq. (1.2) has a unique solution in
X ′ = L∞(0, T ;H1) for a small enough T .

(iii) For all (A0, ν0) belonging to L2 × L2, Eq. (1.2) has a unique solution in
X” = L4(0, T ;L4) ∩ C([0, T ];L2) for a small enough T .

These results have been obtained — thanks to a fixed-point procedure applied
on a Duhamel formulation. To obtain this Duhamel formulation the system (1.2)
has first been written as an integro-differential equation using the fact that

ν(t) = e−t/τν0 +
ε

τ

∫ t

0

e−(t−s)/τ |A(s)|2ds. (1.3)

Hence (1.2) may read

i
∂

∂t
A + ∆A =

(
e−t/τν0 +

ε

τ

∫ t

0

e−(t−s)/τ |A(s)|2ds

)
A (1.4)

and the fixed-point procedure is performed on

A(t) = S(t)A0 − i

∫ t

0

S(t− s)
(

e−s/τν0 +
ε

τ

∫ s

0

e−(s−θ)/τ |A(θ)|2dθ

)
A(s)ds, (1.5)

where S is the semigroup associated to the linear Schrödinger equation

i
∂

∂t
A + ∆A = 0. (1.6)

The integro-differential formulation is optional in the case of smooth solutions. In
this case the fixed-point procedure could as well have been performed on both A and
ν. This formulation becomes necessary as soon as weaker solutions are concerned.

Let us first give the equivalent of Theorem 1 in dimensions N = 1, 2, 3.

Theorem 2 (i) For all (A0, ν0) belonging to Hs ×Hs with s > N/2, Eq. (1.2) for
the initial data A(0) = A0, ν(0) = ν0, has a unique solution in X = L∞(0, T ;Hs)
for a small enough T and solutions depend continuously on the initial data.

(ii) For all (A0, ν0) belonging to H1 × H1, Eq. (1.2) has a unique solution in
X ′ = L∞(0, T ;H1) for a small enough T .

(iii) For all (A0, ν0) belonging to L2 × L2, Eq. (1.2) has a unique solution in
X” = L8/N (0, T ;L4) ∩ C([0, T ];L2) for a small enough T .
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Proofs are so similar to the two-dimensional case that we do not give them here
but refer to Ref. 2.

Although the fixed-point procedure is performed on variable A only, Eq. (1.3)
leads to ν(T ) ∈ H1 in case (ii) and ν(T ) ∈ L2 in case (iii). Nevertheless, unlike
the cubic nonlinear Schrödinger equation, there is no conservation law (other than
the L2 norm of A) which enables us to transform these local-in-time results into
global ones in the one-dimensional case, for example. Numerical experiments are
in progress to give us an idea of how the long-time behavior may look like. These
experiments are of course not performed on the integro-differential form but on the
coupled equations.

2. Another Integral Formulation.

We use here a trick already applied to the full nonlinear wave equation or the
Zakharov equations (see Refs 8 and 7). It consists in setting F = ∂A/∂t and in
writing the equation on F through a formal differentiation of the equation for A.
We therefore obtain

i
∂

∂t
F + ∆F =

∂

∂t
νA + νF. (2.1)

In Eq. (2.1) we will replace ∂ν/∂t by −ν/τ + ε|A|2/τ and then replace A by
A0 +

∫ t

0
F (s)ds. Thus we obtain the Duhamel formulation

F (t) = N1[F, ν] ≡ S(t)F0 − i

∫ t

0

S(t− s)

{(
−ν

τ
+

ε|A(s)|2

τ

)

×
(

A0 +
∫ s

0

F (θ) dθ

)
+ νF

}
ds, (2.2)

ν(t) = N2[F, ν] ≡ e−t/τν0 +
ε

τ

∫ t

0

e−(t−s)/τ |A(s)|2ds, (2.3)

A(t) = (−∆ + 1)−1

{
iF−ν

(
A0+

∫ t

0

F (s)ds

)
+
(

A0+
∫ t

0

F (s)ds

)}
. (2.4)

Since we formally have iF + ∆A = νA, we set at time t = 0, iF0 = ν0A0 −∆A0.
This formulation is only derived formally, we will a posteriori prove that solu-

tions to this system yield solutions to (1.2).
We shall perform a fixed-point procedure for N = (N1, N2) on the following

functional space:

X = [L∞(I;L2) ∩ L8/N (I;L4)]⊕ [L∞(I;L4)].

Using the same sort of estimates as in Ref. 7, we obtain:

‖A‖L∞(I;H2) ≤ C‖F‖L∞(I;L2) + C‖ν‖L∞(I;L4)‖A0‖L4

+CT 1−N/8‖ν‖L∞(I;L4)‖F‖L8/N (I;L4)+‖A0‖L2 +T‖F‖L∞(I;L2),
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‖N1(t)‖L4 ≤ ‖S(t)F0‖L4

+
∫ t

0

C|t− s|−N/4

{
1
τ
‖ν‖L4

(
‖A0‖L2 +

∫ s

0

‖F (θ)‖L2dθ

)
+

1
τ
‖ |A(s)|2‖L2

(
‖A0‖L4 +

∫ s

0

‖F (θ)‖L4dθ

)
+|ν‖L4‖F‖L2

}
ds,

‖N1‖L8/N (I;L4) ≤ δ‖F0‖L2 + C
T 1−N/8

τ
‖ν‖L∞(I;L4)‖A0‖L2

+C
T 2−N/8

τ
‖ν‖L∞(I;L4)‖F‖L∞(I;L2)

+C
T 1−N/8

τ
‖ |A|2‖L∞(I;L2)‖A0‖L4

+C
T 2−N/4

τ
‖ |A|2‖L∞(I;L2)‖F‖L8/N (I;L4)

+CT 1−N/8‖ν‖L∞(I;L4)‖F‖L∞(I;L2),

‖N1‖L∞(I;L2) ≤ ‖F0‖L2 + C

∥∥∥∥∥1
τ
‖ν‖L4

(
‖A0‖L2 +

∫ s

0

‖F (θ)‖L2dθ

)
+

1
τ
‖ |A(s)|2‖L2

(
‖A0‖L4 +

∫ s

0

‖F (θ)‖L4dθ

)
+‖ν‖L4‖F‖L2

∥∥∥∥∥
L8/(8−N)(I)

≤ ‖F0‖L2 + C
T 1−N/8

τ
‖ν‖L∞(I;L4)‖A0‖L2

+C
T 2−N/8

τ
‖ν‖L∞(I;L4)‖F‖L∞(I;L2)

+C
T 1−N/8

τ
‖ |A|2‖L∞(I;L2)‖A0‖L4

+C
T 2−N/8

τ
‖ |A|2‖L∞(I;L2)‖F‖L8/N (I;L4)

+CT 1−N/8‖ν‖L∞(I;L4)‖F‖L∞(I;L2),

‖N2‖L∞(I;L4) ≤ ‖ν0‖L4 +
T

τ
‖ |A|2‖L∞(I;L4).

Unlike estimates obtained in Ref. 1, these estimates are not uniform with respect
to τ , but this is not our goal here. To obtain a uniform estimate with respect to τ

for ‖N2‖L∞(I;L4) would prevent us from getting a T in the estimate and cpmpleting
the proof, which ends as follows:

Let us suppose that (A0, ν0) ∈ H2 × L4, and let us set

a = max {‖A0‖L2 , ‖A0‖L4 , ‖ν0‖L4 , ‖ν0A0 −∆A0‖L2}
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which is finite. Let Y be the subset of X defined by

Y = {(F, ν) ∈ X/‖F‖L∞(I;L2) ≤ 2a, ‖F‖L8/N (I;L4) ≤ 2δa, ‖ν‖L∞(I;L4) ≤ 2a}.

The above estimates show that N maps Y into Y . Indeed,

‖A‖L∞(I;H2) ≤ 2C(a + a2) + 4CT 1−N/8δa2 + a + 2Ta,

‖N1‖L8/N (I;L4) ≤ δa + 2C
T 1−N/8

τ
a2 + 4C

T 2−N/8

τ
a2 + C

T 1−N/8

τ
‖A‖2L∞(I;H2)a

+2C
T 2−N/4

τ
‖A‖2L∞(I;H2)δa + 4CT 1−N/8a2,

‖N1‖L∞(I;L2) ≤ a + 2C
T 1−N/8

τ
a2 + 4C

T 2−N/8

τ
a2 + C

T 1−N/8

τ
‖A‖2L∞(I;H2)a

+2C
T 2−N/8

τ
‖A‖2L∞(I;H2)δa + 4CT 1−N/8a2,

‖N2‖L∞(I;L4) ≤ a +
T

τ
‖A‖2L∞(I;H2).

For some small enough T , N [F, ν] ∈ Y .
The same sort of estimates applied on N [F, ν] − [F, ν], where both (F, ν) and

(F ′, ν′) are solution to (2.2)-(2.4) with the same initial data lead us to show that
N is a contraction from Y into Y . Hence N has a unique fixed-point in Y , and

F (t) = S(t)F0 − i

∫ t

0

S(t− s)

{(
−ν

τ
+

ε|A(s)|2

τ

)(
A0 +

∫ s

0

F (θ)dθ

)
+ νF

}
ds,

ν(t) = e−t/τν0 +
ε

τ

∫ t

0

e−(t−s)/τ |A(s)|2ds,

A(t) = (−∆ + 1)−1

{
iF − ν

(
A0 +

∫ t

0

F (s)ds

)
+
(

A0 +
∫ t

0

F (s)ds

)}
.

Setting t = 0 in the above equations leads immediately to F (0) = F0, ν(0) = ν0,
A(0) = A0.

For more convenience in the following computations we set

B(s) =
(
−ν

τ
+

ε|A(s)|2

τ

)(
A0 +

∫ s

0

F (θ)dθ

)
+ νF.

For the results used on the regularization property of operator S(t), the reader may
refer to Ref. 4. Since F0 ∈ L2, S(t)F0 ∈ C(I;L2) ∩ C1(I;H−2) and ∂tS(t)F0 =
iS(t)∆F0 = i∆(S(t)F0). Moreover B ∈ L∞(I;L4/3) ↪→ L1(I;H−1) hence∫ t

0

U(t− s)B(s)ds ∈ C(I;H−1) ∩W 1,1(I;H−3).

Since

∂t

∫ t

0

U(t− s)B(s)ds = i∆
∫ t

0

U(t− s)B(s)ds + B(t),
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∂tF (t) = i∆
(

U(t)F0 +
∫ t

0

U(t− s)B(s)ds

)
+ iB(t)

= i∆F (t) + iB(t),

i.e. i∂tF (t) + ∆F (t) = −B(t) which is the differential form of (2.2) and is valid in
C(I;H−1).

Since ν0 ∈ L4 and |A|2 ∈ L∞(I;L4), ν ∈ C(I;L4) ∩W 1,∞(I;L4) and moreover

∂tν = −1
τ

e−t/τν0 +
ε

τ

∫ t

0

−1
τ

e−(t−s)/τ |A(s)|2ds + ε|A(t)|2

= −ν

τ
+

ε

τ
|A|2.

This means that τ∂tν + ν = ε|A|2, which is the differential form of (2.3), is valid in
C(I;L4).

Moreover, we know that B is indeed in L8/(8−N)(I;L4,3), which enables us to
conclude that

∫ t

0
S(t− s)B(s)ds ∈ C(I;L2) and therefore F (t) ∈ C(I;L2). All these

results lead to A ∈ C(0, T ;H2). Differentiating Eq. (2.4) with respect to time we
obtain:

(−∆ + 1)
∂A

∂t
=

{
i
∂F

∂t
− ∂ν

∂t

(
A0 +

∫ t

0

F (s)ds

)
+ νF + F

}
,

which is a priori valid in C(I;H−1). Together with the differential equation on F ,
this gives that ∂A/∂t = F in C(I;H−2). Furthermore

∂A

∂t
= (−∆ + 1)−1

{
i
∂F

∂t
− ∂ν

∂t

(
A0 +

∫ t

0

F (s)ds

)
+ νF + F

}

and A ∈ C1(I;L2). Equation (2.4) together with the fact that
∫ t

0
F (s)ds = A(t)−A0,

give

i
∂

∂t
A + ∆A = νA,

which is valid in C(I;L2).
Hence this formulation has enabled us to prove the following theorem:

Theorem 3 For all (A0, ν0) belonging to H2 × L4, Eq. (1.2) for the initial data
A(0) = A0, ν(0) = ν0, as a unique solution in X = C(0, T ;H2) × C(0, T ;L4) for
small enough T and solutions depend continuously on the initial data.

We may compare this result with the above results. Here we need some strong
regularity on A and week regularity on ν. This theorem may also be considered
as intermediate between the regular and the weak cases of Theorem 2. The L4

regularity for ν is, however, very different from the H1 or L2 regularities asked for
in Theorem 2, (ii) and (iii). The fact that we recover some continuity with respect
to time for ν will also be important in some applications (see Ref. ?) as the proof
of convergence for numerical schemes.
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In the case of the Zakharov system, this huge difference between the regularity
for both variables is needed. Here the H2-regularity for A is mostly needed because
H2 is an algebra for all dimensions. H1 in dimension 1 and Hs in dimension 2 and
3 with 2 ≥ s > N/2 would have been sufficient. It is however impossible to recover
more than a H2-regularity on A. We may think of higher regularities, using the
same approach as above and introducing the new variable G = ∂2

t A.
Here estimates are not uniform with respect to τ as we noticed earlier. One

drawback is the fact that we are not able to perform a limit as this parameter tends
to 0.

3. A more General Case.

Going a little further from applications, we may think of studying the following
system 

i
∂

∂t
A + ∆A = νA,

τ
∂

∂t
ν + ν = f(x, |A|2),

(3.1)

where |f(x, u)| ≤ C(1+|u|σ) and σ > 0. This might not be so far from actual models
for optics since Kerr media are not the only ones to be studied. Nevertheless we
have never seen the model (3.1) in the literature. Of course it is inspired from the
general nonlinear Schrödinger equations and results are as well easy to find as soon
as we deal with algebras. Otherwise we have to consider the notion of critical value
for the nonlinearity. This is the maximal value of σ for which one may hope to
find local-in-time estimates. In H1, this value is σ = 2/(N − 2), which is indeed
the critical value for which H1 ↪→ Lσ+2 (N > 3). In L2, the critical value is
σ = 2/(N − 2) as well.

Using the same methods than above or in Ref. 2, it is possible to prove :

Theorem 4 (i) For all (A0, ν0) belonging to Hs ×Hs with s > N/2, Eq. (3.1) for
the initial data A(0) = A0, ν(0) = ν0, has a unique solution in L∞(0, T ;Hs) for
a small enough T and solutions depend continuously on the initial data.

(ii) For all (A0, ν0) belonging to H1 ×H1 and σ < 2/(N − 2), Eq. (3.1) has a
unique solution in L∞(0, T ;H1) for a small enough T .

(iii) For all (A0, ν0) belonging to L2 × L2 and σ < 2/(N − 2), Eq. (3.1) has a
unique solution in L8/N (0, T ;L2(1+σ)) ∩ C([0, T ];L2) for a small enough T .

(iv) For all (A0, ν0) belonging to H2 ×L4, Eq. (3.1) for the initial data A(0) =
A0, ν(0) = ν0, has a unique solution in C(0, T ;H2)×C(0, T ;L4) for a small enough
T and solutions depend continuously on the initial data.

We will not give any detailed proof of this result since, as we mentioned above,
the methods have already been used. The only difference is that estimates are a
little more awkward.
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4. Perspectives.

As stressed in the Introduction, the main goals to find new results on the Cauchy
problem for Schrödinger-Debye equations were first to give a theoretical background
for a numerical approach and second to make a step towards the study of the long
time behavior of solutions to these equations. This second aim seems difficult to
achieve and numerics would be helpful to give us a first guess of what the result
may be.
In the context of Theorem 1(i) for example (see Ref.1), we already know that,
as τ tends to zero, solutions to (1.2) tend to the solutions to the cubic nonlinear
Schrödinger equation

i
∂

∂t
A + ∆A = ε|A|2A. (4.1)

In the case when ε is positive, solutions to (4.1) exist for all time, whereas in the
case when ε is negative, (4.1) exhibits solutions that blow up in finite time. (Both
signs are physical depending on the type of medium we consider). We may expect
to find a similar behavior for the Schrödinger-Debye equations. There is no hope
to find different results for small τ and for greater ones since a rescaling of the
equations show that the behavior will be the same.

We might think of a Viriel-type identity to prove a finite-time blow-up result.
Here we do not dispose of a conservation law but only of a relation like

d

dt

(
1
2

∫
|∇A(t)|2dx + ε

∫
|A(t)|4dx− τ2

ε

∫ ∣∣∣∣∂ν

∂t

∣∣∣∣2 dx

)
=

2τ

ε

∫ ∣∣∣∣∂ν

∂t

∣∣∣∣2 dx. (4.2)

Using this formulation we might think of obtaining a partial result like the one
obtained by Merle 5 for the Zakharov equation. All such attempts have been un-
successful until now.
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Série I, 319 (1994) 361–364.
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