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The Bloch equation models the evolution of the state of electrons in matter de-
scribed by a Hamiltonian. To model more physical phenomena we have to introduce
phenomenological relaxation terms. The introduction of these terms has to conserve
some positiveness properties. The aim of this paper is to review possible relaxation
models and to provide insight into how to discretize them properly in view of nu-
merical computations.c© 2001 Academic Press
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1. INTRODUCTION

Today, laser sources make it possible to produce light pulses that are increasingly powerful
and shorter. The propagation of such beams through a medium induces nonlinear light–
matter interactions. Moreover, as the pulse duration is of the same order as or even much
smaller than the time response of the medium, transient phenomena have to be considered.
Thus models are formed in the time domain.

The classical description of the propagation of an electromagnetic wave is given by the
Maxwell equations, where the influence of the matter is expressed through polarization. A
simple description involving the refractive index is not sufficient, even when it is frequency
and intensity dependent. Here, very precise modeling is required for matter. This is per-
formed by Bloch equations, which are derived in the context of quantum mechanics. These
equations deal with the probabilistic description of the population of each energy level of
the atoms that constitute the matter and the coherence between these levels. These variables
are gathered in a so-called density matrix. Statistical averaging over atoms is taken into
account by the introduction of relaxation terms. These terms are also necessary to model
some important physical phenomena, such as spontaneous emission and collisions. There
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are different classical ways to introduce them [3, 4, 6], but we present here the most general
model, i.e., “Pauli’s master equation” model.

The relaxation terms that we introduce should preserve some important properties that
would be valid without these additional terms. First, populations should be positive and less
than 1. Coherences should not be greater than the related populations and density matrices
should be positive matrices. In the absence of statistical averaging (and therefore relaxation)
all these properties are straightforward, as is emphasized below.

We do not know of any existing literature on this specific problem of conservation of
positiveness properties while relaxation terms are added. The reasons may be the following.
As we show, positiveness is conserved in all classical physical contexts; hence this is not a
problem for physicists. From the numerical point of view, Bloch codes up to now involved
only two-level atoms [5, 8, 10] but problems occur with at least three levels. Such a study
is useful for our multilevel code and the simulation of physical contexts that involve more
than two levels and different relaxation terms, such as a laser cavity. The scope of this paper
is limited to the Bloch equations with a given electromagnetic field; the problem of the
coupling with a propagation model is postponed for further study.

In Section 2 we give a brief description of the Bloch equations. Section 3 is devoted to
the introduction of Pauli’s master equation model. A time semidiscretization of the Bloch
equation is dealt with in Section 4. This discretization conserves positiveness and is tractable
for real numerical computations.

2. BLOCH EQUATIONS

In quantum mechanics, matter is defined by state vectors|ψ〉, the time evolution of which
is given by the Schr¨odinger equation

i -h∂t |ψ〉 = H |ψ〉.

The HamiltonianH is composed of the unperturbed HamiltonianH0 and the perturbation
V induced by the electromagnetic field:H = H0+ V . Following a standard approach we
decompose|ψ〉 on the basis of eigenstates of the unperturbed HamiltonianH0. These
quantum states| j 〉 are the eigenfunctions ofH0 that correspond to thej th level of energy
E j = -hω j of unperturbed atoms. The set of all these (suitably normalized) quantum states
forms a basis of all quantum states. We therefore may set|ψ〉 =∑aj | j 〉 and define the
(infinite dimensional) density matrixρ asρ jk =

∑
S aS

j a∗k
S, whereSis a statistical set. This

is a solution to

i -h∂tρ = [H, ρ], (1)

where [·, ·] denotes the commutator of two operators. Keeping onlyN relevant levels,ρ is
anN × N Hermitian nonnegative matrix. Its diagonal elementsρ j j represent the population
of levels| j 〉 and its off-diagonal elementsρ jk the coherences between levels| j 〉 and|k〉.

To express the perturbationV , we restrict ourselves to dipole moments because they
induce the larger order in the perturbation series. PerturbationV readsV = −e EE · ER, taking
into account thatEE does not significantly vary over atomic distances. The dipole moment
matrix is defined by its elementsEpjk = 〈k|e ER| j 〉. With these notations Eq. (1) yields

∂tρ jk = −iω jkρjk + i
-h
EE · [ Ep, ρ] jk, (2)
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whereω jk = ω j − ωk is the frequency associated with the transition from level|k〉 to
level | j 〉.

In the expression forV , EE may be a given field or may be the solution of the Maxwell
equations. In the latter case there is a coupling between the Bloch equations and the Maxwell
equations via the constitutive relationED = ε0 EE + EP, where the polarizationEP is given in
terms of the density matrix byEP = Na Tr( Epρ), andNa is the density of atoms.

3. PAULI’S MASTER EQUATION MODEL

To derive the Bloch equations the following hypothesis is made: the stochastic process
driving the statistical distributionS is stationary. This is, however, not the case and it is not
possible to obtain any information about this process. Other phenomena are not included in
the original model, the main one being spontaneous emission of light, but also collisions,
vibrations in crystal lattices, or thermal perturbations in fluids. The only way to take all
these phenomena into account is to add phenomenological relaxation terms to Eq. (2), which
becomes

∂tρ jk = −iω jkρ jk − i
-h

[V, ρ] jk + Q(ρ) jk . (3)

The addition of relaxation terms for a coherence only involves this variable, and therefore
for j 6= k, Q(ρ) jk = −γ jkρ jk . Models for diagonal relaxation terms are of several kinds
but may be shown to be submodels of Pauli’s master equation model, where

Q(ρ) j j =
∑
l 6= j

Wjl ρll −
∑
l 6= j

Wl j ρ j j =
∑
l 6= j

Wjl ρll − 0 jρ j j . (4)

The relaxation to equilibrium states is obtained by imposing

Wjl = Wlj e
β(E j−El ) (5)

(see, e.g., Bloembergen [3]). Here,β = 1/κT , whereκ is Boltzmann’s constant andT is
the temperature.

In what follows we suppose that some physical properties are satisfied for the initial data
and try to find conditions for the relaxation operator to propagate them for all time.

3.1. Physical Properties

The most obvious property forρ is that it is Hermitian (i.e., it is an observable quantity
from the quantum mechanical point of view). The only way to ensure this property is for
equations forρ jk andρk j to be conjugate. Thereforeγ jk andγk j should be equal, which is
indeed the choice that is always made.

All relevant energy levels are assumed to be kept in the model which may be expressed
as Tr(ρ) = 1. This property is conserved since (3) yieldsa priori ∂tTr(ρ) = Tr(Q(ρ)) and
the specific relaxation operatorQ given by (4) ensures that Tr(Q(ρ)) = 0.

The other properties we want to preserve while adding relaxation terms are positiveness
properties. First, populations should be nonnegative. They also should be less than one,
but this is a consequence of positiveness and the above trace property. The coherence of
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two levels has also to be controlled by the population of both levels, or more precisely,
|ρ jk |2≤ ρ j j ρkk. Finally, the whole matrix has to be nonnegative.

3.2. Positiveness

To study positiveness we note that it is preserved by the relaxation-free model (see
Section 4.1) and we use the Trotter–Kato formula, which ensures that

ρ(t) = et (L+Q)ρ(0) = lim
n→∞

(
et L/net Q/nρ(0)

)n
,

whereLρ jk = −iω jkρ jk − i
-h [V, ρ] jk . Therefore it is sufficient that the equation

∂tρ = Q(ρ) (6)

preserves positiveness properties. In the rest of this section proofs address this equation.
All the proofs assume that the quantities we study are nonnegative at timet = 0.

Positiveness of populations.Given a levelk, we consider the initial dataρ j j = δ jk . For
j 6= k, we have∂tρ j j (0) = Wjk . Sinceρ j j (0) = 0, its derivative should not be negative and
therefore a necessary condition isWjk ≥ 0.

This necessary condition is also sufficient: if at timet0, ρ j j (t0) = 0, then∂tρ j j (t0) =∑
k 6= j Wkjρkk(t0). Since there existsk0 6= j such thatρk0k0(t0) 6= 0 (see the trace property),

we show that ifWjk0 > 0 eithert0 = 0, and fort > 0, but small,ρ j j (t) > 0, or t0 6= 0, and
it is not possible thatρ j j (t0) = 0. Thus ifW is a matrix with positive coefficients,ρ j j (t)
is positive fort > 0. Besides,ρ(t) is continuous with respect to the matrixW; hence ifW
is only nonnegativeρ j j (t) remains nonnegative for all timet > 0. The first condition on
matrix W is the following.

Condition 3.1. A necessary and sufficient condition for populations to be nonnegative
(and less than 1 via the trace property) is that matrixW have nonnegative coefficients.

We notice that this condition is always verified from a physical point of view.

Estimate for the coherences.We set f (t) ≡ ρ j j (t)ρkk(t)− ρ jk(t)ρk j (t) and suppose
that f (t0) is zero for timet0, but we are not interested in the case whenρ j j (t0)ρkk(t0) = 0,
i.e., whenρ jk(t0) = 0, for whichρ jk ≡ 0 for all time. We notice thatρ j j (t)ρkk(t) ≥ 0 is
the consequence of Condition 3.1. Computingf ′ we obtain for a general timet

f ′(t) = 2γ jk f (t)+ (2γ jk − 0 j − 0k +
√

WjkWkj )ρ j j (t)ρkk(t)+ (Wjkρkk −Wkjρ j j )
2

+ ρ j j (t)
∑
l 6= j,k

Wklρll (t)+ ρkk(t)
∑
l 6= j,k

Wjl ρll (t).

If 2γ jk − 0 j − 0k +
√

WjkWkj > 0, we show (in the same way as above) thatf (t) is
positive for all positive time. A continuity argument gives the following condition.

Condition 3.2. A necessary and sufficient condition to have the estimate

|ρ jk(t)| ≤
√
ρ j j (t)ρkk(t)

for all timet ≥ 0 is that 2γ jk ≥ 0 j + 0k −
√

WjkWkj .
The fact that the condition is necessary is proved by assuming thatρll = 0 for l 6= j, k.

Condition 3.2 is also a physical condition (see, e.g., [7]). Off-diagonal decay rates have
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the same source as diagonal decay rates plus some extra sources, such as elastic collision
broadening. Therefore,γ jk is often written asγ jk = 1

2(0 j + 0k)+ γ coll
jk , whereγ coll

jk ≥ 0.
In many physical contexts we even haveγ coll

jk À 0 j + 0k. Moreover,γ coll
jk very often does

not depend onj andk.
In what follows we are unable to treat a condition including the expression

√
WjkWkj ,

but we give a specific form forγ jk that covers all physical models,

γ jk = 1

2
(0 j + 0k)+ γ coll

j + γ coll
k − Aj · Ak, (7)

whereγ coll
j ∈ R andAj ∈ RN .

Positiveness of the density matrix.Let X = (x1, . . . , xN) ∈ CN andg(t) = X∗ρ(t)X.
We assume thatt0 is the first time for whichg(t0) = 0. At time t0, ρ(t0) is a Hermitian
nonnegative matrix and we may state thatρ(t0)X = 0 andX∗ρ(t0) = 0. Then

g′(t) =
∑

j

∑
k 6= j

Wjkρkk|xj |2−
∑

j

0 jρ j j |xj |2−
∑

j,k, j 6=k

γ jk x∗j ρ jk xk

=
∑

j

∑
k 6= j

Wjkρkk|xj |2+
∑

j

(
2γ coll

j −‖Aj ‖2
)
ρ j j |xj |2

−
∑

j

(
1

2
0 j + γ coll

j

)
x∗j

(∑
k

ρ jk xk

)
︸ ︷︷ ︸

=0

−
∑

k

(
1

2
0k + γ coll

k

)(∑
j

x∗j ρ jk

)
︸ ︷︷ ︸

=0

xk

+
∑

k

∑
j

∑
k

γk
(
al

j x j
)∗
ρ jk
(
al

kxk
)

︸ ︷︷ ︸
≥0

=
∑

j

∑
k 6= j

Wjkρkk|xj |2+
∑

j

(
2γ coll

j − ‖Aj ‖2
)
ρ j j |xj |2

+
∑

l

∑
j

∑
k

γk
(
al

j x j
)∗
ρ jk
(
al

kxk
)

︸ ︷︷ ︸
≥0

.

A sufficient condition forg(t) to be positive is thereforeγ coll
j > 1

2‖Aj ‖2 for all j and it
is relaxed by continuity to the condition forg(t) to be nonnegative,γ coll

j ≥ 1
2‖Aj ‖2.

Condition 3.3. With the hypothesis (7) on collisional decay rates, a sufficient condition
for ρ to be a nonnegative matrix for all time isγ coll

j ≥ 1
2‖Aj ‖2 for all j .

We note that Condition 3.3 is more general than Condition 3.2. Besides, the most widely
used physical model corresponds toAj ≡ 0 andγ coll

j = 1
2γ

coll ; i.e., γ jk = 1
2(0 j + 0k)+

γ coll .

Remark. Condition (7) may be written as 2γ jk = 0 j + 0k + ‖Bj − Bk‖ for Bj ∈ CN .

4. NUMERICAL ISSUES

The most commonly used time discretization for the Bloch equations is the Crank–
Nicolson scheme. For example, Ziolkowskiet al. [10], who have studied the Maxwell–
Bloch equation, use this scheme coupled to a Yee scheme for the Maxwell equation. Nagra



608 BIDÉGARAY, BOURGEADE, AND REIGNIER

and York [9], while studying a coupling between the Maxwell equations and the rate equation
(involving only populations), also use this centered scheme. We show that this approach
is indeed valid for two-level Bloch equations. But for a greater number of energy levels
positiveness is no longer preserved; for example, negative populations may actually be
observed numerically.

Some other methods are also present in the literature. Mart´ın et al. [8] use a multigrid
approach with a leap-frog scheme in the case of two-level atoms and in the slowly varying
envelope approximation for the electromagnetic field. There are at least two ways to write
their scheme in our context, since for two-level equations the coherences do not appear in
the expression of the interaction terms in the evolution equation for the coherences. This
scheme is also not positiveness preserving.

We give an alternative discretization for the Bloch equation that does apply in a general
framework. We do not comment on how the Bloch equations may be coupled to a model for
the propagation of the electromagnetic field. Indeed, this problem, which is important for
full Maxwell–Bloch simulations, is not directly connected to the introduction of relaxation
terms and to the conservation of positiveness properties. We refer to [1] for a discussion on
the time coupling of Maxwell and Bloch equations.

4.1. Analysis of the Crank–Nicolson Scheme

The problem with the Crank–Nicolson scheme is not connected to the relaxation operator;
therefore we explain it for the relaxation-free model (1). Given a time stepδt , the Crank–
Nicolson scheme reads

ρn+1− ρn

δt
= − i

-h

(
Hn+1/2ρ

n+1+ ρn

2
− ρ

n+1+ ρn

2
Hn+1/2

)
,

whereρn and Hn+1/2 are, respectively, approximations ofρ(nδt) and H(nδt + δt
2 ). We

choose approximations such thatHn+1/2 is Hermitian, and therefore we may diagonalize it
in some basis, yielding̃Hn+1/2 = diag(λn+1/2

1 , . . . , λ
n+1/2
N ). Writing ρn in this basis gives

ρ̃n, which is a solution to

ρ̃n+1
jk − ρ̃n

jk

δt
= − i

-h

(
λ

n+1/2
j

ρn+1
jk + ρn

jk

2
− λn+1/2

k

ρn+1
jk + ρn

jk

2

)

or explicitly

ρ̃n+1
jk =

1− i δt
2-h
(
λ

n+1/2
j − λn+1/2

k

)
1+ i δt

2-h
(
λ

n+1/2
j − λn+1/2

k

) ρ̃n
jk .

This does not lead to a positive matrix ˜ρn+1, provided ˜ρn is positive. To understand this
point we have to compare with the continuous case. We may diagonalize the system (1) for
all time t and obtain

i -hρ̃ ′jk(t) = (λ j (t)− λk(t))ρ̃ jk(t)

and for allX = (x1, . . . , xN) ∈ CN ,
∑

jk x∗j ρ̃ jk(t)xk =
∑

jk y∗j ρ̃ jk(0)yk, whereyj = xj exp

(− i
-h
∫ t

0 λ j (s) ds). The discrete multiplicator is an approximation of exp(− i
-h
∫ t

0 (λ j (s)−
λk(s)) ds) but does not have the property of splitting into aj and ak contribution. In [10],
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Ziolkowski et al.only treat two-level atoms and this problem does not occur since there is
only one off-diagonal term.

4.2. An Alternative Method

The alternative method we introduce is based on a splitting procedure; i.e., we solve
separately

∂tρ = Lρ, (8)

where(Lρ)jk = −iω jkρ jk + Q(ρ) jk , and

i -h∂tρ = [V, ρ]. (9)

In Eq. (8) the linear operator is constant andρ(t + δt) = exp(Lδt)ρ(t). Therefore we
may compute exp(Lδt) once and for all and apply it at each time step. Equation (9)
is solved exactly byρ(t + δt) = exp( iV

-h δt)ρ(t) exp(− iV
-h δt), but it would be too expen-

sive to implement the diagonalization that is used for the proof mentioned above at each
time step sinceV dependsa priori on time (and space if the system is coupled to a
model of the field). We replace the exact solution by the approximate solutionρ(t + δt) ∼
(I − i δt

2-h V)−1(I + i δt
2-h V)ρ(t)(I − i δt

2-h V)(I + i δt
2-h V)−1, whereV is linear with respect toE

and the inverse matrices may be computed via the Fadeev formula. This leads to a very
efficient implementation of the scheme. The advantage of this splitting is that it preserves
positiveness for each of these equations. Indeed, both steps (8) and (9) preserve positiveness.
The numerical solution of the first step is exact, since we compute the matrix exp(Lδt), and
the approximation of the second step preserves positiveness,X∗ρ(t + δt)X = Y∗ρ(t)Y
with Y = (I − i δt

2-h V)(I + i δt
2-h V)−1X. Last, with these two steps it is possible to design

methods with any order of accuracy, although it is not worthwhile to do so if the model for
the electromagnetic field that might be coupled with it has a low order of accuracy.

If we write, for example, the second-order scheme, we have

ρn+1 = eLδt/2

(
I − i δt

2-h
V

)−1(
I + i δt

2-h
V

)
eLδt/2ρn(t)

(
I − i δt

2-h
V

)(
I + i δt

2-h
V

)−1

.

The Appendix shows thatMN = (I − i δt
2-h V)(I + i δt

2-h V)−1 reads I + δtφ(V, δt), where
φ(V, δt) is bounded forδt ≤ δt0 for anyδt0. The operatoreLδt/2 also readsI + δtψ(δt),
whereψ(δt) is bounded forδt ≤ δt0. Let us gather all the real variables (the diagonal ele-
ments and the real and imaginary parts of the off-diagonal elements) of the density matrixρn

in a vectoryn. Therefore, we may write the splitting scheme asyn+1 = yn + δt8(tn, yn, δt),
where for allδt0, 8(tn, yn, δt) is Lipschitz in the second variable uniformly with respect
to δt ≤ δt0. The dependence intn = nδt comes fromV , which is assumed to be Lipschitz
in time as well (it is a sine function in our test cases). This is a sufficient condition for
stability.

4.3. Some Applications

We present here some computations of the Bloch equations with a given electric field. We
focus on performance and the illustration of the use of different relaxation terms. Coupling
with a Maxwell solver leads to richer physical phenomena and we refer to [2] for examples
in a one-dimensional space. Research in higher dimensions is in progress.
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Comparison of different numerical schemes.In this section we compare three schemes.
The first one is the Crank–Nicolson scheme which is also the scheme that is the most widely
used. We also tried a relaxation scheme where diagonal terms (ρd) are computed at times
nδt and off-diagonal terms (ρod) at time(n+ 1

2)δt , namely

ρ
n+1/2
od − ρn−1/2

od

δt
= Rn

(
ρ

n+1/2
od + ρn−1/2

od

2

)
− i

-h

[
Vn,

ρ
n+1/2
od + ρn−1/2

od

2
+ ρn

d

]
,

ρn+1
d − ρn

d

δt
= Rn

(
ρn+1

d + ρn
d

2

)
− i

-h

[
Vn+1/2, ρ

n+1/2
od

]
.

Such a scheme is of no interest in the case of a forced electromagnetic field but leads to
less coupled equations in the case of Maxwell–Bloch equations (see [1]). Last, we tested the
splitting scheme that we describe in Section 4.2. In a two-level Bloch code, one diagonal
variable is usually not computed and replaced by the trace conservation law. This would lead
to unnecessary complications in the implementation of a multilevel code, and therefore we
test the different methods with respect to trace conservation, positiveness conservation, and
CPU times. To show the differences we have to run a large number of iterations. Figure 1
shows iterations 24,000 to 25,000 for a given relaxation-free test. The time step is chosen
to be lower than 1/(10 f ), where f = max(|ω12|, γ coll).

The details of the evolution are not important for our demonstration. Solutions are highly
oscillatory because the field is monochromatic and its frequency exactly matches the matter

FIG. 1. Comparison of different numerical schemes. The first three plots represent the time evolution of popu-
lations for three-level atoms and for different numerical schemes. The last plot represents the time evolution of the
trace for the Crank–Nicolson scheme (dash-point), the relaxation scheme (points), and the splitting scheme (solid).



PHYSICAL RELAXATION TERMS IN BLOCH EQUATIONS 611

FIG. 2. Different relaxation rates. Relaxation rates areW21 = 1012 andW32 = 1013.

FIG. 3. Different relaxation rates. Relaxation rates areW21 = 1013 andW32 = 1012.
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transitions. The important point is the range of the values for the populations. We see that
the Crank–Nicolson method and the relaxation method do not preserve positiveness (i.e.,
populations do not lie in the interval [0, 1]), as well as the trace property, while the splitting
method does. Estimates of coherences are not presented here but are wrong also. Besides,
CPU times are 23 s for the Crank–Nicolson scheme, 27 s for the relaxation scheme (and
indeed no improvement was expected with a given field), and 11 s for the splitting scheme.
Finally, the dynamics seems to be the same (up to a small shift) for the Crank–Nicolson
method and the splitting method but qualitatively different for the relaxation scheme. For
all these reasons the splitting method is used for further tests.

Simulations with different relaxation rates.This section demonstrates that being able to
handle different relaxation rates helps to describe the wide variety of transient behavior of
systems. In Figs. 2 and 3 are represented the transient and long-time evolution of a medium
(where initiallyρ11 = 1) under the influence of a wave packet with leading frequency 5ω31.
Dipole matrix elements arep12 = 0, p13 = 10−28, and p23 = 10−29. In both simulations
W13 = 0 andγ coll = 0.

The long-time behavior is also slightly affected by the change of the matrixW according
to Eq. (5).

5. CONCLUSION

The introduction of more than two levels into a Bloch model induces some new modeling
problems. Multilevel codes are necessary, however, to model physical phenomena, such as
coherence transfer [2] and Raman effects. Numerical models that were used until now for
two-level atoms are not able to preserve the natural properties of atoms of three or more
levels, the main one (or the more visible) of which is that populations may not lie between
0 and 1. We found an alternative method that not only has the advantage of preserving
positiveness properties but also allows some gain in computational time. In the case of a
coupling with Maxwell equations, it also makes it possible to decouple the computation of
the field and the density matrix, thus leading not only to substantial gains in computational
time, but also to the efficient parallelization of the code, which could be useful for one-
dimensional codes and even more for two- or three-dimensional codes.

APPENDIX

Fadeev Formulas for Two-, Three-, and Four-Level Atoms

We use the Fadeev formula to compute the matrixMN = (I − i δt
2-h V)(I + i δt

2-h V)−1 for
N-level atoms. This formula gives an algorithm to compute matrix inverses. Indeed, given
a matrixA, A−1 = 1

pN
BN−1, where

A1 = A, p1 = Tr A1, B1 = A1− p1I ,

A2 = AB1, p2 = 1
2Tr A2, B2 = A2− p2I ,

...
...

...

AN = ABN−1, pN = 1
N Tr AN, BN = AN − pN I = 0.

In our caseA = I + εp andε = − i δt
2-h E (in the case of multidimensional spaces, contribu-

tions in each direction should be added). Some simplifications are due to the fact that Tr
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p = 0. Computations lead to

M2 = I + ε
2Tr p2I − 2εp

1− 1
2ε

2Tr p2
,

M3 = I + −
2
3ε

3Tr p3I − 2εp+ 2ε2 p2

1− 1
2ε

2Tr p2+ 1
3ε

3Tr p3
,

M4 = I +
(− 2

3ε
3Tr p3− 1

4ε
4(Tr p2)2+ 1

2ε
4Tr p4

)
I

1− 1
2ε

2Tr p2+ 1
3ε

3Tr p3+ 1
8ε

4(Tr p2)2− 1
4ε

4Tr p4

− (2− ε2Tr p2)εp+ 2ε2 p2− 2ε3 p3

1− 1
2ε

2Tr p2+ 1
3ε

3Tr p3+ 1
8ε

4(Tr p2)2− 1
4ε

4Tr p4
.
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