A short tutorial for Dynsys
A program for dynamical systems based on dynamic graphs

Stephane Despreaux, Aude Maignan
stephane.despreaux@imag.fr, aude.maignan@imag.fr

http://www-1jk.imag.fr/membres/Stephane.Despreaux/Ingenierie/Dynsys/doc/doc.html

DynSys is a program dedicated to the modeling and the simulation of dynamical systems
based on dynamic graphs. Each agent and link of the graph obeys a dynamical system.
The state of each agent is determined thanks to the state of its neighbors. Agents and
links between agents can be added to or removed from the graph. And consequently the
dynamic of agents can evolve. The aim of this paper is to discover main command functions
of Dynsys with the help of a simple example.

1 The presentation of the example

Let us consider a simple example. The state of nodes and edges are one-dimensional vari-
ables, X and Y respectively. The dynamic function of the nodes is X; = % where fo (i)
denotes the number of neighbors of the node i. Let Y;; be the age of the edge (i,7). Its
dynamic is Yw =1

At a given time t*, a node i and one of its neighbors j create a new node k (see figure
1) when the constraint X;(¢*) + X;(t*) > 12 is verified.

k

VAN

i j i J
Figure 1: Local transformation

The value of X} (t*) is defined and the values of X;(t*) and X;(¢*) are modified thanks
to reset functions: Xj(t*) = w, Xi(t*) = Xig*) and X;(t*) = @ The edge
(i,7) tenses and the nodes ¢ and j merge when the constraint Y;;(¢t*) > 5 is verified. The
Xi(t")+X; (")

5 :

reset function of the node i is then X;(t*) =

2 The modeling with DynSys

DynSys software has been developed in C++ and Java.
When lauching DynSys (with the command function rundynsys.sh) the interface looks
as figure 2.

DEMAtw 3@ cadNEEE: SE

O]][] 4[]]]

Node States X |+ | Edge States [v [= |] Show Node Scale 7] Show Edge Scale
Formal Dynamical Systerm (=0.0 Ns=1 Es:0 d=0

= Fe il Piyrizieniszll Sy s=0,0 M=l 520 o= Vg sl fialix
re Edit Simulation Graph Graph Evolution Movie Tools Help

node 0

node 2

nade 1

9.0
aiof

hoge 4
noge 3 0.1

Figure 2: Dynsys interface

A new project can be opened with sub-menu file/New Project (see figure 3)

To edit the modeling window click edit/Dynamical Systems and fill in its fields as follow
(figure 4).

The name of the variables which describe node states and edge states must begin with
the letter “m”. If a node variable describes the position of the node, the name of this
variable must begin by “mPos”. In that case the position of nodes is taken into account
when the graph will be drawn on the main window.

In the example, mX denotes the name of the node state and mY denotes the name of
the edge state.

Write “mX” on the Name of node states field and write “mY” on the Name of edge
states field. Click on the buttons add (figure 5).

[fusers/casysfmaignanfDynsys-Projects/Models |

Look In: | Models
File Name:
Files of Type: [All Files

Figure 3: Open a new project

|t max

Dynamical System|rormal System

Global Reset

Dz| 0 [] Enable
0.0 [_] Enable

dX;
4; = Fi(t,zi, 1, yij) j such as AdjMatriz;; =1
dY;, h .
L — Gyl aid)
Model Saving Path
Name example |! save | load ‘
Name of node states
41 [*]
Name of edge states
4] [v]
Node dynamic Fi...
Edge dynamic Gil...
{transformation rules |
1] [*]

|Global Reset

|dt minjo.0001

Dynamical System|Formal System

dX;
d—f‘ = Filt, zi,xj,yij)] such as AdjMatricg =1
dYi; y ;
d—” = Gy(t.xt, 2. yij)
Model Saving Path
Name example = | TP
|
MName of node states
mx
4] v |
[Name of edge states
my i

[4]

MNode dynamic Fi..

Edge dynamic

transformation rules EdgeFusioning
EdgeSplitting

[~ [o0 [Enable
= 0.0] Enable

Figure 4: empty modeling window

Figure 5: filled modeling window

2.1 Dynamics

In the example, the dynamic function of nodes is X; =

fo (i)

Click on the Fi... button to specify the Node dynamic. The compiler editor appear.
Available variables and their specification are listed in the panel. Fill in the text editor as
shown below (figure 6) and click on the compile button. Informations on the compilation
will be written on the bottom of the window editor.

The states of the neighbors of node i and the states of the edges linked to the node i
are available and can also be used in the dynamic.

In the example, the dynamic function of edges is Yzj =1.

Click on the Gij... button to specify the Edge dynamic. A compiler editor appear. Fill
in the window as shown below (figure 7) and click on the compile button.

e = Ecliter

‘v. Tk — & X
Rowl |caill || Goto | Row[l Jcolfl || Goto |
Injout | Mame Type Camment InfCut | Mame Type Comment

I stateba. .. [const stringé state name of the node It stateMame|const string& state name of the edge

IIN t const double& time of the computation I it const double& tire of the computation

IIN i const map<string,d... |a map of walue of the state node at node i I i map <string, double>& [walue of the states nodes at index i

IIN xj const map-<string,we...|a map of value of the state nodes connec.. gl Xj map-<siring, double>& |value of the states nodes at index |

11 ij const map-<string,we. . [value of the states edges connected to no It] const map<string,dou. . |value of the stateMame state of edge
oUT W double return the walue of o _ifct=F_idt, xi, %)) oUT s double return the walue of o _ij/dt=Cliji «i xj...
double w=0; = // compute the G_ij function in oY _ijjdt=C_ij =

doubile ¥_i=xi find("'mx")->second;

wertor <double > w_s=yijfindmy")->second;
£ wector<doubles ¥_j=xfinc{mx")- > secand;
int y_s_size=y_s.size(;

=B [y 5_size;

return v,

[4]

i § which define the evalking value for the edge [ij].
ff G_ij depends on

#f stateMame: state name of the edge

£ 1 the time of computation

#4 wic amap of value of the node states at index i
£ %) & mag of value of the node states at index |
£ dithe value of the state at the edge

£ 10 get the node state wvalue of name i at index |;
£ double x=xifind("mx")- > second;

double v=1;

returmn v,

[4]

q il I

[»]

q il I

[*]

Figure 6: Node dynamic

Figure 7: Edge dynamic

The states of the nodes ¢ and j are available and can also be used in the edge dynamic.

2.2 Rule transformations

Predefined transformation rules are proposed in the menu. Click on the Add button of the
transformation rules field, figure 4, and click to the arrow to edit the menu (Figure 8).

_Balix - X irsgsiurmaiion rule =dito s PEE

transformation rules |npgeAdding - transformation rules

ModeAdding

NodeAddingAndConnecting P | 1

ModeRemoving ==
ingAndConnectAll 2

EdgeFusioning] [j i

EdgeSplitting
constraint function EdgeSplittingAndRemoving constraint function
EdgeSplittingAndConnecting All 1

reset node function reset node function

EdgeAdding

reset edge function [EdgeRemoving reset edge function
- =1}
Figure 8: Transformation rule menu Figure 9: Rule: Edge Fusionning

In the current version of DynSys, there are ten predefined transformations: Node Adding,
Node Adding And Connecting, Node Removing, Node Removing And Connecting All, Edge
Fusioning, FEdge Splitting, Edge Splitting and Removing, Edge Splitting and Reconnecting
All, Edge Removing and Edge Adding.

An intuitive definition of these transformation rules is given thanks to a draw. Users
can choose several transformation rules and create a list (figure 5). For each transformation
rule, the constraint equations and (if necessary) the reset functions for nodes and edges
must be specified by C++ instructions in the constraint window. If, simultaneously, two
rules can be applied the first rule in the order of the list will be applied (possibly several
times). If the constraint of the second rule is ever verified on the non final new graph, the
second rule is applied. So rules must be chosen in the order of priority.

In the example we suppose that the death of nodes has the highest order of priority.

To add the first transformation rule, click on the button Add of the transformation
rules field (figure 4) and choose the rule Edge fusionning (figure 9).

The constraint Y;; > 5 must be written on a C++ compiler editor. Click on the button
constraint function and fill in the constraint editor as in figure 10.

After the transformation rule X; get the new value %

Click on the button reset node function in order to define the new values of the variables
mX; and fill in the compiler editor as in figure 11.

The reset function of the nodes i is then: X;(t*) = w
redefined. The window of reset edge function (figure 9) remains empty.

No edge has to be

S0 X cuuigilarEdiir il I X comgiler Ediior EEE

Row |1 Col[L Goto

Row |1 col |1 Goto

InfCut | Kame Type Comment | In/Out | Mame Type Comment

I it const double& time of the computation = IMFOUT |xi map < string, double> & states of node |
[IN i COnst map<string... [value of the state node at node | AiMjouT Jxj const map<string, double>& |states of node j
IIN Xj const map<siring... [walue of the staie node at node j £ AIMyouT Jxil map < string, wector<double. .. |states of nodes | only connected to i
[IN] const map<string... [value of the state edge [i,j] i IMSOUT |xip map < string, wector<double . |states of nodes p only connected to j
lIN der_xi |const map-<string... [value of the derivative state node at node | INf_O_UT ijc_ mqp<_string,\r\=__‘cto_r<d_oub\g_.. states _of nodes c_connected_@o i a_ndj
IIN cer_xj |const map-<string... [value of the derivative state node at node |
fir der_yij |const map<string... [value of the derivative state edage [i,j] ~|

ool w=ralse; & fdouble x_i=xifind'mx")- = secand; |
fidouble x_i=xifind{"mx")- > secand; double x_j=x].find("mx") - >second;

Jfdouble x JAind (" mx" - = second; I mx" = (e_i+x_2f2;

clouble y_ij=4].find{' my)- > secand;

if (i) =50 w=True;

return

<] vl | 4] vl |

-] I+

q] [l il]

Figure 10: Constraint function

Figure 11: Reset function for nodes

The Edge Splitting and Reconnecting All transformation rule is also add in our example.

Click on the button Add of the transformation rules field (figure 4) and choose the rule
Edge Splitting and Reconnecting All (figure 12).

The constraint X;(t*) 4+ X;(t*) > 12 must be written on the C++ compiler editor. Click
on the button constraint function and fill in the constraint editor as in figure 13.

]) X
ol Jeai
Injout | Marne Type Cornment |
I T const doubled time of the campuration =]
Ig) xi const map<siring. .. fvalue of the siate node at node i
I+ %j const map-<string. . [value of the state node at node j 3
I+] const map-<string. .. [value of the state edae [i,]]
I der_xi |const map<string... pealue of the derivative state node at node i
I der_xj |const map<siring... fealue of the derivative state node at node j
g der_wj |const map<siring... value of the derivative state edge [i,]] =
ool v=rfalse; |
double x_i=xifind{"'mx")- > second,
double x_j=xj.find('m")- > =econd,
i (e i+x_j>12) w=lirue;
rEturn
> Al
transformation rules
q v |
-
constraint function
reset node function =
reset edge function
—— ol

Figure 12: Rule: FEdge Splitting and Recon-
necting All Figure 13: Constraint function

Click on the button reset node function (figure 12) in order to define the new value of the
variables mX;, mX; and mXj, (figure 14). Click on the button reset edge function (figure
12) in order to define the new value of the variables mY;;, mYj; and mYj; (figure 15).

) ISEAILDIS= S B2l xj | &) (X
Row |1 Col[L Goto Row |1 col |1 Goto
InjOut MHame Twpe Comment | Infcut lame Type Comment
I stateMame const string& state narme of the node JILES stateMame |const string® |state name of the edge
{inyout i doubles new walue of the state node | HiMpout il doubled value of the state edge [i,j] if not deleted
ilN;OUT Hj doubled new walue of the state node | AIMFoUT il doubled value of the state edge [i,l] created
IIN;OUT xI cloublef walue of the state node | created INSOUT il double walue of the state edoe [],1] created
i=xif2; k= =
|l=2ii2;
il = s+,
<] I» 4] vl |
= =
] [| »] [l I | v

Figure 14: Reset function for nodes Figure 15: Reset function for edges

N cleiplpiiler Edliidr

Row |1 Col |1

Row |1 Col |1

N gl Eeliier

Infout | Narne Type Cormment | Injout | Marne Type Cornment |
I T const doukled time of the computation |~ I T const doubled time of the campuration =]
IIN i const map<siring... value of the state node at node | Ig) xi const map<siring. .. fvalue of the siate node at node i
IIN kel const map<string... [value of the state node at node j 3 I+ %j const map-<string. . [value of the state node at node j 3
IIN] const map<string... [value of the state edae [i,j] i I+] const map-<string. .. [value of the state edae [i,]] F
IIN cer_xi |const map-<string... [value of the derivative state node at node | I der_xi |const map<string... pealue of the derivative state node at node i
IIN cer_xj |const map<string... [value of the derivative state node a1 node j I der_xj |const map<siring... fealue of the derivative state node at node j
11 der_wij |const map<string... wvalue of the derivative state edge [i,j] = g der_wj |const map<siring... value of the derivative state edge [i,]] =
bool v=ralse; | ool v=rfalse; |

Jidouble x_i=xifind{'mx")->second;
fidouble x_j=xj.find{'mx")->second;
double y_ij=ij.find{"m")- > second;
ot=5-y._ij;

it fij=50 w=irue;

raturn |

1]

double x_i=xifind{"'mx")- > second,
double x_j=xj.find('m")- > =econd,

o= {12 -x_i-x_j)f{du_i+dx_])
if (_i+x_j>=12) w=1rug;
return |

double dx_i=der_xi find{"mx")- > second;
double dx_j=der_xj.find{"'m")->second;

[4]

[{]

[4]

[¥]

Figure 16: Constraint function for fusionning Figure 17: Constraint function for splitting
rule which include dynamic time step

2.3 Time step

rule which include dynamic time step

The time steps are precised thanks to the first fields of the modeling window (figure 4.
[tmin, tmazx] is the time interval of simulation. The minimal and maximal time steps are
specified, respectively, on the fields di min and dt max. Dynsys uses the time step dt max
by default. Users can also integrate a dynamic time step on the constraint functions.

Add the line

dt =5 —y_ij;

in the compiler editor of the constraint function (figure 10). The value of the time step
become time_step_1 = max(min(dt,dt max),dt min) (figure 16)

Add the lines

double dx_i = der_zi. find("mX”)— > second,
double dx_j = der_zj.find("mX”)— > second,
dt = (12 — X — x])/(dxz + d.%‘j);

(Graph File Load Save

(Graph Size [2 Apply

Node State Value[o Initialize

Edgestatevamwelo | ynaize
Node 0| Node 1
el

Node 0
rode 1 [m]

Figure 18: Initial graph

Figure 19: State of node 1 Figure 20: State of edge (1,2)

in the compiler editor of the constraint function (figure 13). The value of the time step
become time_step_2 = min(max(min(dt, dt mazx),dt min), time_step_1) (figure 17).

In this simple example, the time of the next graph transformation can be computed
exactly. And thanks to the time step computation, a new graph is created at each step.

2.4 Initial graph

The initial graph is implemented thanks to an adjacency matrix. Choose initial graph in
the edit menu. Fill in the Graph size field and click on Apply (figure 18). A matrix appears
in the initial graph window (figure 18). Click on the put (i, j) to create the edge (i, 7). Click
on the button show and OK.

Dynsys produces the graph in the main window. Click on a node to see its coordinates
and its state (figure 19). With this window, you can modify the position of the node on the
draw and the node state as you like. Click on an edge and modify its state (figure 20).

3 Simulation

Finally, users have to click on the simulation button to begin the simulation. During the
computation, the integration method is a first order numerical integration. Click on the
right arrow to see step by step the evolution of the graph.

At each step, DynSys specifies the time variable ¢, the number of nodes Ny, the number
of edges F;, the maximal degree of the graph d and the number of transitions which have
been applied 7.

Four steps of the example are drawn bellow thanks to Dynsys.

At each step of the computation, a click on a node or an edge posts its state.

o
o
[}
i . [
\ o P pr
s e ¥ . -
i - o e) Tl o L
. ;._/(s
AN N\
’bu//
g
o ot
e
L}
e
NEURED 124
Noﬁe 23
e &1
N3§E 51 mﬁe 131
Mode 50 e 103
4 i NoaBi2 77 Noce 149 Hore 144
W R 56 & e 123 Mgde 1
5 ﬁ&e 27 Mode 104 | B e 94
NB“%&S@@:E 7a 3 7 rgle =2 e ﬁi[,e s Nléne 75E
e 49
Na\:le é\g e Node 2 ooe 1hede B 82 a N&c)IE? 135 [Notlg, uze7151
Hode 25 g 119 diue Ao digae e bigce o
¢ N) deTd Mocle dfas = - N&de 82
Nade % il
More 57 Made e =i 7 adjgds 1
I ‘%@ e A
r\ane 1375 N?de 7§ 5 s isgztlxlzma 147
Hode 112 hade
; 2 Fod 34
a I\adef‘i Nade ﬁ N &de 54
o M o Hore 96
Ng;;;?: Kgperss igde 38 By NG paaliprs 146
Mod Node 87 WoHe 40
¢ Nﬁde“ Node 106 5eNde56
e 54 ngtte 133 Nﬂaﬁg i
v g, s
N&ﬁi&&é%ol &

Figure 21: Figure a: t=0, Ns=2, Es=1, d=1, tr=0; Figure b: t=4.625, Ns=18, Es=33, d=6,
tr=13; Figure c: t=6.2093, Ns=29, Es=53, d=7, tr =28; Figure d: t=11.0242,Ns=153,
Es=289, d=38, tr=188

