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NONLINEAR SCHRÖDINGER EQUATION∗

CHRISTOPHE BESSE† , BRIGITTE BIDÉGARAY‡ , AND STÉPHANE DESCOMBES§
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Abstract. In this paper, we consider the nonlinear Schrödinger equation ut + i∆u− F (u) = 0
in two dimensions. We show, by an operator-theoretic proof, that the well-known Lie and Strang
formulae (which are splitting methods) are approximations of the exact solution of order 1 and 2 in
time.
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1. Introduction. Let us consider the cubic nonlinear Schrödinger equation




∂u

∂t
+ i∆u+ iε|u|2u = 0, x ∈ R

2 , t > 0,

u(x, 0) = u0(x), x ∈ R
2,

(1.1)

with ε = ±1. A large number of articles are devoted to the numerical study of this
equation using many different time discretizations, with or without splitting. The later
case is represented by Crank–Nicolson type [4], Runge–Kutta type [1], [12], symplectic
(see, for example, [14], [15]), and relaxation [2] methods. Splitting methods are based
on a decomposition of the flow of (1.1). More precisely, let us define the flow Xt of
the linear Schrödinger equation




∂v

∂t
+ i∆v = 0, x ∈ R

2 , t > 0,

v(x, 0) = v0(x), x ∈ R
2,

and the flow Y t for the differential equation




∂w

∂t
+ iε|w|2w = 0, x ∈ R

2 , t > 0,

w(x, 0) = w0(x), x ∈ R
2.

The idea of splitting methods is to approximate the flow of (1.1) by combining the
two flows Xt and Y t. Two classical methods are the following: the Lie formula
given by Zt

L = XtY t (or Y tXt) and the Strang formula [18] Zt
S = Xt/2Y tXt/2

(or Y t/2XtY t/2); we introduce these four definitions since it is sometimes better to
exchange the role of Xt and Y t when one of the two equations is nonsmooth [17].
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Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France (besse@mip.ups-tlse.fr).
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This leads to good numerical methods for the periodic problem since the linear part
may be computed efficiently by the use of fast Fourier transforms and the nonlinear
part is solved exactly [19], [20]. We are interested in showing that the Lie formula is
a first order approximation of the flow of (1.1) and the Strang formula is a second
order approximation of the flow of (1.1). This result could be obtained formally with
the formal Lie algebra theory (explained in the book [14] and in [13]), but here we
give a simple proof allowing us to have an idea of the size of the constants.

The linear case has already been studied in [11] and [7] and we extend these
results to the nonlinear case.

Following an idea of Donnat [8], we restrict ourselves to the case where the non-
linearity is a Lipschitz function; this may be done by a truncation method on a time
interval before a possible blow-up. Thus we consider u the solution to the continuous
problem




∂u

∂t
+ i∆u− F (u) = 0, x ∈ R

2 , t > 0,

u(x, 0) = u0(x), x ∈ R
2,

(1.2)

where we assume that F is a Lipschitz function with constant K such that F (0) = 0
and the first four derivatives of F are bounded. We introduce the flow St, associated
with (1.2) (that is, u(t, ·) = Stu0), and the two flows Xt and Y t, solutions to




∂v

∂t
+ i∆v = 0, x ∈ R

2 , t > 0,

v(x, 0) = v0(x), x ∈ R
2,

(1.3)

and 


∂w

∂t
− F (w) = 0, x ∈ R

2 , t > 0,

w(x, 0) = w0(x), x ∈ R
2.

(1.4)

In what follows, we call Zt any of the four splitting schemes when there is no ambiguity.
Let us also recall that the semigroup Xt is a unitary operator on all classical Sobolev
spaces Hs = Hs(R2), s ∈ R. Let us quote the main result of this article.

Theorem 4.1. For all u0 in H2 and for all T > 0, there exists C and h0 such
that for all h ∈ (0, h0], for all n such that nh ≤ T

∥∥∥(Zh
L

)n
u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H2)h‖u0‖H2 .

Moreover, if u0 belongs to H4, then
∥∥∥(Zh

S

)n
u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H4)h2‖u0‖H4 .

To prove the convergence order for each splitting scheme, for a small h > 0 and
all integer n such that nh ≤ T , we have to estimate the quantity ‖(Zh)nu0 −Snhu0‖,
where ‖ · ‖ denotes the L2 norm. As noticed in [5], the triangle inequality yields

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

‖(Zh)n−j−1ZhSjhu0 − (Zh)n−j−1S(j+1)hu0‖.
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In section 3 we prove that for all the studied schemes there exists a constant C0 such
that for w0 and w′

0 ∈ L2 and all t ∈ [0, 1]

‖Ztw0 − Ztw′
0‖ ≤ (1 + C0t)‖w0 − w′

0‖.(1.5)

Therefore

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

(1 + C0h)
n−j−1

∥∥(Zh − Sh)Sjhu0

∥∥ .(1.6)

Thus we may restrict our study to the case for which at each time step the initial
data are the same for the continuous model and the splitting scheme and is equal to
v0 = Sjhu0. Classical results on solutions to the nonlinear Schrödinger equation allow
us to state that Sjhu0 is uniformly bounded in H4 for jh ≤ T . Now we may write a
Duhamel formula for the continuous problem (1.2) that reads as

u(t) = Xtv0 +

∫ t

0

Xt−sF (u(s)) ds

and express the difference of the exact solution and the splitting solution v(t) = Ztv0
as

u(t)− v(t) =

∫ t

0

Xt−s [F (u(s))− F (v(s))] ds+R(t),

where the fact that F is Lipschitz and Xt is unitary in L2 leads to

‖u(t)− v(t)‖ ≤ K

∫ t

0

‖u(s)− v(s)‖ ds+ ‖R(t)‖.

There remains to show that the remainder R(t) may be estimated as ‖R(t)‖ = O(tp+1)
for t small and to use a Gronwall lemma to conclude that the scheme is of order p.

This paper is organized as follows: In section 2, we prove a Gronwall lemma and
some estimates on Xt and Y t. In section 3, we show that each scheme is Lipschitz
continuous and we study the local error between Zt and St. Section 4 is devoted to
the proof of Theorem 4.1.

2. Some useful estimates.

2.1. A Gronwall lemma.
Lemma 2.1 (Gronwall). Let P be a polynomial with positive coefficients and no

constant term. We assume that the function φ is such that there exists a constant
C ≥ 0 such that for all t ≥ 0

0 ≤ φ(t) ≤ φ(0) + P (t) + C

∫ t

0

φ(s)ds.

Then for all α > 1 there exists t0 > 0 such that for all 0 ≤ t ≤ t0

φ(t) ≤ φ(0)eCt + αP (t).

Proof. Let us set

ψ(t) =

(
φ(0) + P (t) + C

∫ t

0

φ(s)ds

)
e−Ct.
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Then

ψ′(t) =
(
P ′(t) + Cφ(t)− C

(
φ(0) + P (t) + C

∫ t

0

φ(s)ds

))
e−Ct ≤ P ′(t)e−Ct;

therefore,

ψ(t)− ψ(0) ≤
∫ t

0

P ′(s)e−Csds,

and since P (0) = 0, ψ(0) = φ(0). Hence, because P ′ is positive,

φ(t) ≤ ψ(t)eCt ≤ φ(0)eCt +

∫ t

0

P ′(s)eC(t−s) ds ≤ φ(0)eCt + eCt0

∫ t

0

P ′(s) ds.

We choose t0 such that eCt0 ≤ α and, for all 0 ≤ t ≤ t0,

φ(t) ≤ φ(0)eCt + αP (t).

2.2. Estimates on the Schrödinger flow Xt. From the definition of the
Schrödinger flow we first state that

Ẋt = i∆Xt = iXt∆.(2.1)

This leads to the following estimates.
Lemma 2.2. 1. For all w ∈ H2 and all t ≥ 0,

‖Xtw − w‖ ≤ t‖w‖H2 .(2.2a)

2. For all w ∈ H4 and all t ≥ 0,

‖Xtw − w‖H2 ≤ t‖w‖H4 .(2.2b)

3. Let T > 0; there exists a constant C such that, for all w ∈ C1([0, T ];H2) ∩
L∞([0, T ], H4) and 0 ≤ t ≤ T ,

∥∥∥∥
∫ t

0

(
Xt−sw(s)−Xt/2w(s)

)
ds

∥∥∥∥ ≤ Ct3(‖w‖C1([0,T ];H2) + ‖w‖L∞([0,T ],H4)).(2.2c)

4. There exists a constant C such that for all w ∈ H4,∥∥∥∥Xt/2w − 1

2
Xtw − 1

2
w

∥∥∥∥ ≤ Ct2‖w‖H4 .(2.2d)

Proof. 1. Let w ∈ H2; we have

‖Xtw − w‖ =
∥∥∥∥
∫ t

0

Ẋsw ds

∥∥∥∥ =

∥∥∥∥
∫ t

0

Xs∆w ds

∥∥∥∥ ≤
∫ t

0

‖∆w‖ds ≤ t‖w‖H2 .

2. If we assume that w ∈ H4, the estimate may be proved as the previous one
replacing the L2 norm by the H2 norm.

3. A Taylor expansion gives

Xt−s −Xt/2 = (t/2− s)Ẋt/2 +

∫ t−s

t/2

(t− s− σ)Ẍσ dσ
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and

(Xt−s −Xt/2)w(s) = i(t/2− s)Xt/2∆w(s)−
∫ t−s

t/2

(t− s− σ)Xσ∆2w(s) dσ.

A simple change of variables implies that

∫ t

0

(t/2− s)∆w(s) ds =

∫ t/2

0

(t/2− s)[∆w(s)−∆w(t− s)] ds.

The Lipschitz constant of the map s �→ ∆w(s) is estimated using ‖w‖C1([0,T ],H2) and,
therefore,
∥∥∥∥
∫ t

0

(
Xt−sw(s)−Xt/2w(s)

)
ds

∥∥∥∥
≤

∥∥∥∥∥
∫ t/2

0

(t/2− s)[∆w(s)−∆w(t− s)] ds

∥∥∥∥∥+
∥∥∥∥∥
∫ t

0

∫ t−s

t/2

(t− s− σ)Xσ∆2w(s)dσds

∥∥∥∥∥
≤ 2‖w‖C1([0,T ],H2)

∫ t/2

0

(t/2− s)2ds+ ‖w‖L∞([0,T ],H4)

∫ t

0

∫ t−s

t/2

(t− s− σ) dσ ds

≤ Ct3(‖w‖C1([0,T ],H2) + ‖w‖L∞([0,T ],H4)).

4. Once more, Taylor expansions yield

Xt/2 − 1

2
Xt − 1

2
X0 = −1

2

∫ t/2

0

σ(Ẍσ + Ẍt−σ) dσ,

and the same arguments as for the last estimates show the result.

2.3. Estimates on the nonlinear flow Y t. The definition of the nonlinear
flow Y t may also read as

Y tw = w +

∫ t

0

F (Y sw) ds.(2.3)

Lemma 2.3. Let w ∈ H2; then there exists a constant C that depends only on
M = ‖w‖∞ such that for all 0 ≤ t ≤ 1

‖Y tw‖ ≤ eKt‖w‖ and ‖Y tw‖H2 ≤ C‖w‖H2 .(2.4a)

Moreover, if w ∈ H4, then there exists a constant C that depends only on M = ‖w‖∞
such that for all 0 ≤ t ≤ 1

‖Y tw‖H4 ≤ C‖w‖H4 .(2.4b)

Finally, for w1, w2 ∈ L2, there exists a constant C that depends only on F such that
for all 0 ≤ t ≤ 1

‖Y tw1 − Y tw2‖ ≤ (1 + Ct)‖w1 − w2‖.(2.4c)

Proof. Equation (2.3) first yields a L∞ estimate, namely,

‖Y tw‖∞ ≤ ‖w‖∞ +K

∫ t

0

‖Y sw‖∞ ds.
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Then the classical Gronwall lemma leads to

‖Y tw‖∞ ≤ eKt‖w‖∞.
A L2 estimate also follows from (2.3):

‖Y tw‖ ≤ ‖w‖+K

∫ t

0

‖Y sw‖ ds.(2.5)

For all first order differential operators D

DY tw = Dw +

∫ t

0

F ′(Y sw)D(Y sw) ds,

and, denoting by M ′ the maximum for F ′, we obtain

‖DY tw‖ ≤ ‖Dw‖+M ′
∫ t

0

‖DY sw‖ ds.

Differentiating once more,

∆Y tw = ∆w +

∫ t

0

(
F ′′(Y sw)D(Y sw)2 + F ′(Y sw)∆Y sw

)
ds,

and, denoting by M ′′ the maximum for F ′′,

‖∆Y tw‖ ≤ ‖∆w‖+
∫ t

0

(
M ′′‖DY sw‖2 +M ′‖∆Y sw‖) ds.

Using the Gagliardo–Nirenberg inequality,

‖DY sw‖2 ≤ ‖Y sw‖H2‖Y sw‖∞
and

‖∆Y tw‖ ≤ ‖∆w‖+
∫ t

0

(M ′′‖Y sw‖∞ +M ′) ‖Y sw‖H2 ds.

Therefore, using the L∞ estimate, there exists a constant c such that

‖Y tw‖H2 ≤ ‖w‖H2 + c

∫ t

0

(
1 + eKs

) ‖Y sw‖H2 ds.

Last, using the Gronwall lemma,

‖Y tw‖H2 ≤ ‖w‖H2 exp

(
c

∫ t

0

(
1 + eKs

)
ds

)
.

Equation (2.5) also leads to

‖Y tw‖ ≤ eKt‖w‖.
For t ≤ 1, there exists a constant C such that

exp

(
c

∫ t

0

(
1 + eKs

)
ds

)
≤ C

and estimate (2.4a) follows. The proof for (2.4b) is similar and left to the reader.
Finally, estimate (2.4c) is a simple consequence of the Gronwall lemma.
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3. Lipschitz properties of Zt and local errors. In this section we more
specifically give precise estimates for Lie and Strang formulae. We first show Lipschitz
properties on Zt, i.e., that estimate (1.5) is valid. Next we estimate the remainder
R(t) defined in the introduction.

3.1. Lipschitz properties.
• Lie approximation—case Zt = XtY t.
The solution to the Lie approximation with initial data v0 ∈ L2 reads as

v(t) = Ztv0 = Xtv0 +

∫ t

0

XtF (Y sv0) ds.

Therefore the difference between two solutions for initial data w0 and w′
0 in

L2 is

Ztw0 − Ztw′
0 = Xt(w0 − w′

0) +

∫ t

0

Xt(F (Y sw0)− F (Y sw′
0)) ds,

and using the fact that Xt is unitary in L2, that F is Lipschitz, and estimate
(2.4c), we obtain that there exists a constant C depending only on F such
that for 0 ≤ t ≤ 1

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.

• Lie approximation—case Zt = Y tXt.
Since

v(t) = Ztv0 = Xtv0 +

∫ t

0

F (Y sXtv0) ds,

the difference is

Ztw0 − Ztw′
0 = Xt(w0 − w′

0) +

∫ t

0

(F (Y sXtw0)− F (Y sXtw′
0)) ds;

thus, using the same tools as above, we obtain that there exists a constant C
depending only on F such that for 0 ≤ t ≤ 1

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.

• Strang approximation—case Zt = Xt/2Y tXt/2.
Since

v(t) = Ztv0 = Xtv0 +

∫ t

0

Xt/2F (Y sXt/2v0) ds,

we have

Ztw0 − Ztw′
0 = Xt(w0 − w′

0)

+

∫ t

0

Xt/2(F (Y sXt/2w0)− F (Y sXt/2w′
0)) ds,

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.
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• Strang approximation—case Zt = Y t/2XtY t/2.
Since

v(t) = Ztv0 = XtY t/2v0 +

∫ t/2

0

F (Y sXtY t/2v0) ds,

we have

Ztw0 − Ztw′
0 = XtY t/2w0 −XtY t/2w′

0

+

∫ t/2

0

(F (Y sXtXt/2w0)− F (Y sXtY t/2w′
0)) ds,

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.
3.2. Local errors.
• Lie approximation—case Zt = XtY t.
For v0 ∈ H2 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (XsY sv0) ds−
∫ t

0

XtF (Y sv0) ds.

Let us define R1(s) = F (XsY sv0)−XsF (Y sv0); then, using the fact that F
is Lipschitz and estimates (2.2a) and (2.4a),

R1(s) = F (XsY sv0)− F (Y sv0) + F (Y sv0)−XsF (Y sv0),

‖R1(s)‖ ≤ K‖XsY sv0 − Y sv0‖+ ‖F (Y sv0)−XsF (Y sv0)‖
≤ s (K‖Y sv0‖H2 + ‖F (Y sv0)‖H2)

≤ Cs‖v0‖H2 .

Therefore, since R(t) =
∫ t

0
Xt−sR1(s)ds,

‖R(t)‖ ≤ C‖v0‖H2

∫ t

0

s ds =
Ct2

2
‖v0‖H2 .

• Lie approximation—case Zt = Y tXt.
For v0 ∈ H2 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (Y sXsv0) ds−
∫ t

0

F (Y sXtv0) ds.

In this case R(t) =
∫ t

0
R1(s)ds, where R1 = Xt−sF (Y sXsv0) − F (Y sXtv0),

and using the fact that F is Lipschitz and estimates (2.2a), (2.4a), (2.4c), we
obtain

R1(s) = Xt−sF (Y sXsv0)− F (Y sXsv0) + F (Y sXsv0)− F (Y sXtv0),

‖R1(s)‖ ≤ (t− s)‖F (Y sXsv0)‖H2 +K‖Xsv0 −Xtv0‖
≤ C(t− s)‖v0‖H2 ;

hence

‖R(t)‖ ≤ C‖v0‖H2

∫ t

0

(t− s) ds =
Ct2

2
‖v0‖H2 .
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• Strang approximation—case Zt = Xt/2Y tXt/2.
For v0 ∈ H4 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (Xs/2Y sXs/2v0) ds−
∫ t

0

Xt/2F (Y sXt/2v0) ds.

We may write R(t) as R(t) =
∫ t

0
R1(s) ds+Xt/2

∫ t

0
R2(s) ds, where

R1(s) = Xt−sw(s)−Xt/2w(s), w(s) = F (Y sXt/2v0),

and

R2(s) = F (Xs/2Y sXs/2v0)− F (Y sXt/2v0).

Using estimate (2.2c), we obtain that

∥∥∥∥
∫ t

0

R1(s) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 .

A Taylor expansion yields that

R2(s) = F ′(v0) · (Xs/2Y sXs/2v0 − Y sXt/2v0)

+

∫ 1

0

(1− θ)
[
F ′′(v0 + θ(Xs/2Y sXs/2v0 − v0))

· (Xs/2Y sXs/2v0 − v0)
2

−F ′′(v0 + θ(Y sXt/2v0 − v0)) · (Y sXt/2v0 − v0)
2
]
dθ.

Using triangle inequalities, estimates (2.2a), (2.4a), formulation (2.3), and
the fact that F is Lipschitz, we obtain that

‖Xs/2Y sXs/2v0 − v0‖ ≤ Cs‖v0‖H2

and

‖Y sXt/2v0 − v0‖ ≤ Ct‖v0‖H2 .

Besides, we recall that F ′′ is uniformly bounded by M ′′, and therefore, using
that H2 is an algebra,

∥∥∥∥
∫ 1

0

(1− θ)
[
F ′′(v0 + θ(Xs/2Y sXs/2v0 − v0)) · (Xs/2Y sXs/2v0 − v0)

2

− F ′′(v0 + θ(Y sXt/2v0 − v0)) · (Y sXt/2v0 − v0)
2
]
dθ

∥∥∥∥ ≤ Ct2‖v0‖2
H4 .

Moreover, let us define R3(s) = Xs/2Y sXs/2v0−Y sXt/2v0; formulation (2.3)
yields that

R3(s) = Xsv0 −Xt/2v0 +

∫ s

0

(Xs/2F (Y σXs/2v0)− F (Y σXs/2v0)) dσ

+

∫ s

0

(F (Y σXs/2v0)− F (Y σXt/2v0)) dσ.
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A simple change of variable in lemma (2.2c) proves that∥∥∥∥
∫ t

0

(Xsv0 −Xt/2v0) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 ,

and using once more estimates (2.2a) and (2.4b) and the fact that F is Lips-
chitz, we have∥∥∥∥

∫ t

0

∫ s

0

(Xs/2F (Y σXs/2v0)− F (Y σXs/2v0)) dσds

∥∥∥∥ ≤ Ct3‖v0‖H2

and, also using (2.2c),∥∥∥∥
∫ t

0

∫ s

0

(F (Y σXs/2v0)− F (Y σXt/2v0)) dσds

∥∥∥∥ ≤ Ct3‖v0‖H2 .

Finally, since Xt/2 is unitary,∥∥∥∥Xt/2

∫ t

0

R2(s) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 ,

and the conclusion is that

‖R(t)‖ ≤ C(1 + ‖v0‖H4)t3‖v0‖H4 .

• Strang approximation—case Zt = Y t/2XtY t/2.
For v0 ∈ H4 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (Y s/2XsY s/2v0) ds

−1

2

∫ t

0

XtF (Y s/2v0) ds− 1

2

∫ t

0

F (Y s/2XtY t/2v0) ds.

Taylor expansions yield

F (Y s/2XsY s/2v0) = F (v0) + F ′(v0) · (Y s/2XsY s/2v0 − v0)

+

∫ 1

0

(1− θ)F ′′(v0 + θ(Y s/2XsY s/2v0 − v0))

· (Y s/2XsY s/2v0 − v0)
2dθ,

F (Y s/2v0) = F (v0) + F ′(v0) · (Y s/2v0 − v0)

+

∫ 1

0

(1− θ)F ′′(v0 + θ(Y s/2v0 − v0))

· (Y s/2v0 − v0)
2dθ,

F (Y s/2XtY t/2v0) = F (v0) + F ′(v0) · (Y s/2XtY t/2v0 − v0)

+

∫ 1

0

(1− θ)F ′′(v0 + θ(Y s/2XtY t/2v0 − v0))

· (Y s/2XtY t/2v0 − v0)
2dθ,

and the same sort of estimates as above give

‖Y s/2XsY s/2v0 − v0‖ ≤ Cs‖v0‖H4 ,

‖Y s/2v0 − v0‖ ≤ Cs‖v0‖H4 ,

‖Y s/2XtY t/2v0 − v0‖ ≤ Ct‖v0‖H4 .
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Therefore, the time integral over the interval [0, t] of the integral remain-
ders may be estimated by Ct3‖v0‖2

H2 . Besides, there remains to estimate∫ t

0
R1(s) ds with

R1(s) =

(
Xt−s − 1

2
Xt − 1

2
Id

)
F (v0)

+ (Xt−s − Id)F ′(v0) · (Y s/2XsY s/2v0 − v0)

− 1

2
(Xt − Id)F ′(v0) · (Y s/2v0 − v0)

+ F ′(v0) · (Y s/2XsY s/2v0 − v0)

− 1

2
F ′(v0) · (Y s/2v0 − v0)− 1

2
F ′(v0) · (Y s/2XtY t/2v0 − v0).

The first term is estimated by Ct3‖v0‖H4 , combining estimates (2.2c) and
(2.2d). The two next terms are, respectively, estimated by CM ′(t−s)s‖v0‖H4

and CM ′ts‖v0‖H2 .

Last, since F ′(v0) is a linear operator, we have to study
∫ t

0
F ′(v0)R2(s) ds

with

R2(s) = Y s/2XsY s/2v0 − 1

2
Y s/2v0 − 1

2
Y s/2XtY t/2v0

= Xsv0 +
1

2

∫ s

0

XsF (Y σ/2v0) dσ +
1

2

∫ s

0

F (Y σ/2XsY s/2v0) dσ

− 1

2
v0 − 1

4

∫ s

0

F (Y σ/2v0) dσ

− 1

2
Xtv0 − 1

4

∫ t

0

XtF (Y σ/2v0) dσ − 1

4

∫ t

0

F (Y σ/2XtY t/2v0) dσ,

where we have used intensively formulation (2.3). Everywhere where F occurs
we subtract and add F (v0). This leads to terms involving differences which
may be estimated by Ct2‖v0‖H2 , and therefore their time integral is bounded
by Ct3‖v0‖H2 . The only terms that remain are R3(s) = Xsv0 − 1

2v0 − 1
2X

tv0

and R4(s) =
1
2

∫ s

0
XsF (v0)dσ − 1

4

∫ t

0
XtF (v0)dσ. We have

R3(s) = (Xsv0 −Xt/2v0) +

(
Xt/2v0 − 1

2
v0 − 1

2
Xtv0

)
,

∥∥∥∥
∫ t

0

R3(s) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 ;

R4(s) =
1

2

(
s(Xs −Xt)F (v0) +

(
s− t

2

)
XtF (v0)

)
,

∥∥∥∥
∫ t

0

R4(s) ds

∥∥∥∥ =

∥∥∥∥
∫ t

0

s(Xs −Xt)F (v0) ds

∥∥∥∥ ≤ Ct3‖v0‖H2 .

Finally, we obtain that

‖R(t)‖ ≤ C(1 + ‖v0‖H4)t3‖v0‖H4 .

This last estimate concludes the study of the remainders for the four schemes. Now
a consequence of the Gronwall lemma 2.1 is the following lemma.
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Lemma 3.1. Let v0 ∈ H2; there exists t0 > 0 such that for all 0 ≤ t ≤ t0

‖Zt
Lv0 − Stv0‖ ≤ Ct2,

where C depends on ‖v0‖H2 . Moreover, if v0 ∈ H4, there exists t1 > 0 such that for
all 0 ≤ t ≤ t1

‖Zt
Sv0 − Stv0‖ ≤ Ct3,

where C depends on ‖v0‖H4 .
Remark 3.2. In [11], Jahnke and Lubich have shown the first and second order

approximation for a linear Schrödinger equation under the weaker regularity condi-
tions v0 ∈ H1 and v0 ∈ H2. Unfortunately, it is not possible to keep exactly the same
hypothesis for the nonlinear case for the following reason: Let us focus on the first
order approximation; we can formally extend the results of Jahnke and Lubich in the
nonlinear case using Lie commutators. However, the Lie commutator between the
Laplace operator and the nonlinear term involves a term containing (∂v0/∂x)

2 and
(∂v0/∂y)

2 (see [13] for more details). To control these two terms, we have two possi-
bilities, either we assume that v0 ∈ H2 and we use a Gagliardo–Nirenberg inequality,
or we assume that v0 ∈ H1 ∩W 1,+∞. Thus, in our lemma, H2 is not optimal if we
also assume that v0 ∈W 1,+∞.

4. Order estimate.
Theorem 4.1. For all u0 in H2 and for all T > 0, there exists C and h0 such

that for all h ∈ (0, h0], for all n such that nh ≤ T

∥∥∥(Zh
L

)n
u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H2)h‖u0‖H2 .

Moreover, if u0 belongs to H4, then

∥∥∥(Zh
S

)n
u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H4)h2‖u0‖H4 .

Proof. As noticed in the introduction, the triangle inequality yields

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

‖(Zh)n−j−1ZhSjhu0 − (Zh)n−j−1S(j+1)hu0‖.

In section 3 we have proved that for all the studied schemes there exists a constant
C0 such that for w0 and w′

0 ∈ L2 and all t ∈ [0, 1]

‖Ztw0 − Ztw′
0‖ ≤ (1 + C0t)‖w0 − w′

0‖,
and therefore

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

(1 + C0h)
n−j−1‖(Zh − Sh)Sjhu0‖.

For the Lie formula when u0 belongs to H2, for all j such that jh ≤ T , Sjhu0 belongs
to H2 and is uniformly bounded in this space; thus we have

‖(Zh
L − Sh)Sjhu0‖ ≤ C(‖u0‖H2)h2‖u0‖H2 ,
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and we deduce that

‖(Zh
L)

nu0 − Snhu0‖ ≤ C(‖u0‖H2)‖u0‖H2

n−1∑
j=0

exp(C0h)
n−j−1h2

≤ C(‖u0‖H2)‖u0‖H2 exp(C0T )nh
2

≤ C(‖u0‖H2)‖u0‖H2h.

For the scheme Zh
S , when u0 belongs to H4, for all j such that jh ≤ T , Sjhu0 belongs

to H4 and is uniformly bounded in this space, and we have

‖(Zh
S )

nu0 − Snhu0‖ ≤ C(‖u0‖H4)‖u0‖H4

n−1∑
j=0

exp(C0h)
n−j−1h3

≤ C(‖u0‖H4)‖u0‖H4 exp(C0T )nh
3

≤ C(‖u0‖H4)‖u0‖H4h2.

This concludes the proof of Theorem 4.1.
Remark 4.2. Theorem 4.1 shows that the Lie and Strang formulae are approxi-

mations of order one and two of the exact solution. We can notice that the proof can
be extended to high order splitting formulae. In [9], it is shown that we can construct
Nth order approximation (N ≥ 3) by considering splitting schemes of the form

Zt
HO = Xc0tY d1tXc1tY d2t · · ·Y dm−1tXcm−1tY dmtXcmt,(4.1)

but we have to assume that at least one of the coefficient c0, . . . , cm must be negative
and at least one of the coefficient d1, . . . , dm must be negative. (This result generalized
the fundamental result of [16].) The same result holds if we consider convex combi-
nations of (4.1). For these kinds of formulae, the Lipschitz property is an immediate
consequence of their forms, and we notice that we can still use some Taylor formulae
for Xt and Y t to show that the remainder may be estimated as ‖R(t)‖ = O(tN+1) for
t small; however, as we have seen for the last scheme studied in the previous proof, it
would be very technical.

5. Numerical experiments. We proved in the previous sections that the order
p of Lie and Strang formulations are, respectively, 1 and 2 for initial data in H2

and H4.
If the numerical order pnum given in Table 5.1 does confirm the theoretical orders,

it is nevertheless difficult to force the desired regularity for a discretized initial datum.
Typically, the regularity of the L2 initial datum in Figure 5.1 is certainly slightly
better.

Let us define tn = nh and let Ω = [−10, 10] × [−10, 10] be the computational
domain. The numerical order pnum is computed by

pnum = max
tn∈[0,T ]

1

ln 2
ln

(‖u2 − u1‖L2(Ω)

‖u3 − u2‖L2(Ω)

)
,

where u1 is computed for the time step h, and u2 and u3 are, respectively, computed
for time steps h/2 and h/4.

We use initial data displayed in Figure 5.1, and in order to avoid numerical
reflections due to boundaries we choose periodic boundary conditions and a FFT
method to invert the Laplacian.
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Table 5.1
Computation of pnum for different initial data.

Lie Strang
H2 1.000685 2.000072
H1 1.001721 2.006374
L2 1.014480 2.010045
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Fig. 5.1. Initial data used for numerical experiments.

Table 5.2
Computation of pnum for different time and space steps.

N = 64 N = 128 N = 256
h = 10−3 2.000016 2.000072 2.000289
h = 10−2 2.001637 2.007160 2.030023

The results displayed in Table 5.1 are computed for h = 10−3 and N = 128 points
in both space dimensions.

This results are not much dependent on the choice for the time and space steps.
Indeed, for the H2 initial datum and the Strang formulation, we obtain the results of
Table 5.2.

6. Conclusion. We have shown in this paper that, for the nonlinear Schrödinger
equation, the Lie and Strang formulae are, respectively, approximations of order 1 and
2. This result could be extended to cover the case of the Schrödinger–Debye equations
[3], where one can find a proof for the first order. The case of the nonlinear heat equa-
tion could also be treated with the same arguments because we have never used the
group property but only the semigroup property of the flow of the linear Schrödinger
equation; besides, we may write an equivalent of Lemma 2.2. In particular, this ex-
tends also the results of [6]. Our proof may also be extended to the Ginzburg–Landau
equation, for which some splitting methods are also used (see, e.g., [10]) since it will
use the fact that we are able to perform the proof for both the Schrödinger and the
heat equation.

Our analysis does not give any hint on how to choose one splitting scheme among
the others. The order of convergence is not the only criterion as stressed in the
introduction: in case of stiff terms, the order of the different steps is of consequence.
Namely, the last step should be the stiff one which is the nonlinear step Y t in our
context. This fact is hidden in our constants that depend on norms that grow with
the size of the exact solution.
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