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Abstract

In this paper, we study the problem of convergence of geodesics on
PL-surfaces and in particular on subdivision surfaces. More precisely, if
a sequence (Tn)n∈N of PL-surfaces converges in distance and in normals
to a smooth surface S and if Cn is a geodesic of Tn (i.e. it is locally
a shortest path) such that (Cn)n∈N converges to a curve C, we want
to know if the limit curve C is a geodesic of S. Hildebrandt et al.
[12] have already shown that if Cn is a shortest path, then C is also a
shortest path. The result does not hold anymore for geodesics that are
not (global) shortest paths. In this paper, we first provide a counter
example for geodesics: we build a sequence (Tn)n∈N of PL-surfaces
that converges in distance and in normals to the plane. On each Tn,
we build a geodesic Cn, such that (Cn)n∈N converges to a planar curve
which is not a line-segment (and thus not a geodesic of the plane). In a
second step, we give a positive result of convergence for geodesics that
needs additional assumptions concerning the rate of convergence of the
normals and of the lengths of the edges of the PL-surfaces. Finally, we
apply this result to different subdivisions surfaces (following schemes
for bicubic B-splines, or Catmull-Clark schemes, or schemes for Bezier
surfaces). In particular, these results validate an algorithm of Pham-
Trong et al. [20] that builds geodesics on subdivision surfaces.

Keywords : subdivision surfaces, triangulations, PL-surfaces, geodesics,
shortest paths, convergence

1 Introduction

A geodesic is usually defined as a curve on a surface that is locally
a shortest path. Geodesics appear naturally in several applications,
among which we can mention: i) The modelling of the human heart:
the heart left ventricle can be modelled by a family of embedded sur-
faces; a muscular fiber of the central region of the left ventricle has
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particular properties and can be considered as a geodesic of one of
those surfaces [17, 21]. ii) In the fabrication of composite parts by fil-
ament winding, the filament must idealy wind along geodesics [1]. iii)
Finally the computation of radar cross sections involves the simulation
of creeping ray which follow geodesics of the object [2, 5]. In this con-
text, and since piecewise linear 2-manifolds (denoted by PL-surfaces
in the following) are widely used for surface modelling, it is natural
to consider the modelling of geodesics on surfaces and in particular on
PL-surfaces.

We distinguish the geodesics from the more restricted class of short-
est paths. A shortest path is a curve on a surface that is connecting two
points and whose length does not decrease if it is perturbed (without
moving the two extremities). A geodesic is a curve on a surface whose
length does not decrease if it is pertubed in a small neighborhood of
any point. A shortest path is clearly a geodesic, but the converse is
not true (for example, a great circle is a geodesic but not a shortest
path of the sphere).

There exist several algorithms that build shortest paths on PL-
surfaces [13, 14, 15, 19]. Concerning the geodesics, Pham-Trong and
her coauthors have also proposed an algorithm that builds geodesics on
PL-surfaces [20]. In particular, they have also considered a sequence
(Tn)n∈N of PL-surfaces defined by the De Casteljau subdivision for
Bezier surfaces that is converging to a Bezier surface S. On each Tn,
they build a geodesic Cn whose sequence converges to a curve C. The
natural question is then to wonder whether C is a geodesic of S.

The convergence of geodesics has already been studied in the case of
shortest paths by Hildebrandt et al. [12] and Memoli et al. [16]. They
show that if a sequence (Tn)n∈N of PL-surfaces converges in Hausdorff
distance to S, if the normals of Tn also converge to the normals of S,
then the limit curve of a sequence of shortest paths is a shortest path
of S. However, this result does not hold anymore for geodesics: we
provide in this paper (Section 4) a sequence (Tn)n∈N of PL-surfaces
whose both distance and angular limit is a plane. However a sequence
of geodesics Cn ⊂ Tn converges toward a limit curve C which is not a
straight line of the plane, and thus not a geodesic of the plane.

It is worth noting that the result of convergence of Hildebrandt
et al. [12] cannot be used in some applications: for example, in the
modelling of the human heart, the curves modelling the fibers are closed
and are not shortest paths [17]. Furthermore, this result cannot be used
to validate the algorithm given in [20]: indeed, Pham Trong and her
coauthors build a sequence of geodesics that are not shortest paths in
general.

The main result of this paper deals with convergence for geodesics.
More precisely, we suppose, as for the result with shortest paths given
in [12], that the sequence (Tn)n∈N of PL-surfaces converges in Haus-
dorff distance and in normals to a smooth surface S. In addition, we
also suppose that there exist two constants K1 and K2 independant on
n such that the length of the edges of Tn is greater than K1

2n and the
maximal angle between the normals of Tn and the normals of S is less
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than K2

2n . In other words, the rate of convergence of the length of the
edges cannot be faster than the rate of convergence of the normals.

This result is then applied to PL-surfaces Tn that follow subdivision
schemes, such as for example schemes for bicubic B-splines, or Catmull-
Clark schemes, or Bezier surfaces. In particular, our results validate the
algorithm of Pham-Trong and her coauthors [20] that builds geodesics
on subdivision surfaces.

It is interesting to note that shortest paths and geodesics do not
deal with notions of the same order: the notion of shortest path relies
on the notion of length, which is a quantity related to the first deriva-
tive. However, since a geodesic is defined locally, it depends on the
infinitesimal variation of the length, which is a notion of second order.

In this paper, we focus on the problem of convergence of geodesics.
In Section 2, we recall the main definitions. In Section 3, we recall the
result of convergence of [12, 16] for shortest paths. In Section 4 we give
a counter example showing that the situation is more complicated for
geodesics, and we also give the main result of convergence. We show in
Section 5 that this result can be applied to several subdivision schemes
(and in particular to the algorithm proposed in [20]). The last section
proves all these results. In the following, we will refer to triangulations
instead of PL-surfaces.

2 Definitions

2.1 Smooth surfaces

In the following, a smooth surface means a C2 surface which is regular,
oriented, compact with or without boundary. We have the following
proposition [11]

Proposition 1 Let S be a smooth compact surface of R
3. Then there

exists an open set US of R
3 containing S and a continuous map ξ from

US onto S satisfying the following: if p belongs to US, then there exists
a unique point ξ(p) realizing the distance from p to S (ξ is nothing but
the orthogonal projection onto S).

This proposition allows to introduce the following notion introduced
by H. Federer [11]: The reach of a surface S is the largest r > 0 for
which ξ is defined on the open tubular neighborhood Ur(S) of radius
r of S.

2.2 Triangulations

A triangulation T is a connected topological 2-manifold made of a finite
union of triangles of R

3, such that the intersection of two triangles is
either empty, or equal to a vertex, or equal to an edge.

2.3 Curves

In the following a curve C means a lipschitz parametrized curve C :
[0, 1] → R

3. Its length is denoted by l(C). Similarly, for 0 ≤ ta <
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tb ≤ 1 we denote by l(C, ta, tb) the length of the curve C restricted to
[ta, tb]. As a particular case of Rademacher theorem, we know that C
is differentiable almost everywhere. Moreover, it is the integral of its
derivative. Whenever it exists, we denote by C′(t) the derivative of C
at t.
• We say that C has a uniform parametrization if it satisfies for almost
every t ∈ [0, 1] ‖C′(t)‖ = l(C).
• A curve C : [0, 1] → M ⊂ R

3 with uniform parametrization is said
to be a geodesic of a lipschitz surface M (M can be a triangulation or
a smooth surface) if it locally minimizes the length, i.e. if for every
t ∈ [0, 1], there exists 0 ≤ ta ≤ t ≤ tb ≤ 1 (where ta < t if t > 0 and

tb > t if t < 1), such that any lipschitz curve C̃ : [0, 1] →M such that

C̃(0) = C(ta) and C̃(1) = C(tb) satisfies

l(C, ta, tb) ≤ l(C̃).

The geodesic is said to be interior if for every t ∈ [0, 1], C(t) is interior
to the surface M . The geodesic C is a shortest path, if the length of
any curve on M connecting C(0) and C(1) has a length greater than
l(C).

2.4 Properties of geodesics on triangulations

Let C be a polygonal curve of a triangulation T . Then C is a geodesic
of T if and only if:

• C it is a straight line on each triangle. (The vertices p of C then
belongs to the edges of T or are vertices of T .)

• If p belongs to the interior of an edge of T , then the incident and
refracted angles of C at p are equal (see Figure 1).

• If p is a vertex of T , then C separates the set of the triangles of T
containing p into two connected regions r1 and r2 (see Figure 1).
If one denotes by αr1

p the sum of the angles αr1

i of the triangles
of region r1 at p (resp. by αr2

p the angles αr2

i of the triangles of
region r2 at p), one has

αr1

p ≥ π and αr2

p ≥ π. (1)

Remark that if a geodesic traverses a vertex p of T , then the sum
of the angles of the triangles of T at the vertex p is greater than 2π:
αr1

p + αr2
p ≥ 2π.

We can also notice that if αr1
p + αr2

p > 2π, then the geodesic con-
taining the vertices q and p is not unique (see Figure 1): two distinct
polygonal curves C1 and C2 containing p and q that satisfy Equation
(1) are geodesics.

3 Convergence of shortest paths

In this section, we recall a positive result of convergence for shortest
paths, that can be found in [12] (a similar result can also be found in
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Figure 1: A geodesic C passing through a vertex of a 3D triangulation

[16]). Proposition 2 states that if a sequence (Tn)n∈N of triangulations
tends to a surface S in distance and in normals, then a sequence of
shortest paths of Tn is converging to a shortest path of S. Although
this proposition has already been proved, for the sake of completeness,
we give here a proof.

Proposition 2 Let (Tn)n∈N be sequence of triangulations that con-
verges in the Hausdorff sense to a smooth C2 surface S. Let (dn)n∈N

be sequence of real numbers converging to 0. We suppose that

a) for every n, the restriction ξn : Tn → S of the map ξ to Tn is
bijective;

b) for every m ∈ Tn, the angle between any triangle ∆ containing
m and the tangent plane ΠS

ξ(m) of S at ξ(m) is smaller than dn;

Let a and b be two points of S, and Cn : [0, 1] → R
3 be a shortest path

on Tn between ξ−1
n (a) and ξ−1

n (b), with uniform parametrization. Then

• there exists a subsequence (Cnk
) of (Cn) that is uniformly con-

verging to a curve C;

• if a subsequence of (Cn) is converging to a limit curve C, then C
is a shortest path of S.

Proof of Proposition 2
First remark that the convergence in distance and in normals imply
that there exists a sequence (ǫn)n∈N converging to 0 such that for every
curve γn of Tn we have (see [18] or [12]):

(1 − ǫn)l(γn) ≤ l(ξn ◦ γn) ≤ (1 + ǫn)l(γn).

Let us denote by C̃ a shortest path between a and b on S. We then
have :

l(ξn ◦ Cn) ≤ (1 + ǫn)l(Cn) ≤ (1 + ǫn)l(ξ−1
n ◦ C̃) ≤

1 + ǫn

1 − ǫn
l(C̃),

which finally gives

l(C̃) ≤ l(ξn ◦ Cn) ≤
1 + ǫn

1 − ǫn
l(C̃). (2)
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In particular l(ξn ◦ Cn) converges to l(C̃) and is then bounded. Then
there exists a constant k independant of n such that for every t, t′ ∈
(0, 1)

‖ξn ◦ Cn(t) − ξn ◦ Cn(t′)‖ ≤ l(ξn ◦ Cn, t, t
′)

≤ (1 + ǫn) l(Cn, t, t
′)

= (1 + ǫn) l(Cn)|t− t′|
≤ k |t− t′|.

The set {ξn ◦ Cn, n ∈ N} is then equicontinuous (see [6] for example
for more details). Arzela-Ascoli Theorem [6] then implies that a sub-
sequence (ξnk

◦ Cnk
)k∈N of (ξn ◦ Cn)n∈N is uniformly converging to a

curve C. Remark now that for every t ∈ (0, 1), the point ξn(Cn(t)) is
the closest point of S to Cn(t). That implies that ‖Cn(t)− ξn ◦Cn(t)‖
is smaller than the Hausdorff distance between Tn and S, which tends
to 0. Therefore, the subsequence (Cnk

)k∈N is also uniformly converging
to C.

The fact that Cn uniformly converges to C implies that l(C) ≤
lim inf l(Cn). However, Equation (2) implies that limCn = lim ξn ◦

Cn = l(C̃). We then have l(C) ≤ l(C̃) which means that C is a
shortest path. �

4 Convergence of geodesics

The main result of this paper is given in this section. We first show in
Section 4.1, by building a counter-example, that the previous result of
convergence for shortest paths, does not hold anymore for geodesics in
general. Then, in Section 4.2, we give a general result of convergence
for geodesics.

4.1 Counter-example

The counter example shows a sequence (Tn)n∈N of triangulations whose
both distance and angular limit is a plane. However a sequence of
geodesics Cn ⊂ Tn converges toward a limit curve C which is not a
straight line of the plane, and thus not a geodesic of the plane. We
can notice that the triangulations Tn and the curves Cn satisfy all the
assumptions of the result of Proposition 2, except that Cn is a geodesic
(and not a shortest path). However the limit curve C is not a geodesic.
This counter example implies that the convergence in distance and in
normals of Tn to S is not sufficient to expect a result of convergence
for geodesic.
Detail of the construction:
Figure 2 shows the triangulation Tn for some n. The triangulation
overlaps with the horizontal plane ΠH of equation z = 0 outside the
large circle and inside the small one. In the ring between the two
circles, it is made of 4n identical small "roof shaped" bumps detailed
on the right of Figure 2. The points d1

n, d2
n, pn and mn are on the

plane ΠH while the points t1n and t2n stand at some height above the
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Figure 2: Triangulation Tn and geodesic Cn seen from above: on the left we
see the whole surface; the region in the dashed rectangle is depicted on the
right
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and all make a slope sn with ΠH . If we take sn = 3
2n , one has, for each

n ∈ N, β1 + β2 + β3 + β4 > π.
Observe that the sequence (Tn)n∈N of triangulations converges to-

ward the plane in the Hausdorff sense. Furthermore the normals of Tn

tend to the normals of the plane. The shortest path on Tn between the
point an and bn is the straight line (dotted line on Figure 2). However,
the line anmnnnbn, wraped around the circle between mn and nn is
a local minimum, that is a geodesic, between an and bn (see Section
2). These geodesics converge in the Hausdorff sense toward a curve C
composed of two lines and an arc of circle.

4.2 Convergence toward a geodesic

The main result of this paper is the following theorem. It states that if
a sequence (Tn)n∈N of triangulations is converging to a smooth surface
S, then, under reasonable assumptions, a sequence of geodesics of Tn

is converging to a geodesic of S.

Theorem 1 Let S be a smooth surface of R
3, r denote the reach of S,

and (Tn) be a sequence of triangulations. Let K, K̃, θmin be positive
constants and (dn) a sequence of real numbers converging to 0. Suppose
that for every n:

a) Tn belongs to the tubular neighborhood Ur(S) of radius r of S;

b) for every m ∈ Tn, ‖m− ξ(m)‖ ≤ dn;

c) for every m ∈ Tn, the angle between any triangle ∆ containing
m and the tangent plane ΠS

ξ(m) of S at ξ(m) is smaller than K
2n ;

d) the lengths of the edges of Tn are greater than
eK
2n ;
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e) all the angles of Tn are greater than θmin;

Let (Cn)n∈N be a sequence of polygonal curves Cn : [0, 1] → R
3 with

uniform parametrization such that Cn is an interior geodesic of Tn

and ξ(Cn) does not intersect the boundary of S. If (Cn)n∈N converges
toward a curve C in the sup norm sense, then C is of class C2 and is
a geodesic of S.

The proof of this theorem is given in Section 6.

Remark 1 If a sequence (Tn)n∈N of triangulations satisfies the condi-
tions of Theorem 1, then the valency of the vertices of Tn is uniformly
bounded by a constant independant on n.
Indeed, the convergence of the normals implies that the sum of the
angles at a vertex pn tends to 2π when n tends to infinity. Combined
with the fact that all the angles are greater than θmin, that implies
that the valency of pn is uniformly bounded.

Remark 2 Remark that the result of Theorem 1 still holds if the se-
quence (Cn)n∈N does not converge to a curve C, but if we suppose that
(l(Cn))n∈N is bounded. Indeed, in that case, we can show (as in the
proof of Proposition 2) that the family {Cn, n ∈ N} is equicontinuous.
The Arzela-Ascoli theorem (see [6] for example) then implies that a
subsequence (Cnk

)k∈N of (Cn)n∈N uniformly converges to a curve C.
Theorem 1 can then be applied to (Cnk

)k∈N.

5 Application to subdivision surfaces

The previous theorem can be easily applied to subdivision surfaces. In
this section, we first give a general corollary, Corollary 1, that can be
easily applied to several subdivision schemes. We then show that the
result of convergence for geodesics holds when the triangulations follow
a subdivision scheme for either bicubic B-splines, or Catmull-Clark
schemes, or Bezier surfaces. We first need to give a few definitions.

Let (Pn)n∈N be a sequence of parametrized triangulations Pn :
[0, 1]2 → R

3 that is converging to a paramatrized smooth surface
f : [0, 1]2 → R

3. The parameter domain [0, 1]2 of each Pn can be
triangulated so that Pn is linear on each triangle of [0, 1]2.
− We say that the parameter domain of Pn is a triangular grid if its
vertices are pi,j

n =
(

i
2n ,

j
2n

)
(where i, j ∈ {0, ..2n}) and the edges are

pi,j
n pi+1,j

n , pi,j
n pi,j+1

n and pi,j
n pi+1,j+1

n .
− We say that (Pn)n∈N uniformly converges to a function f with rate
of convergence 1

2n if:

∃N ∈ N, ∃K ∈ R, n > N ⇒ sup
(u,v)∈[0,1]2

‖Pn(u, v) − f(u, v)‖ ≤
K

2n
.

− We say that (Pn)n∈N uniformly converges in derivative to f with
rate of convergence 1

2n if there exists K > 0 and N ∈ N, such that for
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any n > N :

sup
i∈{0,..,2n−1}

j∈{0,..,2n}

∥∥∥∥2n

[
Pn

(
i+ 1

2n
,
j

2n

)
− Pn

(
i

2n
,
j

2n

)]
−
∂f

∂u

(
i

2n
,
j

2n

)∥∥∥∥ ≤
K

2n
,

and

sup
i∈{0,..,2n}

j∈{0,..,2n−1}

∥∥∥∥2n

[
Pn

(
i

2n
,
j + 1

2n

)
− Pn

(
i

2n
,
j

2n

)]
−
∂f

∂v

(
i

2n
,
j

2n

)∥∥∥∥ ≤
K

2n
.

Corollary 1 Let (Pn)n∈N be a sequence of parametrized triangulations
Pn : [0, 1]2 → R

3and f : [0, 1]2 → R
3 be a parametrized surface of class

C2, such that:

a) the parameter domain of each Pn is a triangular grid,

b) (Pn)n∈N uniformly converges to f with rate of convergence 1
2n ,

c) (Pn)n∈N uniformly converges in derivative to f with rate of con-
vergence 1

2n ,

d) f is regular, i.e. ∀(u, v) ∈ [0, 1]2 ∂f
∂u

(u, v) ∧ ∂f
∂v

(u, v) 6= 0.

Let (Cn)n∈N be a sequence of polygonal curves Cn : [0, 1] → R
3 with

uniform parametrization such that Cn is an interior geodesic of Pn. If
(Cn)n∈N converges in the sup norm sense toward a curve C which is
interior to S, then C is of class C2 and is a geodesic of S.

The proof of this corollary is given in Section 6.7.
The previous corollary can be easily applied to some subdivision

schemes. As an example, we give the following corollary concerning
subdivision scheme for bicubic B-spline (see for example [10] for details
on B-splines). First remark that the subdivision scheme for bicubic
B-splines generates a sequence of quadrangulations. Each quadrangu-
lation can be considered as a triangulation by dividing each quadrangle
into two triangles.

Corollary 2 Let (Pn)n∈Nbe a sequence of triangulations (or quadran-
gulations) defined by the subdivision scheme for bicubic B-spline that
is converging to a regular B-spline f (i.e. satisfies assumption d) of
Corollary 1).
Let (Cn)n∈N be a sequence of polygonal curves Cn : [0, 1] → R

3 with
uniform parametrization such that Cn is an interior geodesic of Pn. If
(Cn)n∈N converges in the sup norm sense toward a curve C which is
interior to S, then C is of class C2 and is a geodesic of S.

Proof The assumptions a) and d) of Corollary 1 are clearly satisfied.
Let u ∈ [0, 1]. The polygonal curve v → Pn(u, v) follows the subdi-
vision scheme for cubic B-spline and is uniformly converging to the
function fu : v → f(u, v). More precisely, there exists Ku ∈ R such
that for every n ∈ N one has (see Theorem 4.12 of [9] or Corollary 3.3
of [8]):

sup
v∈[0,1]

‖Pn(u, v) − f(u, v)‖ ≤
Ku

2n
.
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In fact, one can show that Ku does not depend on u: let us denote
by Pi,j = P0(ui, vj) the poles of the initial control mesh (where i, j ∈
{0, ..M}). The kth pole Pu,k of fu is the evaluation at u of the B-spline
whose control net is P0,k,...PM,k. That implies that Pu,k belongs to
the convex hull of P0,k,...PM,k and then to the convex hull of the Pi,j .

SinceKu only depends on the maximum distance between two poles
of the control net of fu (see the proof of Theorem 4.11 of [9]), it only
depends on the diameter of the convex hull of the Pi,j and does not
depend on u.

This implies that (Pn)n∈N uniformly converges toward f . Assump-
tion b) is then proved. Similarly, assumption c) is also proved on the
divided difference scheme (see for example [22] for details on divided
difference schemes). �

Remark 3 Corollary 2 directly implies that the result of convergence
still holds for Catmull-Clark schemes if the limit curve C does not con-
tain extraordinary points of S (see [3] for details on the Catmull-Clark
scheme). By extraordinary point on the limit surface, we precisely
mean the limit of the sequence of vertices corresponding to an ex-
traordinary point of the triangulation through successive subdivisions.
Indeed, after a sufficient number of iterations, the curve traverses only
a finite number of bicubic B-splines patches where Corollary 2 can be
applied.

More precisely, the curve C is at a distance greater than µ > 0 from
all the extraordinary points. Let us denote by (Pn)n∈N the sequence of
triangulations (or quadrangulations) defined by Catmull-Clark scheme.
Then, by compacity, there exists a finite number of triangulations
V 1

n ,...V p
n and 0 = t0 < t1 < t2 < ... < tp = 1 such that: i) each

V i
n follows a subdivision scheme for bicubic B-spline (as in Corollary

2) and is converging to Si ⊂ S; ii) for every i, Cn([ti−1, ti]) ⊂ V i
n and

C([ti−1, ti]) ⊂ Si; iii) V i
n ∩ V i+1

n ∩ Cn([ti−1, ti]) is homeomorphic to a
connected curve. We then apply Corollary 2 on each V i

n.

Remark 4 A proof similar to the one of Corollary 2 shows that this
result also holds for Bezier surfaces and their successive control nets
defined by the De Casteljau algorithm.

6 Proof of Theorem 1

The aim of this section is to prove Theorem 1. The proof being quite
long, we first give an overview of each subsection.

6.1 We introduce the definitions needed for the proof, but not usefull
for the statement of Theorem 1.

6.2 We give basic lemmas about angles and orthogonal projections
onto planes. These lemmas are used in the rest of the proof.

6.3 We give results concerning geodesics on triangulations. We first
bound from above the angle of deviation β3D

dev(pn) of the geodesic
at a vertex pn. Intuitively, this means that if the triangulation
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is "almost planar", then the geodesic is "not turning too much".
We then also bound from above the angle of deviation βTS

dev(pn)
of the projection of the geodesic onto a plane. Intuitively, if the
plane is "almost parallel" to the triangles of the triangulation,
then the projection of the geodesic is "turning much less" than
the geodesic itself.

6.4 We bound the number of intersections of a polygonal curve Cn

of Tn with the edges of a triangulation Tn. Intuitively, we show
that if the curve is "not too long"and if it does "not turn too
much", then its number of intersection is "small".

6.5 There is no underlying triangulation in this section. The result
gives a sufficient condition on a sequence of curves so that its
limit curve is of class C1,1.

6.6 We give here the core of the proof of Theorem 1, that is using
the previous sections.

6.7 We prove in this section Corollary 1.

6.1 Preliminary definitions

Let ǫ be smaller than the reach of S. Let T be a triangulation such
that ξ induces an injection from T to S. Let denote by R(T ) the set
of polygonal curves C of T that are linear on each triangle of T , to be
more precise, if τ is a triangle (a triangle is defined here as a closed
simplex, i.e. containing its boundary edges and vertices) of T , the
image of each connected component of {t ∈ [0, 1] , C(t) ∈ τ} is a line
segment: geodesics on T trivially satisfy this condition. Notice that
this condition allows the curve to visit more than once a given triangle
τ but, in this case, has to visit the interior of other triangle between
two successive visits of τ .

Let C ∈ R(T ) be a polygonal curve that belongs to the tubular
neighborhood Vǫ(S) of radius ǫ of S. In the following, if m ∈ S, we
denote by PS

m the orthogonal projection onto the tangent plane of S
at the point m.
• The total curvature of C is given by:

TC3D(C) =
∑

p vertex of C

β3D
dev(p),

where β3D
dev(p) is the deviation angle of C at the vertex p (see Figure

3).
Similarly, for 0 ≤ ta < tb ≤ 1 we denote by TC3D(C, ta, tb) the total
curvature of the curve C restricted to [ta, tb].
• The tangent total curvature of C with respect to S is defined by

TCS
Tan(C) =

∑

p vertex of C

βTS
dev(p),

where βTS
dev(p) is the deviation angle of PS

ξ(p)(C) at the vertex ξ(p) (see

Figure 3).
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p
Projection

C

PS
ξ(p)(C)

Plane tangent to S at ξ(p)

ξ(p)

β3D
dev(p)

βTS
dev(p)

S

Figure 3: Deviation angle of the curve and of its projection

Similarly, for 0 ≤ ta < tb ≤ 1 we denote by TCS
Tan(C, ta, tb) the tangent

total curvature of the curve C restricted to [ta, tb].
• Let ♯C be the number of intersections between C and the edges of T .
More precisely, if one denotes by E the set of edges of T and NCC(X)
the number of connected components of a set X :

♯C =
∑

e∈E

NCC(C([0, 1]) ∩ e)

Notice that each time C transversally crosses an edge away from a
vertex, ♯C is increased of 1 and each time C crosses a vertex ”generi-
cally” (that is without following an edge), ♯C is increased of the vertex
valency. If it follows an edge from one vertex to the other, it crosses
two vertices but the edge is counted once.
Similarly, for 0 ≤ ta < tb ≤ 1 we denote by ♯(C, ta, tb) the number of
intersections between the curve C restricted to [ta, tb] and the edges of
T .

6.2 Basic lemmas about planes in R
3

In this section, we prove several very usefull basic lemmas.

Lemma 1 There exists K > 0 such that for every planes Π and Π1

and for every vectors u and v of Π, one has:

|∠(u, v) − ∠(P1(u), P1(v))| ≤ K ∠(u, v) α2,

and also

|∠(u, v) − ∠(P1(u), P1(v))| ≤ K ∠(P1(u), P1(v)) α
2,

where P1 is the orthogonal projection onto Π1, and α is the angle be-
tween Π and Π1.

12



Proof
• We put θ = ∠(u, v) and θ1 = ∠(P1(u), P1(v)). We clearly have

‖P1(u)‖ ≤ ‖u‖ ≤
1

cosα
‖P1(u)‖.

The same inequality holds with v. Furthermore a simple calculus gives

Area(∆) =
1

cosα
Area(P1(∆)).

Now by using the fact that

sin θ =
Area(∆)

2 ‖u‖ ‖v‖
and sin θ1 =

Area(P1(∆))

2 ‖P1(u)‖ ‖P1(v)‖
,

we have

cosα ≤
sin θ1
sin θ

≤
1

cosα
,

and then
| sin θ − sin θ1| = O(α2) sin θ = O(α2) θ. (3)

• We put X = u
‖u‖ and Y = v

‖v‖ . Then ‖X − P1(X)‖ ≤ sinα ≤ α.

Furthermore we have

π

2
− α ≤ ∠ (P1(X) −X,Y ) ≤

π

2
+ α,

which implies that | < X −P1(X), Y > | ≤ α2. Similarly, we also have
| < Y − P1(Y ), X > | ≤ α2 which implies that

‖P1(X)‖ ‖P1(Y )‖ cos θ1 =< P1(X), P1(Y ) >
=< X,Y > +O(α2)
= cos θ +O(α2).

We then have:
| cos θ − cos θ1| = O(α2). (4)

• Suppose now that θ ∈
[
0, π

4

]
. If α is small enough, then Equation

(3) implies that θp ∈
[
0, 3π

8

]
and that

|θ1 − θ| ≤


 sup

x∈[0,sin 3π
8 ]

| arcsin′(x)|


 | sin θ1 − sin θ| = O(α2) θ.

Remark that the same results holds if θ ∈
[
3π
4 ,

π
2

]
.

• Suppose now that θ ∈
[

π
4 ,

3π
4

]
. If α is small enough, then Equation

(4) implies that

|θ1−θ| ≤


 sup

x∈[0,cos π
8 ]
| arccos′(x)|


 | cos θ−cos θ1| = O(α2) = O(α2) θ.

The second inequation of Lemma 1 is a direct consequence of the first
one (with a larger constant). �
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‖u‖

‖v‖
‖u− v‖

a

b

Figure 4: Proof of Lemma 2

Lemma 2 Let u and v be two vectors and ǫ > 0 such that |‖u‖−1| ≤ ǫ

and |‖v‖ − 1| ≤ ǫ. We then have:

2 sin
∠(u, v)

2
≤

‖u− v‖

min(‖u‖, ‖v‖)
≤ 2 sin

∠(u, v)

2
+

2ǫ

1 − ǫ
.

Proof Suppose that ‖v‖ ≤ ‖u‖. We then have

‖u− v‖

‖v‖
≥

a

‖v‖
= 2 sin

∠(u, v)

2
.

We also have

‖u− v‖

‖v‖
≤
a+ b

‖v‖
= 2 sin

∠(u, v)

2
+

‖u‖ − ‖v‖

‖v‖
≤ 2 sin

∠(u, v)

2
+

2ǫ

1 − ǫ
.

�

Lemma 3 For some constant K, if P1 and P2 are the respective pro-
jections on two planes Π1 and Π2 with ∠ (Π1,Π2) = θ ≤ 1

10 and if u
and v are two unit vectors and γ > 0 a number such that:

• ∠ (Π2, u) ≤
1
10

• ∠ (Π2, v) ≤
1
10

• ∠ (Π1, u) ≤ γ ≤ 1
10

• ∠ (Π1, v) ≤ γ ≤ 1
10 ,

one has:

∠ (P2(u), P2(v)) ≤ K
[
∠ (P1(u)), P1(v)) + sin θ∠ (u, v) + γ2

]
.

Proof Let δ = v − u The affine projection P1 induces a corresponding
projection between vectors which is also denoted P1. δ can be splited
in δ = P1(δ) + δ̃ with P1(δ) and δ̃ respectively parallel and orthogonal

to Π1, which entails P1(δ) = P1(δ1) and ‖δ̃‖ ≤ ‖δ‖. One has P2(δ) =

P2(P1(δ)) + P2(δ̃) and:

‖P2(δ)‖ ≤ ‖P2(P1(δ))‖ + ‖P2(δ̃)‖

≤ ‖P1(δ)‖ + ‖P2(δ̃)‖

≤ ‖P1(δ)‖ + sin θ‖δ̃‖

≤ ‖P1(δ)‖ + sin θ‖δ‖.
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From ∠ (Π2, u) ≤
1
10 and ∠ (Π2, v) ≤

1
10 , one has:

min (‖P2(u)‖, ‖P2(v)‖) ≥ cos
1

10
.

Using twice Lemma 2 we have:

2 sin
∠ (P2(u), P2(v))

2
≤

1

cos 1
10

‖P2(δ)‖

and

‖P1(δ)‖ ≤ 2 sin
∠ (P1(u), P1(v))

2
+O(γ2).

This gives:

2 sin
∠ (P2(u), P2(v))

2
≤

1

cos 1
10

[
2 sin

∠ (P1(u), P1(v))

2
+O(γ2) + sin θ‖δ‖

]
.

Using that ‖δ‖ = 2 sin ∠(u,v)
2 and that, for any angle β ∈ [0, π] one

has 2
π
β ≤ 2 sin β

2 ≤ β we get the above bound on ∠ (P2(u), P2(v)). �

Lemma 4 There exists K > 0 such that for every planes Π1 and Π2

and for every unit vectors u and v of R
3 such that ∠(u,Πi) ≤ π

4 and
∠(v,Πi) ≤

π
4 , we have:

|∠(P1(u), P1(v)) − ∠(P2(u), P2(v))| ≤ K γ,

where P1 and P2 denote the respective projections on Π1 and Π2, and
γ denotes the angle between Π1 and Π2.

Proof We put P = P1 − P2, θ = ∠(u, v), θ1 = ∠(P1(u), P1(v)) and
θ2 = ∠(P2(u), P2(v)).
Case 1: θ ∈

[
π
10 , π − π

10

]

Let X be a vector of R
3. We put X1 = P1(X) and X⊥

1 = X −X1. We
then have

‖P (X)‖ = ‖P (X1) + P (X⊥
1 )‖ ≤ ‖P (X1)‖ + ‖P (X⊥

1 )‖.

On the other hand

‖P (X1)‖ = ‖X1 − P2(X1)‖ ≤ sin γ ‖X1‖ ≤ γ ‖X‖,

and
‖P (X⊥

1 )‖ = ‖P2(X
⊥
1 )‖ ≤ sin γ ‖X⊥

1 ‖ ≤ γ ‖X‖,

which implies that ‖P (X)‖ ≤ 2 γ ‖X‖. We then have:

| ‖P1(u)‖ − ‖P2(u)‖ | ≤ ‖P (u)‖ ≤ 2 γ and | ‖P1(v)‖ − ‖P2(v)‖ ≤ 2 γ.

Furthermore, the fact that ‖Pi(u)‖ ≥ 1√
2
, ‖Pi(v)‖ ≥ 1√

2
and

cos θi =
‖Pi(u)‖

2 + ‖Pi(v)‖
2 − ‖Pi(u− v)‖2

2 ‖Pi(u)‖ ‖Pi(v)‖
,
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implies that there exists K > 0 such that

| cos θ1 − cos θ2| ≤ K γ.

Then there exists K > 0 such that |θ1 − θ2| ≤ K γ.
Case 2: θ ∈

[
0, π

10

]

We denote by ∆ a triangle with edges u, v and u − v and by θ′ and
θ′′ the two other angles of ∆. Remark that θ′ = θ′′ ∈

[
π
2 − π

20 ,
π
2

]
. We

also denote by θ′i and θ′′i the two angles of the triangle Pi(∆). We then
have |θ′1 − θ′2| ≤ K γ and |θ′′1 − θ′′2 | ≤ K γ. Then

|θ1 − θ2| = |(π − θ′1 − θ′′1 ) − (π − θ′2 − θ′′2 )| ≤ 2 K γ.

Case 3: θ ∈
[
π − π

10 , π
]

Since π − θ ∈
[
0, π

10

]
, we have

|θ1 − θ2| = |(π − θ1) − (π − θ2)| ≤ K γ.

�

6.3 Majoration of the deviation angles of a geodesic

Proposition 3 There exists K1, such that for every n: if Cn is a
geodesic of Tn and pn is a vertex of Cn, then we have:

β3D
dev(pn) ≤ K1 αn, and βTS

dev(pn) ≤ K1 α
2
n,

where αn is the maximal angle between all the triangles of Tn contain-
ing pn and ΠS

ξ(pn).

Proof

pn

angle α̃

Π1

∆2

∆1

−→
V

−→
V1

−→
V2

−→
U1

−→
U2

Cn

ββ

Figure 5: Proof of Proposition 3 - Case 1

Case 1: pn is not a vertex of Tn

We denote by ∆1 and ∆2 the two triangles containing pn and by e

16



their common edge. We denote by Π1 and Π2 the planes containing

respectively ∆1 and ∆2. We consider the following unit vectors:
−→
V is

colinear to e;
−→
U1 and

−→
U2 are colinear to Cn respectively in the planes

Π1 and Π2 and oriented with the orientation of curve Cn;
−→
V1 is the

vector in the plane Π1 orthogonal to
−→
V ;

−→
V2 is the vector in the plane

Π2 orthogonal to
−→
V and −→n1 is the vector normal to P1. We denote by

α̃ the angle between ∆1 and ∆2, and β is the incident and refracted
angle of Cn at pn (see Figure 5). One has:

−→
V2 = cos α̃

−→
V1 + sin α̃−→n1

and

−→
U1 = cosβ

−→
V + sinβ

−→
V1

−→
U2 = cosβ

−→
V + sinβ

−→
V2.

Which gives:

−→
U2 −

−→
U1 = sinβ

(
(cos α̃− 1)

−→
V1 + sin α̃−→n1

)

then

2 sin

(
β3D

dev(p)

2

)
= ‖

−→
U2 −

−→
U1‖ ≤

(
1

2
α̃2 + α̃

)
≤ 2α̃ ≤ 2αn. (5)

Then, there exists K1 such that

β3D
dev(p) ≤ K1 αn.

Similarly, one has, PS
ξ(pn) being linear:

PS
ξ(pn)

(−→
U2

)
−PS

ξ(pn)

(−→
U1

)
= sinβ

(
(1 − cos α̃)PS

ξ(pn)

(−→
V1

)
+ sin α̃PS

ξ(pn) (−→n1)
)
.

That gives :
∥∥∥PS

ξ(pn)

(−→
U2

)
− PS

ξ(pn)

(−→
U1

)∥∥∥ ≤ sinβ
(
(1 − cos α̃)

∥∥∥PS
ξ(pn)

(−→
V1

)∥∥∥ + sin α̃
∥∥∥PS

ξ(pn) (−→n1)
∥∥∥
)

We know that: ∥∥∥PS
ξ(pn) (−→n1)

∥∥∥ ≤ sinαn ≤ αn.

Which gives:

∥∥∥PS
ξ(pn)

(−→
U2

)
− PS

ξ(pn)

(−→
U1

)∥∥∥ ≤

(
1

2
α̃2 + α̃ αn

)
≤ 2αn

2. (6)

Lemma 2 then implies:

βTS
dev(pn) ≤ K1 α

2
n.

Case 2: pn is a vertex of Tn

• In this case, the sum of all the angles of Tn at pn is necessarily greater
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pn

αr1

1
αr1

2

αr1

m

Cn

projection

region r1

ΠS
ξ(pn)

α̃r1

pn

Figure 6: Proof of Proposition 3 - Case 2

than 2π (see Section 2.4). To be more precise, the curve Cn separates
the set of the triangles of Tn containing pn into two connected regions
r1 and r2 (see Figure 6). If one denotes by αr1

p the sum of the angles
αr1

i of the triangles of region r1 at pn (resp. by αr2
p the angles αr2

i of
the triangles of region r2 at pn), since Cn is a geodesic, one has:

αr1

pn
≥ π and αr2

pn
≥ π.

By Lemma 1, the angular defect |2π− (αr1
p +αr2

p )| is less than 2Kπα2
n.

We then have π ≤ αr1
p ≤ π + 2Kπα2

n. Let denote by α̃r1

i the angle of

the projection onto ΠS
ξ(pn) of αr1

i . We denote by α̃r1
p the sum of the

α̃r1

i . By using again Lemma 1, we have
∣∣∣αr1

p − α̃r1
p

∣∣∣ ≤ 2Kπα2
n and then

βTS
dev(pn) =

∣∣∣α̃r1
p − π

∣∣∣ ≤
∣∣∣α̃r1

p − αr1

p

∣∣∣ +
∣∣αr1

p − π
∣∣ ≤ 4Kπα2

n.

• The curve Cn is included in the neighborhood of pn in two triangles
∆1 and ∆2. We denote by Π1 the plane containing ∆1 and by P1 the

orthogonal projection onto Π1. Let
−→
U1 and

−→
U2 denote respectively the

two unitary vectors colinear to Cn in ∆1 and in ∆2, oriented with the

orientation of curve Cn. We put
−→
U2

⊥ = P1(
−→
U2) −

−→
U2. Similarly as

before, by using Lemma 1 and the projection P1 onto Π1, we have

∠(P1(
−→
U1), P1(

−→
U2)) ≤ 4Kπα2

n.

We also have:

−→
U1 −

−→
U2 =

−→
U1 − P1(

−→
U2) +

−→
U2

⊥ = P1(
−→
U1) − P1(

−→
U2) +

−→
U2

⊥.

18



Since ‖P1(
−→
U1)‖ = 1 and ‖P1(

−→
U2)‖ ≥ cosαn, by Lemma 2 we have:

2 sin ∠(
−→
U1,

−→
U2)

2 = ‖
−→
U1 −

−→
U2‖

≤ ‖P1(
−→
U1) − P1(

−→
U2)‖ + ‖

−→
U2

⊥‖

≤ 2 sin ∠(P1(
−→
U1),P1(

−→
U2))

2 +O(αn
2) + sin(αn)

≤ ∠(P1(
−→
U1), P1(

−→
U2)) +O(αn)

= O(αn).

This implies that there exists K1 such that

β3D
dev(pn) = ∠(

−→
U1,

−→
U2) ≤ K1 αn.

�

6.4 Majoration of ♯Cn

an
1

an
mpn

ξ(pn)

γ1

γ2

Figure 7: Projection of Cn onto the plane ΠS
ξ(pn) (Proposition 4 - case 1)

Proposition 4 There exists a constant K2, such that for any curve
Cn ∈ R(Tn), one has:

♯(Cn) ≤ K2

[
1 + TCTS

Tan(Cn) + 2n l(Cn)
]
.

Proof of Proposition 4

If pn is a vertex of Tn, let us denote by Cell(pn) the set of points of the
triangulation Tn that are closer to pn than to the other vertices of Tn.
Let ηmin denote the length of the smallest edge of Tn, and by θmin the
smallest angle of the triangulation Tn. First remark that the smallest

altitude is larger than ηmin sin(θmin). We put lmin = ηmin sin(θmin)
4 .

• Let us first consider a curve Cn ∈ R(Tn) that satisfies:

l(Cn) ≤ lmin and TCTS
Tan(Cn) ≤ π.
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We are going to show that the number ♯Cn of intersections between
Cn and the edges of Tn is bounded by a constant independant of n.
Case 1: There exists a vertex pn of Tn such that the distance from pn

to Cn is less than lmin.
Since the length of the curve Cn is less than lmin, every point m of
Cn is a distance less than 2lmin from the vertex pn. This implies that
Cn ⊂ Cell(pn).

By definition, the curve Cn of R(Tn) ”crosses” every intersected
edge. This implies that Cn either contains the vertex pn or is turning
around the vertex pn without changing the sense (in the clockwise sense
or in the counter-clockwise sense).
− If pn ∈ Cn, then Cn follows 0, 1 or 2 edges and only contains the
vertex pn. This implies that ♯Cn is less than the valence of pn which
is uniformly bounded from above by a constant V (see Remark 1).
− If Cn is turning around pn, we are going to show that Cn cannot
intersect three times the same edge e. If Cn is intersecting twice the
same edge e, then the discrete Gauss-Bonnet formulae of the projecton
PS

ξ(pn)(Cn) of the curve Cn onto the plane ΠS
ξ(p) implies that (see Figure

7)
TC3D(PS

ξ(pn)(Cn)) + γ1 + γ2 ≥ 2π,

where γ1 ∈ [0, π] and γ2 ∈ [−π, 0]. We the have |γ1 + γ2| ≤ π and:

TC3D(PS
ξ(pn)(Cn)) ≥ 2π − (γ1 + γ2) ≥ π.

Let us denote by an
1 ,...an

mpn
consecutive vertices of PS

ξ(pn)(Cn) such
that an

1 and an
mpn

belong to the same edge e. Remark that mpn
− 1

is equal to the valency of pn and thus is less than V . Since the angle
between ΠS

ξ(an
i ) and ΠS

ξ(pn) is less than 1
2n , Lemma 4 implies that:

TCTS
Tan(Cn) ≥ TC3D(PS

ξ(pn)(Cn)) −
K mpn

2n
≥ π −

K V

2n
.

Let us now suppose that Cn is intersecting three times an edge e. Then
we have that:

TCTS
Tan(Cn) ≥ 2π −

2K V

2n
> π,

for n large enough, which contradicts the assumption made on the
curve Cn. This implies that the number ♯Cn of intersections between
Cn and Tn is bounded from above by twice the valency of pn, which is
less than 2V . Then ♯Cn is uniformly bounded from above.
Case 2: The distance between Cn and all the vertices of Tn is larger
than lmin.
Let ∆n = pnqnrn denote a triangle of Tn that is intersected by Cn.
The intersection is a segment [an, bn] and we denote by θpn

the angle
at pn (see Figure 8). We can suppose that pnan ≤ pnbn and we have:

anbn ≥ 2 sin

(
θpn

2

)
pnan ≥ 2 sin

(
θmin

2

)
lmin.
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pn

qn

rn

an

bn

θpn

Figure 8: Proof of Proposition 4 - case 2

Then the number ♯Cn of intersection between Cn and the edges of Tn

is less than:

1 +
l(Cn)

2 sin
(

θmin

2

)
lmin

≤ 1 +
1

2 sin
(

θmin

2

) .

In the two cases, ♯Cn is bounded by a constant independant on n.
That implies that there exists a constant K̃ such that:

♯(Cn) ≤ K̃.

• Let us now consider any curve Cn ∈ R(Tn). The curve Cn can be
subdivided in N curves C1

n,...,CN
n that satisfy:

l(Ci
n) ≤ lmin and TCTS

Tan(Ci
n) ≤ π,

where

N ≤
l(Cn)

lmin

+
TCTS

Tan(Cn)

π
+ 1.

Then there exists a constant K2 such that:

♯(Cn) ≤ N K̃ ≤ K2

[
1 + TCTS

Tan(Cn) + 2n l(Cn)
]
.

�

6.5 A sufficient condition for the regularity of the

limit curve

Proposition 5 Let (Cn)n∈N be a sequence of polygonal curves Cn :
[0, 1] → R

3, with uniform parametrization that converges toward a non
constant curve C in the sup norm sense. If

∃k1, k2, ∀ta, tb ∈ [0, 1] TC3D(Cn, ta, tb) ≤
k1

2n
+ k2 l(Cn, ta, tb),

then the curve C has uniform parametrization, is of class C1,1 and has
curvature bounded by k2. Moreover l(C) = limn→∞ l(Cn) and for any
t0 ∈ (0, 1):

lim
n→∞

dCn

dt+
(t0) =

dC

dt
(t0).
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Proof One first proves a few lemmas.

Lemma 5 In the conditions of Proposition 5, for any θ > 0, there is
an integer number N such that for any n,m ≥ N and any t ∈ [0, 1):

∠

(
dCn(t)

dt+
,
dCm(t)

dt+

)
< θ. (7)

Proof Recall that, because the curves Cn have uniform parametriza-
tion,

∥∥dCn

dt+
(t)

∥∥ is constant on [0, 1]. And, as C is non constant and
Cn → C in the sup norm sense, let t < t′ be such that C(t′) 6= C(t).
Then, for some N0, n ≥ N0 ⇒ ‖C − Cn‖∞ < 1

4 ‖C(t′) − C(t)‖, which
entails:

‖Cn(t′) − Cn(t)‖ >
1

2
‖C(t′) − C(t)‖ .

Therefore, for l = 1
2 ‖C(t′) − C(t)‖, for any n ≥ N0,

∥∥dCn

dt+
(t)

∥∥ >

l > 0. Let N ≥ N0 be such that:

k1

2N
<

θ

16
, (8)

and:

∀n ≥ N, ‖Cn − C‖∞ <
θ2

128k2
. (9)

Notice that if Lemma 5 holds for θ < min
(

π
2 , k2l

)
, it holds in

general. We proceed by contradiction. Let us assume that the assertion
of the lemma does not hold for some t ∈ [0, 1

2 ], and θ < min
(

π
2 , k2l

)
.

More precisely, let us assume that, for some t ∈ [0, 1
2 ] and n,m ≥ N ,

one has:

∠

(
dCn(t)

dt+
,
dCm(t)

dt+

)
≥ θ. (10)

Without loss of generality, one can assume that:

∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ ≥

∥∥∥∥
dCm

dt+
(t)

∥∥∥∥ . (11)

We consider:

t′ = t+
θ

16k2

∥∥dCn

dt+
(t)

∥∥ .

Notice that θ < k2l entails t′ < 1. One has l(Cn, t, t
′) ≤ θ

16k2
which

gives, with the assumption in Proposition 5 together with inequation
(8):

TC3D(Cn, t, t
′) ≤

k1

2n
+ k2 l(Cn, t, t

′) ≤
θ

8
.

Therefore, one has, for any τ ∈ [t, t′]:

∥∥∥∥
dCn

dt+
(τ) −

dCn

dt+
(t)

∥∥∥∥ ≤ 2 sin(
θ

16
)

∥∥∥∥
dCn

dt+

∥∥∥∥ ,
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and:
∥∥∥∥∥

∫ t′

t

dCn

dt+
(τ)dτ − (t′ − t)

dCn

dt+
(t)

∥∥∥∥∥ =

∫ t′

t

(
dCn

dt+
(τ) −

dCn

dt+
(t)

)

≤ (t′ − t)

∥∥∥∥
dCn

dt+
(τ) −

dCn

dt+
(t)

∥∥∥∥

≤ (t′ − t)2 sin(
θ

16
)

∥∥∥∥
dCn

dt+

∥∥∥∥

= 2 sin(
θ

16
)
θ

8k2
.

Which gives:
∥∥∥∥∥

∫ t′

t

dCn

dt+
(τ)dτ − (t′ − t)

dCn

dt+
(t)

∥∥∥∥∥ ≤
θ2

64k2
. (12)

And similarly, using inequation (11), one has:

∥∥∥∥∥

∫ t′

t

dCm

dt+
(τ)dτ − (t′ − t)

dCm

dt+
(t)

∥∥∥∥∥ ≤
θ2

64k2
. (13)

On another hand, inequations (11) and (10) entail:

∥∥∥∥(t′ − t)
dCn

dt+
(t) − (t′ − t)

dCm

dt+
(t)

∥∥∥∥ ≥ sin θ

∥∥∥∥(t′ − t)
dCn

dt+
(t)

∥∥∥∥ ,

which gives:
∥∥∥∥(t′ − t)

dCn

dt+
(t) − (t′ − t)

dCm

dt+
(t)

∥∥∥∥ ≥ sin θ
θ

8k2
>

θ2

16k2
. (14)

But:
∥∥∥
∫ t′

t
dCn

dt+
(τ)dτ −

∫ t′

t
dCm

dt+
(τ)dτ

∥∥∥ = ‖Cn(t′) − Cn(t) − Cm(t′) + Cm(t)‖

≤ 2 ‖Cn − C‖∞ ,

which gives, using (9):

∥∥∥∥∥

∫ t′

t

dCn

dt+
(τ)dτ −

∫ t′

t

dCm

dt+
(τ)dτ

∥∥∥∥∥ ≤
θ2

32k2
.

This last equation can not hold together with inequations (14), (12)
and (13). Therefore, inequation (10) does not hold and the lemma is
proved for t ∈ [0, 1

2 ]. By reparametrizattion of the curves by t 7→ 1− t,
one gets the same property for t ∈ [12 , 1] but expressed with the left
derivatives. However, in the condition of the lemma, the left and right
derivatives satisfy:

∀n, ∀t,

∥∥∥∥
dCn

dt−
(t) −

dCn

dt+
(t)

∥∥∥∥ ≤
k1

2n
.
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This entails, using that ∀n ≥ N0,
∥∥dCn

dt+
(t)

∥∥ > l > 0 that both have
same uniform limit angle. �

Lemma 5 gives a Cauchy sequence condition on the angle allows
to derive the following lemma on Cauchy sequence conditions on right
derivatives.

Lemma 6 In the conditions of Proposition 5, the sequence of dCn

dt+
(t)

is bounded by some number l̃. Moreover, it is a Cauchy sequence, that
is, for any ǫ > 0, there is an integer number N such that for any
n,m ≥ N and any t ∈ [0, 1):

∥∥∥∥
dCn(t)

dt+
−
dCm(t)

dt+

∥∥∥∥ < ǫ. (15)

Proof We first claim that, for any β > 0, there is N such that, for any
n,m ≥ N and t ∈ [0, 1

2 ], one has:

∣∣∣∣
∥∥∥∥
dCn(t)

dt+

∥∥∥∥ −

∥∥∥∥
dCm(t)

dt+

∥∥∥∥
∣∣∣∣ ≤ β max

(∥∥∥∥
dCn(t)

dt+

∥∥∥∥ ,
∥∥∥∥
dCm(t)

dt+

∥∥∥∥
)
. (16)

As in the proof of Lemma 5, we consider N0 and l > 0 such that
∀n ≥ N0,

∥∥dCn

dt+
(t)

∥∥ > l > 0. We consider θ < min
(

π
2 , k2l

)
such that

(1 − cos θ) < β
2 and N1 ≥ N0 such that

k1

2N1
<
θ

2
. (17)

We consider again N ≥ N1 , using Lemma 5, such that, ∀n,m ≥ N :

∠

(
dCn(t)

dt+
,
dCm(t)

dt+

)
< θ (18)

and

‖Cn − Cm‖∞ ≤
θβ

8k2
. (19)

We consider some t ∈ [0, 1
2 ] and n,m ≥ N , and we will prove that

(16) holds. Without loss of generality, one can assume that
∥∥∥dCn(t)

dt+

∥∥∥ ≥
∥∥∥dCm(t)

dt+

∥∥∥. As in the proof of Lemma 5, we consider the interval [t, t′]:

t′ = t+
θ

2k2

∥∥dCn

dt+
(t)

∥∥ , (20)

which gives (t′ − t)
∥∥dCn

dt+
(t)

∥∥ = θ
2k2

and we get from (17) that, ∀τ ∈
[t, t′]:

∠

(
dCn

dt+
(τ),

dCn

dt+
(t)

)
≤ θ. (21)
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We consider the unitary vector e =
dCn

dt+
(t)

‖ dCn

dt+
(t)‖

. One has, using Inequality

(21):

< e, Cn(t′) − Cn(t) > = < e,

∫ t′

t

dCn

dt+
(τ)dτ >

=

∫ t′

t

< e,
dCn

dt+
(τ) > dτ

≥ cos θ (t′ − t)

∥∥∥∥
dCn

dt+

∥∥∥∥ .

Similarly, using (18) and (21), one gets:

< e, Cm(t′) − Cm(t) > = < e,

∫ t′

t

dCm

dt+
(τ)dτ >

=

∫ t′

t

< e,
dCm

dt+
(τ) > dτ

≤ (t′ − t)

∥∥∥∥
dCm

dt+

∥∥∥∥ .

Using (19) we get:

|< e, Cn(t′) − Cn(t) > − < e, Cm(t′) − Cm(t) >| ≤
θβ

4k2
,

and the three last inequalities sum up in:

cos θ (t′ − t)

∥∥∥∥
dCn

dt+

∥∥∥∥ ≤ (t′ − t)

∥∥∥∥
dCm

dt+

∥∥∥∥ +
θβ

4k2
.

Dividing both terms by (t′ − t) = θ

2k2‖ dCn

dt+
(t)‖

gives:

cos θ

∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ ≤

∥∥∥∥
dCm

dt+

∥∥∥∥ +
β

2

∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ ,

which gives:

∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ −

∥∥∥∥
dCm

dt+

∥∥∥∥ ≤ (
β

2
+ 1 − cos θ)

∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ .

The fact that (1 − cos θ) < β
2 proves (16).

Property (16) easily proves the lemma. Indeed, taking β = 1
2 gives

that, for some N :

n ≥ N ⇒

∣∣∣∣
∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ −

∥∥∥∥
dCN

dt+
(t)

∥∥∥∥
∣∣∣∣ ≤

1

2
max

(∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ ,
∥∥∥∥
dCN

dt+
(t)

∥∥∥∥
)
,

which entails:

n ≥ N ⇒

∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ ≤ 2

∥∥∥∥
dCN

dt+
(t)

∥∥∥∥ .
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Therefore, the sequence of
∥∥dCn

dt+
(t)

∥∥ is bounded by some number l̃ and
(16) entails that, for any β > 0, one has:

n ≥ N ⇒

∣∣∣∣
∥∥∥∥
dCn

dt+
(t)

∥∥∥∥ −

∥∥∥∥
dCN

dt+
(t)

∥∥∥∥
∣∣∣∣ ≤ βl̃.

This implies that
∥∥dCn

dt+
(t)

∥∥ is a Cauchy sequence. This fact, combined

with Lemma 5, implies that dCn

dt+
(t) is a Cauchy sequence. �

The fact that for every t ∈ (0, 1), one has l(Cn) =
∥∥dCn

dt+
(t)

∥∥, implies
by Lemma 6, that the sequence of lengths l(Cn) is converging to L.
For two points a and b, d(a, b) denotes the euclidean distance between
a and b. First one proves the following:

Lemma 7 In the conditions of Proposition 5, for any ǫ with 0 < ǫ <
1
10 , there is η and an integer number N such that if 0 < tb − ta ≤ η,
then for any t, t′ such that ta ≤ t < t′ ≤ tb and for any n ≥ N :

∥∥∥∥
Cn(t′) − Cn(t)

t′ − t
−
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥ ≤ ǫ

∥∥∥∥
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥ (22)

and:

l(Cn)(tb − ta)(1 − ǫ2) ≤ d (Cn(ta), Cn(tb)) ≤ l(Cn)(tb − ta). (23)

Proof of Lemma 7
We put η = ǫ

4k2 l̃
and N such that k1

2N ≤ ǫ
4 . If 0 < tb − ta ≤ η, we then

have:
l(Cn, ta, tb) = l(Cn) (tb − ta) ≤ l̃

ǫ

4 k2 l̃
=

ǫ

4 k2
.

We then have

TC3D(Cn, ta, tb) ≤
k1

2n
+ k2 l(Cn, ta, tb) ≤

ǫ

4
+
ǫ

4
=
ǫ

2
.

First remark that the right derivative of Cn exists everywhere. In the
following, we denote it by dCn

dt+
. Furthermore, since Cn is differentiable

almost everywhere, the Lebesgues integral of its derivative is equal to
the Lebesgues integral of dCn

dt+
. For any t1, t2 ∈ [ta, tb], one has:

∠

(
dCn

dt+
(t1),

dCn

dt+
(t2)

)
≤
ǫ

2
.

Then, since Cn has uniform parametrization, one has:

∀t1 ∈ [0, 1]

∥∥∥∥
dCn

dt+
(t1)

∥∥∥∥ = l(Cn),

and therefore, for any t1, t2 ∈ [ta, tb], one has:

∥∥∥∥
dCn

dt+
(t2) −

dCn

dt+
(t1)

∥∥∥∥ ≤ 2 l(Cn) sin
ǫ

4
.

That implies that for any t1 ∈ [ta, tb] and t, t′ with ta ≤ t < t′ ≤ tb:
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∥∥∥∥
Cn(t′) − Cn(t)

t′ − t
−
dCn

dt+
(t1)

∥∥∥∥ =

∥∥∥∥∥
1

t′ − t

∫ t′

t

(
dCn

dt+
(τ) −

dCn

dt+
(t1)

)
dτ

∥∥∥∥∥

≤ 2l(Cn) sin
ǫ

4
.

Again:
∥∥∥∥
Cn(t′) − Cn(t)

t′ − t
−
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥ =

∥∥∥∥
1

tb − ta

∫ tb

ta

(
Cn(t′) − Cn(t)

t′ − t
−
dCn

dt+
(τ)

)
dτ

∥∥∥∥

≤
1

tb − ta

∫ tb

ta

∥∥∥∥
Cn(t′) − Cn(t)

t′ − t
−
dCn

dt+
(t1)

∥∥∥∥ dτ

≤ 2l(Cn) sin
ǫ

4
.

(24)

On the other hand:
∥∥∥∥
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥
2

=

(
1

tb − ta

∫ tb

ta

dCn

dt+
(τ)dτ

)
.

(
1

tb − ta

∫ tb

ta

dCn

dt+
(τ)dτ

)

=
1

(tb − ta)2

∫ tb

ta

∫ tb

ta

dCn

dt+
(τ1) ·

dCn

dt+
(τ2)dτ2dτ1.

This gives

l(Cn)2 cos
ǫ

2
≤

∥∥∥∥
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥
2

≤ l(Cn)2

and

l(Cn)

√
cos

ǫ

2
≤

∥∥∥∥
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥ ≤ l(Cn). (25)

Using ǫ < 1
10 , Equations (24) and (25) imply Equation (22); Equation

(25) proves Equation (23). �

We recall that L = lim supn→∞ l(Cn). Now, by using the fact that
‖Cn −C‖∞ → 0, Lemma 7 gives that, for any ǫ with 0 < ǫ < 1

10 , there
is η such that, if 0 < tb − ta ≤ η:

∥∥∥∥
C(t′) − C(t)

t′ − t
−
C(tb) − C(ta)

tb − ta

∥∥∥∥ ≤ ǫ

∥∥∥∥
C(tb) − C(ta)

tb − ta

∥∥∥∥ .

Remark that: ∥∥∥∥
Cn(tb) − Cn(ta)

tb − ta

∥∥∥∥ ≤ l(Cn).

Which entails, by taking the limit of both sides as n→ ∞:
∥∥∥∥
C(tb) − C(ta)

tb − ta

∥∥∥∥ ≤ L.

We have then:
∥∥∥∥
C(t′) − C(t)

t′ − t
−
C(tb) − C(ta)

tb − ta

∥∥∥∥ ≤ ǫL. (26)
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For a given real number t0 ∈ [0, 1], and an integer number j ≥ 1
we introduce the closed subset Kj(t0) as:

Kj(t0) = Closure

[{
C(t′) − C(t)

t′ − t
| max

(
0, t0 −

1

j

)
≤ t < t′ ≤ min

(
1, t0 +

1

j

)}]
.

From Equation (26) Kj(t0) is bounded for j large enough, and there-
fore compact. It is obviously not empty and decreasing for the in-
clusion: Kj(t0) ⊃ Kj+1(t0). From compactness, the set K(t0) =
∩j≥1Kj(t0) is not empty and Equation (26) entails that it must be
contained in a ball of radius ǫL for arbitrarily small ǫ which entail that
K(t0) is a single point:

K(t0) = {ψ(t0)}.

Again, Equation (26) entails:

∀ǫ > 0, ∃h > 0,

max (0, t0 − h) ≤ t < t′ ≤ min (1, t0 + h) ⇒

∥∥∥∥
C(t′) − C(t)

t′ − t
− ψ(t0)

∥∥∥∥ < ǫ.

Therefore, for 0 < t0 < 1, ψ(t0) is the derivative of C at t0. In fact,
the expression above is stronger: it states that C is strictly differen-
tiable (see [4] page 30), which entails that the derivative function is
continuous. For t0 = 0 (resp. t0 = 1 ) this shows that C has a right
(resp. left) derivative at 0 (resp. 1). We have proven so far that C is
of class C1.

Lemma 8 The sequence of right derivatives dCn

dt+
uniformly converges

to dC
dt

. In other words, for every ǫ >, there exists N ∈ N such that:

n > N ⇒ ∀t ∈ (0, 1)

∥∥∥∥
dCn

dt+
(t) −

dC

dt
(t)

∥∥∥∥ ≤ ǫ.

Proof Proof of Lemma 8
We know by Lemma 6 that dCn

dt+
uniformly converges. We only have

to show that dCn

dt+
(t0) converges to dC

dt
(t0) for any t0 ∈ (0, 1). From

Lemma 7, for any ǫ such that 0 < ǫ < 1
10 , there is h0 > 0 and an

integer number N such that, for n ≥ N and h ≤ h0, one has:

∥∥∥∥
Cn(t0 + h) − Cn(t0 − h)

2h
−
dCn

dt+
(t0)

∥∥∥∥ ≤ ǫ.

Since C is of class C1, we can take h small enough to have:

∥∥∥∥
C(t0 + h) − C(t0 − h)

2h
−
dC

dt
(t0)

∥∥∥∥ ≤ ǫ

and let Ñ ≥ N be such that n ≥ Ñ ⇒ ‖Cn − C‖∞ ≤ ǫh. One gets:

∥∥∥∥
Cn(t0 + h) − Cn(t0 − h)

2h
−
C(t0 + h) − C(t0 − h)

2h

∥∥∥∥ ≤
2ǫh

2h
= ǫ,
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which gives, for any n ≥ Ñ :
∥∥∥∥
dCn

dt+
(t0) −

dC

dt
(t0)

∥∥∥∥ ≤ 3ǫ.

This is true for arbitrary small ǫ which proves the claim. �

Lemma 8 allows to apply Lebesgues’ dominated convergence theo-
rem which entails that, for 0 ≤ ta < tb ≤ 1:

lim
n→∞

l(Cn, ta, tb) = l(C, ta, tb), (27)

and in particular:
lim

n→∞
l(Cn) = L = l(C).

The assumptions of Proposition 5 entail that:

∀ta, tb ∈ [0, 1] ∠

(
dCn

dt+
(ta),

dCn

dt+
(tb)

)
≤
k1

2n
+ k2 l(Cn, ta, tb).

This, together with Lemma 8 and Equation (27) entail:

∀ta, tb ∈ [0, 1] ∠

(
dC

dt
(ta),

dC

dt
(tb)

)
≤ k2 l(C, ta, tb),

which proves that k2 bounds the curvature of C. Moreover, Lemma 8
entails that, for any t0 with 0 < t0 < 1:

∥∥∥∥
dC

dt
(t0)

∥∥∥∥ = L = l(C).

It follows that C has uniform parametrization and dC
dt

is K−Lipschitz
with K = L2k2. �

6.6 Proof of Theorem 1

We take the notations of Theorem 1. Let αn be the smallest real
number such that for every m ∈ Tn, the angle between any triangle
∆ containing m and the tangent plane ΠS

ξ(m) of S at ξ(m) is smaller
than αn. By assumption, we have

αn ≤
K

2n
.

Step 1: Let us consider a given interval [ta, tb] ⊂ [0, 1]. By definition,
we have:

TCTS
Tan(Cn, ta, tb) =

∑

p vertex of Cn([ta,tb])

βTS
dev(p).

Propositions 3 and 4 imply that:

TCTS
Tan(Cn, ta, tb) ≤ K1 (2αn)2 ♯ (Cn, ta, tb) (by Prop. 3)

≤ K1 K2 (2αn)2
[
1 + TCTS

Tan(Cn, ta, tb) + 2n l(Cn, ta, tb)
]

(by Prop. 4)

≤
4K2

4n
K1 K2

[
1 + TCTS

Tan(Cn, ta, tb) + 2n l(Cn, ta, tb)
]
.
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Therefore, for some constants K3 and K4 independant of ta and tb,
one has:

TCTS
Tan(Cn, ta, tb) ≤

K3

2n
l(Cn, ta, tb) +

K4

4n
. (28)

Step 2: We have:

TC3D(Cn, ta, tb) =
∑

p vertex of Cn(ta,tb)

β3D
dev(p)

≤ K1 (2αn) ♯ (Cn, ta, tb) (By Prop. 3)
≤ 2K1 K2 αn

[
1 + TCTS

Tan(Cn, ta, tb) + 2nl(Cn, ta, tb)
]

(By Prop. 4)

≤ 2KK1K2

2n

[
1 + TCTS

Tan(Cn, ta, tb) + 2nl(Cn, ta, tb)
]
.

Equation (28) then implies that there exist constants K and K ′:

TC3D(Cn, ta, tb) ≤ K l(Cn, ta, tb) +K ′ 1

2n
, (29)

and Proposition 5 then implies that the curve C is of class C1,1.
Step 3

We consider a point p0 = C(t0) and we recall that PS
p0

denotes the

projection on the plane ΠS
p0

tangent to S at p0. In this step, we are
are going to prove the following lemma:

Lemma 9 For any t0 ∈ (0, 1), the projection PS
C(t0)

◦ C of C on the

plane tangent to S at C(t0) is twice derivable at t0 and:

d2
(
PS

C(t0)
◦ C

)

dt2
˛̨
˛̨
˛̨ t = t0

= 0

Proof of Lemma 9
Let α be such that 0 < α < 1 and let r > 0 be the reach of the surface
S. We recall the following proposition (see [11] page 435):

Proposition 6 In the ball B(p0, αr), the map ξ is 1
1−α

−Lipschitz.

Let s be such that sl̃ = αr
2 . Using the fact that Cn has uniform

parametrization and length upper bounded by l̃, the respective lengths
of the arcs Cn([t0 − s, t0]) and Cn([t0, t0 + s]) are smaller than αr

2 and
therefore one has:

Cn([t0 − s, t0 + s]) ⊂ B
(
Cn(t0),

αr

2

)
.

Let us now take n large enough such that ‖Cn − C‖∞ ≤ αr
2 . We then

have:
Cn([t0 − s, t0 + s]) ⊂ B(p0, αr).

Using Proposition 6, it follows that the curves ξ ◦ Cn([t0 − s, t0]) and
ξ ◦ Cn([t0, t0 + s]) have length bounded by αr

1−α
. Therefore, since the

curvature of S is bounded by 1
r
, if one denotes by ΠS

ξ(Cn(t)) the tangent

planes to S at the point ξ (Cn(t)), one has, for any t ∈ [t0 − s, t0 + s]:

2 sin
∠

(
ΠS

ξ(Cn(t)),Π
S
ξ(Cn(t0))

)

2
≤

α

1 − α
. (30)
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We consider now the sequence of curves C̃n which are the projections
PS

p0
(Cn) and which converge toward the projection PS

p0
◦C of the curve

C on the plane ΠS
p0

.

We consider the arc curve PS
p0

(C ([t0 − s, t0 + s])) in the plane ΠS
p0

, for

s = αr
el . Let tni be the parameter of the ith vertex pn

i = Cn(tni ) of Cn.

We apply Lemma 3, taking the unit vectors along dCn

dt
just before and

just after the vertex pn
i for the vector u and v of the proposition, and

the projections PS
ξ(pn

i ) and PS
p0

respectively for the projections P1 and

P2 of the proposition.
If β3D

dev(pn
i ), βTS

dev(p
n
i ) and βΠ0

i are respectively the 3D deviation angle of
Cn at the vertex Cn(tni ), the 2D deviation angle of PS

ξ(pn
i ) (Cn ([t0 − s, t0 + s]))

at ξ(pn
i ) and the 2D deviation angle of PS

p0
(Cn ([t0 − s, t0 + s])) at

Pp0
(pn

i ), Lemma 3 gives, that for some constant K:

βΠ0

i ≤ K

[
βTS

dev(p
n
i ) + sin θ β3D

dev(p
n
i ) +

1

4n

]
,

where θ is the angle between the planes ΠS
ξ(pn

i ) and ΠS
p0

and satisfies

sin θ ≤ 2 sin θ
2 ≤ α

1−α
from Equation 30. One has then:

βΠ0

i ≤ K

[
βTS

dev(p
n
i ) +

α

1 − α
β3D

dev(p
n
i ) +

1

4n

]
.

Therefore, by summing over all the vertices pn
i , one has:

TC3D

(
PS

p0
◦ Cn, t0 − s, t0 + s

)

≤ K ′
[
TCTS

Tan(Cn, t0 − s, t0 + s) +
♯ (Cn, t0 − s, t0 + s)

4n

+
α

1 − α
TC3D (Cn, t0 − s, t0 + s)

]
.

Equation (28) gives:

TCTS
Tan(Cn, t0 − s, t0 + s) ≤

K3 2s

2n
+
K4

4n
.

Equation (29) implies:

TC3D (Cn, t0 − s, t0 + s) ≤ K 2sl̃ +K ′ 1

2n
.

Proposition 4 implies that:

♯ (Cn, t0 − s, t0 + s) ≤ K2

[
1 + TCTS

Tan(Cn, t0 − s, t0 + s) + 2n 2sl̃
]
.

Then, by combining all these results and using the fact that α =
els
r
,

we have, for some constant K5 , K6 and K7:

TC3D

(
PS

p0
◦ Cn, t0 − s, t0 + s

)
≤
K5

4n
+K6

s

2n
+K7 s

2.

31



Let t ∈ [t0−s, t0 +s]. Lemma 2 implies that there exists K8 such that:

∥∥∥∥∥
d

(
PS

p0
◦ Cn

)

dt
(t) −

d
(
PS

p0
◦ Cn

)

dt
(t0)

∥∥∥∥∥ ≤ TC3D

(
PS

p0
◦ Cn, t0 − s, t0 + s

)
+
K8

2n
.

We finally have:

∥∥∥∥∥
d

(
PS

p0
◦ Cn

)

dt
(t) −

d
(
PS

p0
◦ Cn

)

dt
(t0)

∥∥∥∥∥ ≤
K5

4n
+K6

s

2n
+K7 s

2 +
K8

2n
.

(31)
Let ǫ > 0. By Lemma 8, there exists N such that for every n > N and
for every u ∈ (0, 1):

∥∥∥∥
dC

dt
(u) −

dCn

dt+
(u)

∥∥∥∥ < ǫ.

We then have for every u ∈ (0, 1):

∥∥∥∥∥
d

(
PS

p0
◦C

)

dt
(u) −

d
(
PS

p0
◦ Cn

)

dt+
(u)

∥∥∥∥∥ ≤

∥∥∥∥
dC

dt
(u) −

dCn

dt+
(u)

∥∥∥∥ < ǫ.

By using Equation (31), we have:

∥∥∥∥
d(P S

p0
◦C)

dt
(t) −

d(P S
p0

◦C)
dt

(t0)

∥∥∥∥ ≤ 2ǫ+

∥∥∥∥
d(P S

p0
◦Cn)

dt
(t) −

d(P S
p0

◦Cn)
dt

(t0)

∥∥∥∥
≤ 2ǫ+ K5

4n +K6
s
2n +K7 s

2 + K8

2n .

We finally get:

∀t ∈ [t0 − s, t0 + s],

∥∥∥∥∥
d

(
PS

p0
◦ C

)

dt
(t) −

d
(
PS

p0
◦ C

)

dt
(t0)

∥∥∥∥∥ ≤ K7s
2.

This allows to conclude the proof. �

Step 4
Let t0 ∈ (0, 1). In a neighborhood of C(t0), the surface S can be
parametrized by its tangent plane at C(t0): in an appropriated frame
with originC(t0), the surface is parametrized by (x, y) ∈ U0 7→ (x, y, f(x, y)),
where U0 is a neighborhood of (0, 0), f is a function of class C2 that
satisfies f(0, 0) = 0 and Df(0, 0) = 0. For every t close enough to
t0, we put γ(t) = PS

C(t0)
(C(t)). The function γ is of class C1,1, and

by Lemma 9, we know that it is twice differentiable in t0 and that
γ′′(t0) = 0. We have in a neighborhood of t0,

C(t) =

(
γ(t)

f(γ(t))

)
.

The function C is then twice differentiable in t0 and we have

C′′(t0) =

(
γ′′(t0)

D2f(γ(t0)).(γ′(t0), γ′(t0)) +Df(γ(t0).γ′′(t0)

)
.
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The vector C′(t0) belongs to the tangent plane of S at C(t0). Further-
more, the fact that Df(0, 0) = 0 implies that

D2f(γ(t0)).(γ
′(t0), γ

′(t0)) = IIC(t0)(C
′(t0)),

where IIC(t0) is the second fundamental form of S at the point C(t0)
[7]. We then have

C′′(t0) = IIC(t0)(C
′(t0)) N

S
C(t0)

.

In this expression, C′′(t0) depends continuously on t0. That implies
that C is of class C2 in t0. The function C is then of class C2. Lemma 9
then implies that C has zero geodesic curvature, and then is a geodesic
[7].

6.7 Proof of Corollary 1

We first need to check that the assumptions a) to e) of Theorem 1 are
satisfied. The uniform convergence of Pn to f clearly implies assump-
tion a). Now, since the map ξ realises the distance to S, for every
m = Pn(u, v) ∈ Pn, one has ‖ξ(m) −m‖ ≤ ‖f(u, v) − Pn(u, v)‖ which
implies assumption b).
By using the regularity of f and by compacity, we have that:

m = min
(u,v)∈[0,1]2

(
∂f

∂u
(u, v),

∂f

∂v
(u, v),

∂f

∂u
(u, v) +

∂f

∂v
(u, v)

)
> 0,

and

m = max
(u,v)∈[0,1]2

(
∂f

∂u
(u, v),

∂f

∂v
(u, v),

∂f

∂u
(u, v) +

∂f

∂v
(u, v)

)
<∞.

Let ∆n be a triangle of Pn. The vertices of ∆n are for example of the
form

pn = Pn

(
i

2n
,
j

2n

)
qn = Pn

(
i+ 1

2n
,
j

2n

)
and rn = Pn

(
i+ 1

2n
,
j + 1

2n

)
.

Now the fact that (Pn)n∈N uniformly converges in derivative to f im-
plies that there exists N and K such that for every n > N , the lengths
of pnqn, pnrn and qnrn are greater than 1

2n

(
m− K

2n

)
and less than

1
2n

(
M + K

2n

)
. If N is large enough we then have:

1
2n

m
2 ≤ pnqn ≤ 1

2n 2 M,
1
2n

m
2 ≤ pnrn ≤ 1

2n 2 M,
1
2n

m
2 ≤ rnqn ≤ 1

2n 2 M,

(32)

In particular, assumption d) is proved.
The fact that Pn uniformly converges in derivative to f also implies
that there exists N and K such that for every n > N :

∥∥∥∥4n−−→qnrn ∧ −−→qnpn −
∂f

∂u
∧
∂f

∂v

(
i

2n
,
j

2n

)∥∥∥∥ ≤
K

2n
. (33)
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If we take N such that K
2n ≤ m

2 , we then have

‖4n−−→qnrn ∧−−→qnpn‖ ≥ m−
K

2n
≥
m

2
.

Together with Equation (32), that implies that

sin ∠(−−→qnpn,
−−→qnrn) =

‖−−→qnpn ∧ −−→qnrn‖

qnpn qnrn
≥

m
2

1
4n(

1
2n 2 M

)2 =
m

8M
> 0.

The angle ∠(−−→qnpn,
−−→qnrn) is then lower bounded by a constant indepen-

dant on n. The same result holds with the other angles of Tn, which
proves assumption e).
We now denote by NTn

qn
a unitary normal of the triangle pnqnrn and

NS
i,j the normal of S at f( i

2n ,
j
2n ). By using Equation (33) and Lemma

2, we have:

2 sin
∠(NTn

qn
,NS

i,j)
2 ≤

‖4n−−−→qnrn∧−−−→qnpn− ∂f
∂u

∧ ∂f
∂u ( i

2n ,
j

2n )‖
min(4n‖−−−→qnrn∧−−−→qnpn‖, ‖ ∂f

∂u ( i
2n ,

j
2n )‖)

≤
K
2n

min
“
( m

2 )
2
sin θmin,m

” .

Let now mn ∈ ∆n. Then we need to bound the angle ∠(NTn
qn
, NS

ξ(mn)).

There exists K̃ such that
∥∥ξ(mn) − f

(
i

2n ,
j
2n

)∥∥
≤ ‖ξ(mn) −mn‖ +

∥∥mn − Pn

(
i

2n ,
j
2n

)∥∥ +
∥∥Pn

(
i

2n ,
j
2n

)
− f

(
i

2n ,
j
2n

)∥∥
≤ K̃

2n .

Then, by using Proposition 6, we have:

‖NS
ξ(mn) −NS

i,j‖ ≤ ρ
1

1 − K̃
2n

K̃

2n
,

which implies that there exists k such that:

∠(NTn
qn
, NS

ξ(mn)) ≤ ∠
(
NTn

qn
, NS

i,j

)
+ ∠(NS

ξ(mn), N
S
i,j) ≤

k

2n
.

This result holds for all the triangles of Tn. Assumption c) is then
proved.
We now only need to prove that ξ(Cn) is interior to S for n large
enough: the curve C is interior to S. The compacity of S and C

implies that the distance from C to the boundary of S is more than
η > 0. The curve ξ(Cn) clearly tends to C. That implies that for n
large enough ξ(Cn) is an interior curve.
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8 Conclusion and future works

The main result of this work gives sufficient conditions for a sequence
of geodesics on PL-surfaces to converge toward a geodesic on a smooth
limit surface. We believe this is a significant step toward an effective
notion of geodesic: indeed, the usual definition of geodesic is not effec-
tive because it relies on the notions of smooth curves and surfaces and
on the pointwise curvature which can not be exactly represented on
computers. Our main theorem states that the usual notion of geodesic
coincides with the limit of a sequence of PL-curves that can be repre-
sented (at least if one restricts ourselves to PL-surfaces with rational
vertices coordinates). Therefore, by using our result, a realistic algo-
rithm can output a sequence of curves whose limit is a geodesic of a
smooth surface. Notice that, given a smooth surface with bounded
curvature, there exists a sequence of PL-surfaces converging to it (and
that matches the conditions of our theorem). However, in order to
completely get the effective notion of geodesic, one still has to quan-
tify the rate of convergence of this sequence of curves.

We also believe that our result could be improved by relaxing the
condition on the edge lengths: indeed, in the counter-example the
lengths decrease with the order 1

4n with respect to a decrease rate of
1
2n of the angular convergence. We believe that it is possible to improve

the theorem between the K
2n condition of the theorem and the 1

4n of
the counter-example.

Another possible improvement of the result is to suppose that the
limit surface is of class C1,1 (instead of C2). Notice that such a gen-
eralisation would be very usefull for some subdivision surfaces with
extraordinary points. Indeed, at extraordinary points, the limit sur-
face of some subdivision surfaces is only of class C1,1. We proved (for
example for the Catmull-Clark scheme) that if the limit curve of a
sequence of geodesics does not contain extraordinary points, then it
is a geodesic. We believe that the result still holds if the limit curve
contains extraordinary points.
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électromagnétisme (French) Mathématiques & Applications
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