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The Bloch equation models the evolution of the state of electrons in matter de-
scribed by a Hamiltonian. To model more physical phenomena we have to introduce
phenomenological relaxation terms. The introduction of these terms has to conserve
some positiveness properties. The aim of this paper is to review possible relaxation
models and to provide insight into how to discretize them properly in view of nu-
merical computationsg 2001 Academic Press
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1. INTRODUCTION

Today, laser sources make it possible to produce light pulses that are increasingly pow:
and shorter. The propagation of such beams through a medium induces nonlinear i
matter interactions. Moreover, as the pulse duration is of the same order as or even n
smaller than the time response of the medium, transient phenomena have to be consic
Thus models are formed in the time domain.

The classical description of the propagation of an electromagnetic wave is given by
Maxwell equations, where the influence of the matter is expressed through polarizatior
simple description involving the refractive index is not sufficient, even when it is frequen
and intensity dependent. Here, very precise modeling is required for matter. This is |
formed by Bloch equations, which are derived in the context of quantum mechanics. Th
equations deal with the probabilistic description of the population of each energy level
the atoms that constitute the matter and the coherence between these levels. These vai
are gathered in a so-called density matrix. Statistical averaging over atoms is taken
account by the introduction of relaxation terms. These terms are also necessary to m
some important physical phenomena, such as spontaneous emission and collisions.
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are different classical ways to introduce them [3, 4, 6], but we present here the most gen
model, i.e., “Pauli’'s master equation” model.

The relaxation terms that we introduce should preserve some important properties
would be valid without these additional terms. First, populations should be positive and |
than 1. Coherences should not be greater than the related populations and density ma
should be positive matrices. In the absence of statistical averaging (and therefore relaxa
all these properties are straightforward, as is emphasized below.

We do not know of any existing literature on this specific problem of conservation
positiveness properties while relaxation terms are added. The reasons may be the follov
As we show, positiveness is conserved in all classical physical contexts; hence thisisr
problem for physicists. From the numerical point of view, Bloch codes up to now involve
only two-level atoms [5, 8, 10] but problems occur with at least three levels. Such a stt
is useful for our multilevel code and the simulation of physical contexts that involve mo
than two levels and different relaxation terms, such as a laser cavity. The scope of this p:
is limited to the Bloch equations with a given electromagnetic field; the problem of tf
coupling with a propagation model is postponed for further study.

In Section 2 we give a brief description of the Bloch equations. Section 3 is devoted
the introduction of Pauli's master equation model. A time semidiscretization of the Blo
equationis dealt with in Section 4. This discretization conserves positiveness and is tract
for real numerical computations.

2. BLOCH EQUATIONS

In quantum mechanics, matter is defined by state veptgrghe time evolution of which
is given by the Scladinger equation

ihoy) = Hy).

The HamiltonianH is composed of the unperturbed Hamiltonidgpand the perturbation
V induced by the electromagnetic field: = Hyp + V. Following a standard approach we
decomposdys) on the basis of eigenstates of the unperturbed HamiltohignThese
guantum statef§ ) are the eigenfunctions @y that correspond to thieth level of energy

&j = hw; of unperturbed atoms. The set of all these (suitably normalized) quantum stz
forms a basis of all quantum states. We therefore mayyset > a;|j) and define the
(infinite dimensional) density matrixaspjxk = > g a]-S a;fs, whereSis a statistical set. This
is a solution to

ihat/):[va]v (1)

where [, -] denotes the commutator of two operators. Keeping dhkelevant levelsp is
anN x N Hermitian nonnegative matrix. Its diagonal elemenjgepresent the population
of levels|j) and its off-diagonal elemenis the coherences between levgls and|k).

To express the perturbatiovi, we restrict ourselves to dipole moments because the
induce the larger order in the perturbation series. Perturbdtieadsy — —eE-R, taking
into account thaE does not significantly vary over atomic distances. The dipole mome!
matrix is defined by its elemenf, = (k|eﬁ|j). With these notations Eq. (1) yields
i

HE B ol e

dpjk = —lwjkpojk +
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wherewjk = wj — w is the frequency associated with the transition from lgglto
level|j).

In the expression fo¥, E may be a given field or may be the solution of the Maxwell
equations. Inthe latter case thereisa couplmg between the Bloch equauons and the Mav
equations via the constitutive relatih= ¢oE + P, where the polarlzatlorf? is given in
terms of the density matrix b[v’ = N, Tr(pp), andN, is the density of atoms.

3. PAULI'S MASTER EQUATION MODEL

To derive the Bloch equations the following hypothesis is made: the stochastic proc
driving the statistical distributio® is stationary. This is, however, not the case and it is nc
possible to obtain any information about this process. Other phenomena are not include
the original model, the main one being spontaneous emission of light, but also collisic
vibrations in crystal lattices, or thermal perturbations in fluids. The only way to take
these phenomena into accountis to add phenomenological relaxation terms to Eq. (2), w
becomes

. i
dhpjk = —lwjkpjk — E[V’ plik + Q) jk- 3

The addition of relaxation terms for a coherence only involves this variable, and theref
for j #Kk, Q(p)jk = —yjkpjk- Models for diagonal relaxation terms are of several kind:
but may be shown to be submodels of Pauli’s master equation model, where

Q)i =Y _ Witon — Y _ Wipj; =Y Wiion —Tjpjj. 4)
2 2 1]

The relaxation to equilibrium states is obtained by imposing
Wiy = W= (5)

(see, e.g., Bloembergen [3]). Hegg= 1/« T, wherex is Boltzmann’s constant anfl is
the temperature.

In what follows we suppose that some physical properties are satisfied for the initial ¢
and try to find conditions for the relaxation operator to propagate them for all time.

3.1. Physical Properties

The most obvious property far is that it is Hermitian (i.e., it is an observable quantity
from the quantum mechanical point of view). The only way to ensure this property is f
equations fop;x andpy; to be conjugate. Therefosg, andy; should be equal, which is
indeed the choice that is always made.

All relevant energy levels are assumed to be kept in the model which may be expres
as Ti(p) = 1. This property is conserved since (3) yiekpriori 9, Tr(p) = Tr(Q(p)) and
the specific relaxation operat@ given by (4) ensures that {®(p)) =0

The other properties we want to preserve while adding relaxation terms are positiver
properties. First, populations should be nonnegative. They also should be less than
but this is a consequence of positiveness and the above trace property. The coheren
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two levels has also to be controlled by the population of both levels, or more precise
|,o,-k|2 < pjj pxk- Finally, the whole matrix has to be nonnegative.

3.2. Positiveness

To study positiveness we note that it is preserved by the relaxation-free model (
Section 4.1) and we use the Trotter—Kato formula, which ensures that

p©) =& Pp(0) = lim (¢ (0))",

whereLpjx = —iwjkpjk — Lh[V, oljk. Therefore it is sufficient that the equation

dp = Qp) (6)

preserves positiveness properties. In the rest of this section proofs address this eque
All the proofs assume that the quantities we study are nonnegative dt infe

Positiveness of populationsGiven a levek, we consider the initial data;; = ;. For
j # k, we haved; pjj (0) = Wjk. Sincepj; (0) = 0, its derivative should not be negative and
therefore a necessary conditiorVig, > 0.

This necessary condition is also sufficient: if at titgep;; (to) = 0, thend, pjj (to) =
Zk#j Wk; ok (o). Since there existgy # j such thafoy, (to) # O (see the trace property),
we show that ifwWj,, > 0 eitherty = 0, and fort > 0, but small pj; (t) > 0, orty # 0, and
it is not possible thap;; (tp) = 0. Thus ifW is a matrix with positive coefficientg;; (t)
is positive fort > 0. Besidesp(t) is continuous with respect to the matki¥; hence ifW
is only nonnegativey;; (t) remains nonnegative for all timte> 0. The first condition on
matrix W is the following.

Condition 3.1. A necessary and sufficient condition for populations to be nonnegati
(and less than 1 via the trace property) is that matikave nonnegative coefficients.
We notice that this condition is always verified from a physical point of view.

Estimate for the coherencesWe set f (t) = pjj (t) pkk(t) — pjk () px;j (t) and suppose
that f (to) is zero for timeto, but we are not interested in the case wigrito) pik(to) = 0,
i.e., whenpjk (to) = 0, for which p;x = 0 for all time. We notice thap;; (t)okk(t) > 0 is
the consequence of Condition 3.1. Computirigve obtain for a general time

f'(t) = 2y () + 2yik — Tj — Tk + /WikWi) 0 (0 o) + (Wik ok — Wi pjj )

+ i (1) Y Wiaon () + pr(® D Wy pon (1),
I#].k I#].k

If 2yjk — T'j — Tk + /WjxW; > 0, we show (in the same way as above) tlfigt) is
positive for all positive time. A continuity argument gives the following condition.

Condition 3.2. A necessary and sufficient condition to have the estimate

loik O] < v/ pjj () prk(t)

foralltimet > 0O isthat a’jk > Ty + Tk — / Wik Wj.
The fact that the condition is necessary is proved by assumingthatO for| # j, k.
Condition 3.2 is also a physical condition (see, e.g., [7]). Off-diagonal decay rates h:
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the same source as diagonal decay rates plus some extra sources, such as elastic cc
broadening. Thereforeyy is often written ag/jx = 5(I'; + I'o) + ¥, wherey " > 0.
In many physical contexts we even hay" > I'j + I'c. Moreover,y " very often does
not depend o andk.

In what follows we are unable to treat a condition including the expresgié\W;,
but we give a specific form fop;, that covers all physical models,

1
vik =5+ T + o oyl — A A @)

wherey ! € R andA; € R".

Positiveness of the density matrix.et X = (Xg,...,Xn) € cN andg(t) = X*p(t) X.
We assume thay is the first time for whichg(tp) = 0. At time tg, p(tp) is a Hermitian
nonnegative matrix and we may state théh) X = 0 andX*p(tg) = 0. Then

g =D Wikpulx;? —erp,,|x,| — D VKK Pk

i k#j ik, j#k
=> > Wikpkklx; +Z (2 = 1A I1%) pii 1517
i k#j
1
— Z ( ry+ )/COH) XT (Z,o,-kxk> — Z <2Fk + )/CO”> (ZXTPJk) Xk
k k i
N————’
=0 =0

" Xk: 2 zk: 7(@5%)” ik (30)

=> > Wikpuklx; +Z (2" = 1A I%) o 1% 12

7k
+ ZZZK:W(EHX]) Pik (3%

>0

A sufficient condition forg(t) to be positive is thereforg®® > 3| A;[|* for all j and it
is relaxed by continuity to the condition fgxt) to be nonnegative; ™' > 3| A; 2.

Condition 3.3. With the hypothesis (7) on collisional decay rates, a sufficient conditio
for p to be a nonnegative matrix for all timei§°" > || Aj || for all j.

We note that Condition 3.3 is more general than Condition 3.2. Besides, the most wic
used physical model correspondsAp = 0 andy (" = Jy®!: i.e., yj = 3(I'j + Tw) +

coII

4
Remark. Condition (7) may be written ag/ = I'j + I'x + [|Bj — Bx|| for B € cN.

4. NUMERICAL ISSUES

The most commonly used time discretization for the Bloch equations is the Crar
Nicolson scheme. For example, Ziolkows#i al. [10], who have studied the Maxwell—
Bloch equation, use this scheme coupled to a Yee scheme for the Maxwell equation. N
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and York [9], while studying a coupling between the Maxwell equations and the rate equat
(involving only populations), also use this centered scheme. We show that this appro
is indeed valid for two-level Bloch equations. But for a greater number of energy leve
positiveness is no longer preserved; for example, negative populations may actually
observed numerically.

Some other methods are also present in the literature.etrél. [8] use a multigrid
approach with a leap-frog scheme in the case of two-level atoms and in the slowly vary
envelope approximation for the electromagnetic field. There are at least two ways to w
their scheme in our context, since for two-level equations the coherences do not appe
the expression of the interaction terms in the evolution equation for the coherences. -
scheme is also not positiveness preserving.

We give an alternative discretization for the Bloch equation that does apply in a gene
framework. We do not comment on how the Bloch equations may be coupled to a model
the propagation of the electromagnetic field. Indeed, this problem, which is important
full Maxwell-Bloch simulations, is not directly connected to the introduction of relaxatio
terms and to the conservation of positiveness properties. We refer to [1] for a discussiol
the time coupling of Maxwell and Bloch equations.

4.1. Analysis of the Crank—Nicolson Scheme

The problem with the Crank—Nicolson scheme is not connected to the relaxation opere
therefore we explain it for the relaxation-free model (1). Given a time &tejne Crank—
Nicolson scheme reads

pn+1 _ pn _ <Hn+1/2pn+1 +pn . pn+1+pn Hn+1/2>

i
st h 2 2

where p" and H""%2 are, respectively, approximations pfnst) and H (nst + %). We
choose approximations such titt+1/? is Hermitian, and therefore we may diagonalize it
in some basis, yieldingi"%/2 = diag(2tY?, ..., AN%). Writing p" in this basis gives

0", which is a solution to

~n+1 ~ . 1 1
PR =P _ 1 ;L'.‘+1/2p?k+ + Pl _)\n+1/2/)1nk+ + Pl
st h\™ 2 k 2
or explicitly
ist (4 N+1/2 n+1/2
~n+1 _ 1_|2_h()‘j — Ak ) ~n

ik = ist (4 N+1/2 nt1/2y Pk
T4+ 50 (57 =27
This does not lead to a positive matgRt?, providedp™ is positive. To understand this
point we have to compare with the continuous case. We may diagonalize the system (1
all timet and obtain

o' ) = () (D) — Ak(®) Ak (D)

anqlforaIIX = (Xg,...,XN) € (CN,Z]-k X[ Ok (X = ij y}‘ﬁjk(O)yk,wher_ey,- = Xj exp
(—% fé 1j(s)ds). The discrete multiplicator is an approximation of éxg; fé (rj(s) —
Ak(S)) ds) but does not have the property of splitting int¢ and ak contribution. In [10],
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Ziolkowski et al. only treat two-level atoms and this problem does not occur since there
only one off-diagonal term.

4.2. An Alternative Method

The alternative method we introduce is based on a splitting procedure; i.e., we sc
separately

8t,0 = Lp, (8)
where(Lp)jk = —iwjkpjk + Q(p)jk, and
ihdp = [V, p]. 9)

In Eqg. (8) the linear operator is constant an@ + §t) = exp(Lt)p(t). Therefore we
may compute exf.st) once and for all and apply it at each time step. Equation (€
is solved exactly by (t + 6t) = exp(‘%cﬁt)p(t) exp(——at) but it would be too expen-
sive to implement the diagonalization that is used for the proof mentioned above at e
time step sinceV dependsa priori on time (and space if the system is coupled to &
model of the field). We replace the exact solution by the approximate solutton 5t) ~
(=25~ + V) p ) (1 — V) (I + V)L, whereV is linear with respect té&
and the inverse matrices may be computed via the Fadeev formula. This leads to a
efficient implementation of the scheme. The advantage of this splitting is that it preser
positiveness for each of these equations. Indeed, both steps (8) and (9) preserve positive
The numerical solution of the first step is exact, since we compute the matfik &ypand
the approximation of the second step preserves positiveXgggt + 5t) X = Y*p(t)Y
with Y = (I — 2tv)(1 + 2Lv)~1X. Last, with these two steps it is possible to desigr
methods with any order of accuracy, although it is not worthwhile to do so if the model f
the electromagnetic field that might be coupled with it has a low order of accuracy.

If we write, for example, the second-order scheme, we have

. -1
N+l _ Lst/2 18t 15t Lst/2 on — —V | + I(StV
P =€ <| 2hV) <| + 2hV e p (1) 2h 2h

The Appendix shows thably = (I — 2V) (I + 2tv)~t reads| + st (V, 6t), where

¢ (V, 8t) is bounded fost < 6ty for any stp. The operatoeL‘“/2 also readd + st (8t),
whereys (8t) is bounded fobt < §ty. Let us gather all the real variables (the diagonal ele
ments and the real and imaginary parts of the off-diagonal elements) of the densityghatri;
inavectory". Therefore, we may write the splitting scheme/as' = y" 4 std(t,, y", 6t),
where for allsty, ®(t,, y", §t) is Lipschitz in the second variable uniformly with respect
to 8t < 8tp. The dependence iy = nét comes fromV, which is assumed to be Lipschitz
in time as well (it is a sine function in our test cases). This is a sufficient condition f
stability.

4.3. Some Applications

We present here some computations of the Bloch equations with a given electric field.
focus on performance and the illustration of the use of different relaxation terms. Coupl
with a Maxwell solver leads to richer physical phenomena and we refer to [2] for examp
in a one-dimensional space. Research in higher dimensions is in progress.
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Comparison of different numerical schemehm this section we compare three schemes
The first one is the Crank—Nicolson scheme which is also the scheme that is the most wi
used. We also tried a relaxation scheme where diagonal teighsie computed at times
nst and off-diagonal termseg) at time(n + %)8t, namely

1/2 —-1/2 1/2 —-1/2 . 1/2 -1/2
Poi " —poa _ o ped e "\ 1 [\n ped A pe
st 2 hi 2 al
/03+1 - pg — RN IOQ+1 + g _ i_[vn+1/2 ,on+l/2}
st 2 h Pfod I

Such a scheme is of no interest in the case of a forced electromagnetic field but leac
less coupled equations in the case of Maxwell-Bloch equations (see [1]). Last, we testec
splitting scheme that we describe in Section 4.2. In a two-level Bloch code, one diago
variable is usually not computed and replaced by the trace conservation law. This would |
to unnecessary complications in the implementation of a multilevel code, and therefore
test the different methods with respect to trace conservation, positiveness conservation
CPU times. To show the differences we have to run a large number of iterations. Figur
shows iterations 24,000 to 25,000 for a given relaxation-free test. The time step is chc
to be lower than 4(10f), wheref = max(|w12|, y).

The details of the evolution are not important for our demonstration. Solutions are higl|
oscillatory because the field is monochromatic and its frequency exactly matches the m:

Crank-Nicolson method Relaxation method

1.92 1.94 1.96 1.98 1.92 1.94 1.96 1.98

1.3

1.25
124
1.15!
1A

1.05}:

1.92 1.94 1.96 1.98
x107? x 107"

FIG.1. Comparison of different numerical schemes. The first three plots represent the time evolution of po
lations for three-level atoms and for different numerical schemes. The last plot represents the time evolution o
trace for the Crank—Nicolson scheme (dash-point), the relaxation scheme (points), and the splitting scheme (s
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FIG. 3. Different relaxation rates. Relaxation rates g = 10" andW;, = 102,
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transitions. The important point is the range of the values for the populations. We see
the Crank—Nicolson method and the relaxation method do not preserve positiveness
populations do not lie in the interval [@]), as well as the trace property, while the splitting
method does. Estimates of coherences are not presented here but are wrong also. Be
CPU times are 23 s for the Crank—Nicolson scheme, 27 s for the relaxation scheme (
indeed no improvement was expected with a given field), and 11 s for the splitting sche
Finally, the dynamics seems to be the same (up to a small shift) for the Crank—Nicol:
method and the splitting method but qualitatively different for the relaxation scheme. F
all these reasons the splitting method is used for further tests.

Simulations with different relaxation ratesThis section demonstrates that being able tc
handle different relaxation rates helps to describe the wide variety of transient behavio
systems. In Figs. 2 and 3 are represented the transient and long-time evolution of a mec
(where initially p;1 = 1) under the influence of a wave packet with leading frequengy.5
Dipole matrix elements arp;» = 0, p13 = 10728, and po3 = 1072, In both simulations
Wiz =0 andy°°” =0.

The long-time behavior is also slightly affected by the change of the matiaccording
to Eq. (5).

5. CONCLUSION

The introduction of more than two levels into a Bloch model induces some new modeli
problems. Multilevel codes are necessary, however, to model physical phenomena, sut
coherence transfer [2] and Raman effects. Numerical models that were used until now
two-level atoms are not able to preserve the natural properties of atoms of three or n
levels, the main one (or the more visible) of which is that populations may not lie betwe
0 and 1. We found an alternative method that not only has the advantage of presen
positiveness properties but also allows some gain in computational time. In the case
coupling with Maxwell equations, it also makes it possible to decouple the computation
the field and the density matrix, thus leading not only to substantial gains in computatio
time, but also to the efficient parallelization of the code, which could be useful for on
dimensional codes and even more for two- or three-dimensional codes.

APPENDIX

Fadeev Formulas for Two-, Three-, and Four-Level Atoms

We use the Fadeev formula to compute the malix = (I — $EV)(1 + 2v)~1 for
N-level atoms. This formula gives an algorithm to compute matrix inverses. Indeed, giv
amatrixA, A™1 = p—lN Bn_1, Where

A=A, pr=Tr Aq, Br = A1 — pul,
Az = AB, P2 = 5Tr Ay, B = A; — pl.,

An=ABy_1, pPv=5TrAy,  By=Ay-—pnl =0

Inour caseA = | + epande = —iz% E (in the case of multidimensional spaces, contribu-
tions in each direction should be added). Some simplifications are due to the fact tha
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= 0. Computations lead to
e2Tr p?l — 2¢p

Mp=1| 4+ 5P — P
? 1— 1e2Tr p2

Mo — | —263Tr p3l — 2ep + 262p?
T 1— 262Tr p2 + 13Tr p3

Ma— | (—2&%Tr p3 — 2e4(Tr p»)2 + 2&*Tr p*)|
4 =

1- %82TI‘ p2 + %53Tr p3 + %84(Tr p2)2 — %84TI‘ p
(2 — €2Tr pYep + 262p? — 2:3p°
1= 362Tr p? + 3e5Tr p3 4 ge(Tr p?)2 — 34T p*”
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