A short tutorial for Dynsys
 A program for dynamical systems based on dynamic graphs

Stephane Despreaux, Aude Maignan
stephane.despreaux@imag.fr, aude.maignan@imag.fr

http://www-ljk.imag.fr/membres/Stephane.Despreaux/Ingenierie/Dynsys/doc/doc.html DynSys is a program dedicated to the modeling and the simulation of dynamical systems based on dynamic graphs. Each agent and link of the graph obeys a dynamical system. The state of each agent is determined thanks to the state of its neighbors. Agents and links between agents can be added to or removed from the graph. And consequently the dynamic of agents can evolve. The aim of this paper is to discover main command functions of Dynsys with the help of a simple example.

1 The presentation of the example

Let us consider a simple example. The state of nodes and edges are one-dimensional variables, X and Y respectively. The dynamic function of the nodes is $\dot{X}_{i}=\frac{6}{\sharp \sigma(i)}$ where $\sharp \sigma(i)$ denotes the number of neighbors of the node i. Let $Y_{i j}$ be the age of the edge (i, j). Its dynamic is $\dot{Y}_{i j}=1$.

At a given time t^{*}, a node i and one of its neighbors j create a new node k (see figure 1) when the constraint $X_{i}\left(t^{*}\right)+X_{j}\left(t^{*}\right) \geq 12$ is verified.

Figure 1: Local transformation
The value of $X_{k}\left(t^{*}\right)$ is defined and the values of $X_{i}\left(t^{*}\right)$ and $X_{j}\left(t^{*}\right)$ are modified thanks to reset functions: $X_{k}\left(t^{*}\right)=\frac{X_{i}\left(t^{*}\right)+X_{j}\left(t^{*}\right)}{2}, X_{i}\left(t^{*}\right)=\frac{X_{i}\left(t^{*}\right)}{2}$ and $X_{j}\left(t^{*}\right)=\frac{X_{j}\left(t^{*}\right)}{2}$. The edge (i, j) tenses and the nodes i and j merge when the constraint $Y_{i j}\left(t^{*}\right) \geq 5$ is verified. The reset function of the node i is then $X_{i}\left(t^{*}\right)=\frac{X_{i}\left(t^{*}\right)+X_{j}\left(t^{*}\right)}{2}$.

2 The modeling with DynSys

DynSys software has been developed in C++ and Java.
When lauching DynSys (with the command function rundynsys.sh) the interface looks as figure 2 .

Figure 2: Dynsys interface
A new project can be opened with sub-menu file/New Project (see figure 3)
To edit the modeling window click edit/Dynamical Systems and fill in its fields as follow (figure 4).

The name of the variables which describe node states and edge states must begin with the letter "m". If a node variable describes the position of the node, the name of this variable must begin by "mPos". In that case the position of nodes is taken into account when the graph will be drawn on the main window.

In the example, $m X$ denotes the name of the node state and $m Y$ denotes the name of the edge state.

Write "mX" on the Name of node states field and write "mY" on the Name of edge states field. Click on the buttons add (figure 5).

Figure 3: Open a new project

Figure 4: empty modeling window

Figure 5: filled modeling window

2.1 Dynamics

In the example, the dynamic function of nodes is $\dot{X}_{i}=\frac{6}{\sharp \sigma(i)}$.
Click on the Fi... button to specify the Node dynamic. The compiler editor appear. Available variables and their specification are listed in the panel. Fill in the text editor as shown below (figure 6) and click on the compile button. Informations on the compilation will be written on the bottom of the window editor.

The states of the neighbors of node i and the states of the edges linked to the node i are available and can also be used in the dynamic.

In the example, the dynamic function of edges is $\dot{Y}_{i j}=1$.
Click on the Gij... button to specify the Edge dynamic. A compiler editor appear. Fill in the window as shown below (figure 7) and click on the compile button.

Figure 6: Node dynamic

Figure 7: Edge dynamic

The states of the nodes i and j are available and can also be used in the edge dynamic.

2.2 Rule transformations

Predefined transformation rules are proposed in the menu. Click on the Add button of the transformation rules field, figure 4, and click to the arrow to edit the menu (Figure 8).

Figure 8: Transformation rule menu

Figure 9: Rule: Edge Fusionning

In the current version of DynSys, there are ten predefined transformations: Node Adding, Node Adding And Connecting, Node Removing, Node Removing And Connecting All, Edge Fusioning, Edge Splitting, Edge Splitting and Removing, Edge Splitting and Reconnecting All, Edge Removing and Edge Adding.

An intuitive definition of these transformation rules is given thanks to a draw. Users can choose several transformation rules and create a list (figure 5). For each transformation rule, the constraint equations and (if necessary) the reset functions for nodes and edges must be specified by C++ instructions in the constraint window. If, simultaneously, two rules can be applied the first rule in the order of the list will be applied (possibly several times). If the constraint of the second rule is ever verified on the non final new graph, the second rule is applied. So rules must be chosen in the order of priority.

In the example we suppose that the death of nodes has the highest order of priority.
To add the first transformation rule, click on the button Add of the transformation rules field (figure 4) and choose the rule Edge fusionning (figure 9).

The constraint $Y_{i j} \geq 5$ must be written on a C++ compiler editor. Click on the button constraint function and fill in the constraint editor as in figure 10.

After the transformation rule X_{i} get the new value $\frac{X_{i}+X_{j}}{2}$.
Click on the button reset node function in order to define the new values of the variables $m X_{i}$ and fill in the compiler editor as in figure 11.

The reset function of the nodes i is then: $X_{i}\left(t^{*}\right)=\frac{X_{i}\left(t^{*}\right)+X_{j}\left(t^{*}\right)}{2}$. No edge has to be redefined. The window of reset edge function (figure 9) remains empty.

Figure 10: Constraint function

Figure 11: Reset function for nodes

The Edge Splitting and Reconnecting All transformation rule is also add in our example. Click on the button Add of the transformation rules field (figure 4) and choose the rule Edge Splitting and Reconnecting All (figure 12).

The constraint $X_{i}\left(t^{*}\right)+X_{j}\left(t^{*}\right) \geq 12$ must be written on the $\mathrm{C}++$ compiler editor. Click on the button constraint function and fill in the constraint editor as in figure 13.

Figure 12: Rule: Edge Splitting and Reconnecting All

Figure 13: Constraint function

Click on the button reset node function (figure 12) in order to define the new value of the variables $m X_{i}, m X_{j}$ and $m X_{k}$ (figure 14). Click on the button reset edge function (figure 12) in order to define the new value of the variables $m Y_{i j}, m Y_{i k}$ and $m Y_{j k}$ (figure 15).

Figure 14: Reset function for nodes

Figure 15: Reset function for edges

Figure 16: Constraint function for fusionning rule which include dynamic time step

Figure 17: Constraint function for splitting rule which include dynamic time step

2.3 Time step

The time steps are precised thanks to the first fields of the modeling window (figure 4 . [tmin, tmax] is the time interval of simulation. The minimal and maximal time steps are specified, respectively, on the fields $d t \min$ and $d t \max$. Dynsys uses the time step $d t \max$ by default. Users can also integrate a dynamic time step on the constraint functions.

Add the line

$$
d t=5-y_{-} i j ;
$$

in the compiler editor of the constraint function (figure 10). The value of the time step become time_step_1 $=\max (\min (d t, d t \max), d t \min)($ figure 16)

Add the lines

$$
\begin{aligned}
& \text { double } d x _i=\text { der_xi.find }(" m X ")->\text { second } ; \\
& \text { double } d x_{-} j=\text { der_xj.find }(" m X ")->\text { second } ; \\
& \qquad d t=\left(12-x_{i}-x_{j}\right) /\left(d x_{i}+d x_{j}\right) ;
\end{aligned}
$$

Figure 18: Initial graph

Figure 19: State of node 1

Figure 20: State of edge (1,2)
in the compiler editor of the constraint function (figure 13). The value of the time step become time_step_ $2=\min (\max (\min (d t, d t \max), d t \min)$, time_step_1) (figure 17).

In this simple example, the time of the next graph transformation can be computed exactly. And thanks to the time step computation, a new graph is created at each step.

2.4 Initial graph

The initial graph is implemented thanks to an adjacency matrix. Choose initial graph in the edit menu. Fill in the Graph size field and click on Apply (figure 18). A matrix appears in the initial graph window (figure 18). Click on the put (i, j) to create the edge (i, j). Click on the button show and OK.

Dynsys produces the graph in the main window. Click on a node to see its coordinates and its state (figure 19). With this window, you can modify the position of the node on the draw and the node state as you like. Click on an edge and modify its state (figure 20).

3 Simulation

Finally, users have to click on the simulation button to begin the simulation. During the computation, the integration method is a first order numerical integration. Click on the right arrow to see step by step the evolution of the graph.

At each step, DynSys specifies the time variable t, the number of nodes N_{s}, the number of edges E_{s}, the maximal degree of the graph d and the number of transitions which have been applied T_{r}.

Four steps of the example are drawn bellow thanks to Dynsys.
At each step of the computation, a click on a node or an edge posts its state.

Figure 21: Figure a: $\mathrm{t}=0, \mathrm{Ns}=2, \mathrm{Es}=1, \mathrm{~d}=1, \mathrm{tr}=0$; Figure b: $\mathrm{t}=4.625$, $\mathrm{Ns}=18, \mathrm{Es}=33, \mathrm{~d}=6$, $\operatorname{tr}=13$; Figure $\mathrm{c}: \mathrm{t}=6.2093$, Ns=29, Es=53, d=7, tr $=28$; Figure d: t=11.0242,Ns=153, Es $=289, d=38, \operatorname{tr}=188$

