
Simplicial Homology

A proposed share package for GAP

by

Jean-Guillaume Dumas, Frank Heckenbach, David Saunders & Volkmar Welker

Unité Informatique et Distribution, Grenoble, France
Jean-Guillaume.Dumas@imag.fr, www-id.imag.fr/∼jgdumas

Universität Erlangen, Mathematisches Institut, Erlangen, Germany
heckenb@mi.uni-erlangen.de, www.mi.uni-erlangen.de/∼heckenb

Computer and Information Sciences Department, University of Delaware, Newark, DE, USA
saunders@udel.edu, www.cis.udel.edu/∼saunders

and

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Marburg, Germany
welker@mathematik.uni-marburg.de, www.Mathematik.uni-marburg.de/∼welker

Preface

1 About the Package

The development of the package was driven by two different targets. The first target is to design efficient
algorithms for exact matrix computations (e.g. Smith Normal from) for sparse matrices with entries in the
integers. The second target is efficient software to calculate homology of simplicial complexes. Since the
crucial step for the second target is the calculation of the Smith form of the (“very sparse”) matrices of
the differentials in simplicial homology these two targets team up perfectly. The history of the genesis of
the package explains the mix of computer algebraists and (geometric) combinatorialists among the authors.
In the course of developing the package examples interesting to combinatorialists gave rise to matrices
which motivated developments on the algorithmic side. On the other hand computations performed with
pre-versions of the package provided data giving rise and/or evidence to conjectures, some of which later on
were turned into theorems. It is our expectation that working with the package will allow many application
of that kind. The functionality of GAP 4 fits perfectly in this picture. The algebraic and combinatorial
objects, their constructors and invariants already implemented facilitate the development of the routines of
the package whose average running time and memory consumption is not critical.

In general, we hope the interaction between the algorithmic and geometric/combinatorial side will continue
and grow once the package has been released.

Algorithms: Simplicial complex constructions can easily lead to cases where some of the boundary maps of
simplicial homology are very large, very sparse matrices. Each of the four algorithms for invariant factors
implemented in the package has strengths and weaknesses. We are involved in continuing research on better
methods for this. We would appreciate learning about examples that are hard or impossible to compute
by our four algorithms. We may even be able to help get them computed. Such examples or any other
communication about the algorithms part of the package are cheerfully received at saunders@udel.edu.

The Complexes and Their Invariants: We have implemented a number of constructors and a number of par-
ticular examples of simplicial complexes. But there is more to do. We are working on expanding the func-
tionality of the package to include the construction and the computation of other invariants of simplicial
complexes arising in combinatorics or algebraic topology. Of course our view is lopsided and mostly driven
by our own research problems. Thus in order to broaden the applicability of the package we welcome any
suggestion, let it be concerned with the existing package or regarding desirable expansions. Also we are
interested to hear about successful applications of the package. Concerning those matters, please contact us
at welker@mathmatik.uni-marburg.de.

Bugs: Finally there are the bugs. Of course we want to hear about them and we want to get rid of them as
quickly as possible. Since each of the authors has contributed to different parts of the code, we would like
to ask you not to report bugs to a single author but rather to simphom@cis.udel.edu.

4 Preface

2 Acknowledgment

Dave Saunders was supported by the NSF which also funded visits of the other authors to Delaware. All
three enjoyed the hospitality of Dave and Nancy Saunders which made each visit a very pleasant experi-
ence. Volkmar Welker was supported by Deutsche Forschungsgemeinschaft (DFG). Frank Heckenbach was
supported by a “Graduiertenstipendium” of Universität Erlangen-Nürnberg. Jean-Guillaume Dumas was
supported by the “Eurodoc” program of “Région Rhônes Alpes”.

Contents

1 The Homology Package 7

1.1 What can it do ? What for and Why ? 7

1.2 Installation 7

2 Computing Simplicial Homology 8

2.1 Functions and Data Types 8

2.2 Options 9

3 Example Complexes 12

3.1 Sample Triangulations of Basic Spaces 12

3.2 Graph Complexes 12

4 Constructors for Partially
Ordered Sets 13

5 Sample Posets 14

5.1 Examples from Combinatorics . . 14

5.2 Examples from Group Theory . . 15

6 Operators on Complexes 16

6.1 New Complexes from Old 16

6.2 Posets and Complexes 16

6.3 Modifying the Representation of a
Complex 16

7 Matrix Functions 17

7.1 Invariant Factors and Rank Functions 17

7.2 On Uncertainty: Why you should trust
our probabilistic algorithms . . . 18

8 Sample Session 19

8.1 Constructing Simplicial Complexes and
Computing their Homology . . . 19

8.2 Using the Valence algorithm . . . 22

8.3 Using the Sparse Matrix Functions 27

A Simplicial Complexes and
Simplicial Homology 28

A.1 Basic Concepts 28

A.2 Constructions 29

B Remarks on the Algorithms 30

Bibliography 31

1 The Homology Package

1.1 What can it do ? What for and Why ?

This share package for GAP 4 provides routines for computing integer homology of simplicial complexes
and for computing rank and invariant factors (Smith form) of integer matrices. In particular, the following
functionality is provided:

• Generate example complexes, construct new complexes from old.
→ Sample triangulations of particular manifolds.
→ Particular classes of complexes from graph and group theory.
→ Order complexes of posets and sample posets.

• Produce the homology from the invariant factors of the boundary maps.

• We offer 4 algorithms for computing the invariant factors (or Smith form) of the boundary maps. This is
done because there is no single best choice. Especially if some boundary maps are of large size, it may be
that only one of the four methods succeeds.

→ Compute invariant factors by elimination using word size integers
→ Compute invariant factors by elimination using GMP arbitrary precision integers
→ Compute invariant factors by a mix of an iterative method and elimination mod small primes,
thus avoiding some expression growth
→ Compute invariant factors by an iterative method in which memory use is linear in the matrix
dimension, but which gives incomplete results.

This functionality and more is implemented in the package. When developing this package our “model
user” was a researcher who is interested in the homology of a particular series of simplicial complexes, say
∆n , n ≥ 1, such that even for small n it is very hard to calculate H̃•(∆n). In this case, calculations of

H̃•(∆n) may lead to clues or even conjectures for the general behavior of the homology. This scheme has
been applied very successfully in [BBL+99] and [BW99]. On the other hand in [Lut99] predecessors of the
package were successfully used in a situation where for a very large number of relatively small simplicial
complexes homology had to be computed in order to filter out the “good” complexes. Using the package for
teaching algebraic topology or geometric combinatorics is a third possible application which has yet to be
explored.

1.2 Installation

This package is written in GAP, Pascal, and C++, and is known to work with compiler versions at least
g++ version 2.91.60, gpc version beta-19990118. For C++ we need fairly robust template support. The
Pascal code uses some gnu specific features. Both depend on gmp version at least 2.0.2. (Note: If you have
GMP 3.x, you need GPC 20000717 or newer. GMP 2.x also works together with newer GPC versions.) For
convenience we provide a copy of gmp. We do not have sufficient manpower to work on the support of any
non-gnu compiler.

The package involves two external binaries, one for homology and one for just matrix computations. No
other share package is needed. The Homology package must be installed in the pkg subdirectory of the GAP
distribution, or you must invoke gap giving it’s path (see gap manual).

2
Computing

Simplicial Homology

The functions SimplicialHomology and SimplicialBettiNumbers are the main tools for computing ho-
mology. Structure of representations, e.g. the simplicial complex representation, and a few other functions
are also described.

2.1 Functions and Data Types

1I SimplicialHomology(simplicial complex, index range)

A list, [homology group ...] of homology groups is returned. The groups in the list are H̃i , reduced
homology, for i in the specified index range. See the entry for homology group in Section Options for the
available formats to represent a homology group. Also an algorithm option may be used to determine the
choice of algorithm internally.

2I simplicial complex
I IsSimplicialComplex(object)

returns true if object can be interpreted as a simplicial complex, i.e. is a dense list of dense lists of objects.
Saying it another way, a simplicial complex is represented as a list of its facets which are simplices. In turn
a simplex is a list of vertices, and finally a vertex may be denoted by any gap object (number, string, or
list).

For example the list [["a", "b", "c"],["b", "c", "d"],["c","d","a"],["d","a","b"]] denotes the
triangulations of the 2-sphere given by the 2-simplex and
[

[[1, 2], [1, 3], [2, 1]], [[1, 2], [1, 3], [2, 2]],

[[1, 1], [1, 3], [2, 1]], [[1, 1], [1, 3], [2, 2]],

[[1, 1], [1, 2], [2, 1]], [[1, 1], [1, 2], [2, 2]]

],
denotes the triangulation of the 2-sphere constructed by SCSuspension(SCSphere(1)) (i.e., suspending
the 1-sphere).

3I index range

The homology index range is an optional parameter. The default is to compute H̃i for i from 0 to the
dimension of the complex. It may be

an integer
denoting the index of one homology group, or the list

[a,b]

denoting the range from a to b inclusive.

4I SimplicialBettiNumbers(simplicial complex, index range)

Returns a list of the Betti numbers (the dimension of the torsion free part) of the homology in the specified
index range. Arguments and options are as for SimplicialHomology.

Section 2. Options 9

5I SimplicialNTorsionRanks(simplicial complex, n, index range)

Returns a list of the ranks of the n-torsion of the homology groups for the specified index range. By rank
of the n-torsion in group H , we mean max{k |(Z/nZ)k lies in H }. For example suppose the the group is
Z 7 × (Z/2Z)5 × (Z/12Z) × (Z/108Z)2. represented by list [7, [2, 5],[12, 1], [108, 2]]. Then the
n-torsion rank is 8, for n = 2, the rank is 3 for n = 3, 4, 6, or 12, and is 2 for n = any divisor of 108
containing 9.

Other arguments, options, result are as for SimplicialHomology.

6I SimplicialBoundaryMaps(simplicial complex, index range, filename)

Returns a list of (gap) matrix representations of the boundary maps ∂i , for i in the specified index range.
The indexing is such that Hi is the kernel of ∂i+1 mod the image of ∂i . filename is an optional parameter.
If filename is specified, the boundary map ∂i is written in the sparse matrix format (and not in the gap
matrix format) in the file filename. When filename is specified, the range should be only one index.

7I SimplicialComplexDimension(simplicial complex)

returns the largest dimension of any facet of the complex, i.e. one less than the largest number of vertices
in any facet.

2.2 Options

1I HomologyInfo(n)

sets the homology info level to n. This influences the verbosity of the commentary written by homology’s
separate executable during the computation. It is equivalent to SetInfoLevel(InfoHomology, n). You
may also set the the info level for standard GAP InfoTiming and InfoWarning to get the corresponding
kind of information from homology code.

2I group formats
I SetHomologyGroupFormat(a)

sets the format for the representation of a homology group to a.

The variables CyclicPSubgroups, MaximalCyclicSubgroups and GapFormat hold the allowable choices. The
default value is that of CyclicPSubgroups.

I HomologyGroupFormats

a list of the allowed homology group options. Thus HomologyGroupFormats[i] is a valid for, 1 ≤ i ≤ 3, for
SetHomologyAlgorithm, and also for use as a one-time option. Thus

SimplicialHomology(SCMobiusStrip: HomologyGroupFormat:= MaximalCyclicSubgroups);

and

SimplicialHomology(SCMobiusStrip: HomologyGroupFormat := HomologyGroupFormats[2]);

are equivalent. While

SetHomologyGroupFormat ("MaximalCyclicSubgroups");

SimplicialHomology(SCMobiusStrip);

performs the same computation, but also keeps the option set for future computations.

The format choices are

1 CyclicPSubgroups. An (integer) homology group is given in terms of its maximal cyclic p-subgroups.
The form is [b, [p1,e1], [p2,e2], ... , [pk,ek]] which denotes Z b × (Z/p1Z)e1 × (Z/p2Z)e2 ×
. . . × (Z/pk Z)ek . The pi are distinct and each pi is a prime power. The torsion is listed starting with

10 Chapter 2. Computing Simplicial Homology

powers of small primes to powers of large primes, within each prime the list is ordered by the size of
the groups.

2 MaximalCyclicSubgroups. An (integer) homology group is given in terms of its maximal cyclic sub-
groups. The form is [b, [n1,e1], [n2,e2], ... , [nk,ek]] which denotes Z b × (Z/n1Z)e1 ×
(Z/n2Z)e2 × . . . × (Z/nk Z)ek . The torsion is listed in increasing size, in fact the ni are distinct and
n1|n2| . . . |nk .

3 GapFormat. An (integer) homology group is given in terms of its maximal cyclic subgroups which are
listed in a format such that the part specifying torsion can be used as an input to the Gap-function
AbelianGroup. The form is [b, [n1, n2, ... , nk]] which denotes Z b×(Z/n1Z)×(Z/n2Z)× . . .×
(Z/nk Z). The torsion is listed in weakly increasing size, in fact n1|n2| . . . |nk .

3I Algorithm Choice
I SetHomologyAlgorithm(a)

sets the algorithm option to a. This specifies which algorithm is to be used for computing rank and invariant
factors (Smith form) of each boundary map. This influences the working of SimplicialHomology, Simpli-
cialBettiNumbers, SimplicialNTorsionRanks described above and the working of the matrix functions
described in chapter 7.

The variables EliminateAlgorithm, EliminateGMPAlgorithm, ValenceElimAlgorithm, and ValenceBBAlgo-
rithm hold the allowable choices. The default value is that of EliminateAlgorithm.

I HomologyAlgorithms

a list of the allowed algorithm options. Thus HomologyAlgorithms[i] is a valid algorithm, 1 ≤ i ≤ 4, for
SetHomologyAlgorithm, and also for use as a one-time option. Thus

SimplicialHomology(SCMobiusStrip: HomologyAlgorithm := ValenceElimAlgorithm);

and

SimplicialHomology(SCMobiusStrip: HomologyAlgorithm := HomologyAlgorithms[3]);

are equivalent. While

SetHomologyAlgorithm(ValenceElimAlgorithm);

SimplicialHomology(SCMobiusStrip);

performs the same computation, but also keeps the option set for future computations.

Briefly, the algorithm choices are

1 EliminateAlgorithm. A variant of Gaussian elimination is used. Integers are represented as machine
(word size) integers. Overflow is detected and the method returns fail if it occurs.

2 EliminateGMPAlgorithm. Similar to EliminateAlgorithm but switches to use of GMP integers when
overflow occurs. It is slower by a factor of about 2 when word size integers would suffice.

3 ValenceElimAlgorithm. Uses iterative techniques to determine Betti numbers, and to determine which
primes may occur in torsion. Uses elimination mod p to determine the powers of p in the torsion. May
work when EliminateGMPAlgorithm runs out of memory because there is no growth of the matrix
entries with computation mod p. However problems due to matrix fill-in may still occur in the mod
p elimination steps. This algorithm is probabilistic. There is a small chance the Betti number may be
wrong and a small chance that a torsion prime is missed. The trade-off between certainty and computing
time may be driven toward greater certainty by setting the UncertaintyTolerance option to a small
rational value such as 1/1000000. The algorithm is deterministic with respect to the accuracy of the
torsion structure for all primes not missed. See chapter 7 for more comments on probabilistic algorithms.

4 ValenceBBAlgorithm. Uses iterative techniques exclusively. Memory usage is bounded above by a con-
stant multiple of n, where n is the largest number of simplices in any single dimension. This is a huge

Section 2. Options 11

advantage over the previous methods in some cases. There are cases in which only this method avoids
thrashing due to memory demand exceeding machine real memory, and hence only this method succeeds
in running to completion. If your boundary matrices have as many as a few million nonzero entries, the
algorithm is likely to run to completion in at most a few days (remark based on typical computer, year
2000). However, the method is usually slower than the elimination methods when memory is not the
limiting factor. Also the results computed are incomplete. They are incomplete in that only the rank
of p-torsion can be computed. When the previous three algorithms fail due to lack of memory, this one
may be tried with with SimplicialBettiNumbers() and/or SimplicialNTorsionRanks(). SimplicialHomol-
ogy() may fail when this algorithm is used because it cannot confirm absence of p2-torsion for certain
primes p. However, if HomologyInfo(n) is set with n ≥ 4 the commentary will reveal which primes have
torsion, their torsion ranks, and other useful information. We are working on improvements to complete
the method by computing the rank of pe torsion for exponent e > 1, or at any rate to prove p2 torsion
does not exist when that is the case.

4I Certainty control
I SetUncertaintyTolerance(ε)

sets the upper limit for the probability of error (probability of incorrect results) to ε, which should be a
rational in (0, 1]. This option applies to the valence algorithms: ValenceElimAlgorithm and ValenceBBAl-
gorithm. The probability of erroneous results will be less than ε. The default value is 1, which means the
algorithm will choose. Generally this choice will involve relatively low computing time while giving reason-
able probability of success. In any case, lower bounds on probability of success are reported by the algorithm
when HomologyInfo is set sufficiently high. (e.g. 3). These probabilities will be greater than 1 - ε.

I UncertaintyTolerance

a one-time option. Thus

SimplicialHomology(SCMobiusStrip: HomologyAlgorithm := ValenceElimAlgorithm,

UncertaintyTolerance := 1/1000000000);

and

SetUncertaintyTolerance(1/1000000000);

SimplicialHomology(SCMobiusStrip: HomologyAlgorithm := ValenceElimAlgorithm);

performs the same computation, but the latter keeps the option set for future computations.

3 Example Complexes

3.1 Sample Triangulations of Basic Spaces

These variables and functions provide some example complexes, and complex families triangulating basic
topological spaces.

1I SCSphere(n)

constructs a simplicial complex triangulating the n-sphere, n ≥ 0. The triangulation is given as the boundary
complex of the n-simplex.

2I SCMobiusStrip, SCTorus, SCKleinBottle

simplicial complexes triangulating the M”obius strip, the 2-torus and the Klein bottle.

3I SCGeneralizedKleinBottle(n)

constructs a simplicial complex which triangulates a generalization of the Klein bottle. Where the Klein
bottle has 2-torsion in homology, GeneralizedKleinBottle(n) has n-torsion, for n ≥ 2.

3.2 Graph Complexes

These functions provide some complexes which have been studied in the literature.

1I SCChessboard(m, n)

constructs a simplicial complex representing the m by n chessboard complex, where m and n are positive
integers. Each simplex is a set of positions on the m by n board with no two pairs in the same row or in
the same column. The complex is isomorphic to the complex of partial matchings of the complete bipartite
graph Kn,m . Thus the facets have dimension min(m,n) - 1, and, for m ≥ n, the chessboard complex has
m!/(m − n)! facets. [BLVŽ94], for example, gives further information and [BBL+99] for open problems
concerning this complex.

2I SCMatching(n)

constructs a simplicial complex representing the m vertices matching complex, where m is a positive integer.
Each simplex is a set of matchings of the complete graph Kn . Thus the facets have dimension [m/2] - 1.
[BLVŽ94], for example, gives further information on this complexes.

3I SCNot2ConnectedGraphs(n)

constructs a simplicial complex whose facets are in 1-1 correspondence with the set of all not-2-connected
graphs, for n ≥ 3. Each facet corresponds to the set of edges of such a graph. The complex has n(2n−2 − 1)
facets. In [BBL+99] and in parallel work by Turchin (see reference in [BBL+99]) the homology of this
complex is shown to be concentrated in dimension 2n − 5 where it is free of rank (n − 2)!.

4
Constructors for

Partially Ordered Sets

These functions provide means to construct and manipulate partially ordered sets, posets for short.

1I OrderRelationToPoset (set , order relation)

The functions takes a set and an order relation on this set and constructs the representation of the corre-
sponding poset.

2I order relation

An order relation on a set is a function from set × set with values true and false which represents a partial
on set . It takes the value true if the second argument is smaller or equal to the first and false otherwise.

3I poset

A poset is represented by its Hasse-diagram. The elements of the poset are numbered by integers where an
additional least element with number 1 and an additional largest element numbered Number (poset) +2
are added. The Hasse-diagram of this extended poset is then given by a list list of lists where the entry
list [i] is the list of elements covering the element i . In particular, the first entry in the poset is a list of the
minimal elements and the last entry is the empty list. For example the list [[2, 3], [4, 5], [5] · []] represents the
poset consisting of the 4 elements 2, 3, 4, 5 such that 2 < 2, 5, 3 < 5 and no other order relations hold. The
element 1 is the unique minimal element and the element 6 the unique maximal element.

5 Sample Posets

These variables and functions provide some example posets.

5.1 Examples from Combinatorics

1I Subsets (set)

Constructs a list of all subsets of the set set .

2I NonTrivialSubsets (set)

Constructs a list of all subsets of the set set excluding the empty set and the set set itself. The poset
corresponding to the non-trivial subsets ordered by the inclusion IsSubset(set1 , set2) is isomorphic to the
poset of non-trivial faces of the n for n the cardinality of set −1. Hence its order complex is a triangulation
of a sphere (barycentric subdivision of the simplex). Therefore, homology is concentrated in dimension n−1
and is free of rank 1. Open questions arise when studying certain subposet of this poset (see [BW97]).

3I NonTrivialPartitionsSet (set)

Constructs a list of all partitions of the set set excluding the partitions into singletons and into a single
block.

4I IsSetPartitionRefinement (partition1 , partition2)

Takes as arguments two set partitions and returns true if partition2 is a refinement of partition1 and false
otherwise. The homology of the order complex of the poset corresponding to NonTrivialPartitionsSet (set
) with this order relation is known (see for example [Sta82]) to be concentrated in dimension n − 3 where it
is free of rank (n − 1)! where n is the cardinality of set . For open questions on subposets of this poset see
[Bjö94].

5I PartitionsNumber (n)

Constructs a list of all partitions of the number n.

6I NonTrivialPartitionsNumber (n)

Constructs a list of all partitions of the number n excluding the partitions into 1’s and into the single block
n.

7I IsNumberPartitionRefinement (partition1 , partition2)

Takes as arguments two number partitions and returns true if partition2 is a refinement of partition1 and
false otherwise. The poset corresponding to the non-trivial number partitions ordered by this order relation
has (2, 1, · · ·, 1) is its least element and hence its order complex has vanishing homology since it is a cone.
Intervals in this poset still bear one of the big challenges in the area of poset homology. See [Zie96] for the
very little that is known here.

8I Compositions (n)

Returns a list of all “compositions” of the number n. In GAP compositions are called “ordered partitions”.
Since composition is the terminology used mostly in combinatorics we use this terminology too.

Section 2. Examples from Group Theory 15

9I NonTrivialCompositions (n)

Returns a list of all compositions of the number n excluding the composition into 1’s and the composition
into the single block n.

10I IsCompositionRefinement (composition1, composition2)

Returns true if composition2 is a refinement of composition1 and false otherwise. The poset corresponding
to NonTrivialCompositions (n) ordered by this order relation is isomorphic to the poset of non-trivial
subsets of a set of cardinality n−1. Hence the homology of its order complex is concentrated in dimension
n−3 where it is free of rank 1. Open questions on this poset can be found in [SW98].

5.2 Examples from Group Theory

1I LatticeOfSubgroups(group)

Constructs the poset, which is actually a lattice, of subgroups of the group group. For solvable groups the
homology of the order complex of this poset is known [KT85]. In general, except for particular groups the
question is wide open. The function invokes the GAP function LatticeSubgroups in order to get hold of the
set of subgroups of the group group.

2I PosetOfCosets (group)

Constructs the poset of all cosets of subgroups of the group group. For solvable groups the homology of the
order complex of this poset is known [Wel92]. In general, except for particular groups the question is wide
open. The function invokes the GAP function LatticeSubgroups in order to get hold of the set of conjugacy
classes of subgroups of the group group.

3I PosetOfConjugacyClasses (group)

Constructs the poset of conjugacy classes of subgroups of the group group. Here a conjugacy class [H] of
the subgroup H is smaller than a conjugacy class [U] of a subgroup U if there is a conjugate H g which is
a subgroup of U . For solvable groups the homology of the order complex of this poset is known [Bro99].
In general, except for particular groups the question is wide open. The function invokes the GAP function
LatticeSubgroups in order to get hold of the set of subgroups of the group group.

4I QuillenPoset (group , prime)

Constructs the poset of nontrivial elementary Abelian subgroups of prime power order for the prime prime.
Quillen conjectured [Qui78] the the poset id contractible (which implies vanishing homology) if and only if
there is non-trivial normal prime-subgroup. This conjecture has been settles for “most” cases [AS93]. But
the exact homology has been determined in very few cases only. The function invokes the GAP function
LatticeSubgroups in order to get hold of the set of subgroups of the group group.

5I IsElementaryAbelianPGroup (group , prime)

Returns true if group is elementary Abelian of prime power order for the prime p.

6
Operators on

Complexes

These functions provide means to construct new complexes from existing ones. The mathematical definitions
performed by the various functions is given in the Appendix (see also the book by Munkres [Mun84] and
the article by Björner [Bjö95]).

6.1 New Complexes from Old
1I SCWedge([simplicial complex, ..])

constructs a simplicial complex representing the wedge product of the complexes in the argument list.

2I SCJoin(sc1, sc2)

constructs a simplicial complex representing the join of simplicial complexes sc1 and sc2 .

3I SCCone(sc)

constructs a simplicial complex representing the cone over sc.

4I SCSuspension(sc)

constructs the suspension over sc.

5I SCStar (sc , f)

constructs the star of the face f in the complex sc.

6I SCLink (sc , f)

constructs the link of the face f in the complex sc.

7I SCRestriction (sc , f)

constructs the restriction of the in the complex sc to the set f ..

8I SCAlexanderDual (sc)

constructs the Alexander dual of the complex sc.

9I SCDeletedJoin (sc1 , sc2)

constructs the deleted join of the complex sc1 and sc2 .

6.2 Posets and Complexes
1I OrderComplex (p)

constructs the order complex of the poset p.

6.3 Modifying the Representation of a Complex
1I SCCompactify (sc)

deletes redundant faces from the list of faces defining sc.

7 Matrix Functions

Functions for direct computation of matrix Smith forms and ranks are described here. These functions give
direct access to the matrix computations which underlie the homology tools given earlier. They are intended
for application to sparse matrices, hence the prefix SM, and they are implemented with respect to the Valence
algorithms only. GAP’s matrix format is dense, that is it stores every entry. This is inappropriate for very
large sparse matrices for which it is desirable to store only the nonzero entries. The sparse representation
is supported by allowing your matrix to be either a GAP matrix or to be stored in sparse format in a file.
Function gap2SM converts from the former to the latter.

1I gap2SM(matrix, filename)

The matrix in GAP format is written to a file named by string filename. The file is created or overwritten. A
sparse matrix format is used which consists of a series of triples. The first triple is number of rows, number
of columns, and the letter “M”. The last triple is “0 0 0” used as an end marker. The intervening triples
signify non-zero entries and have the form row-index, col-index, value. These triples must be in increasing
lexicographical order. Row column pairs must be distinct. All values must be machine integers.

For example :

32 3200 M
1 1 345
1 2 -23
2 1 77
2 200 31
30 3101 11
0 0 0

denotes a 32 by 3200 matrix with 5 non-zero entries, three of which are clustered at the top left.

7.1 Invariant Factors and Rank Functions

The remaining SM functions take the matrix in either form. The InfoHomology, InfoTiming, InfoWarning
options are relevant as are UncertaintyTolerance and HomologyAlgorithm options. For the latter only Va-
lenceElimAlgorithm (default) and ValenceBBAlgorithm are appropriate.

1I SMInvariantFactors(matrix or file:HomologyAlgorithm := alg)

returns a list of the form [r, c, [f 1,n 1],[f 2, n 2], ... [f k,n k]], where r and c are the numbers
of rows and columns of the matrix respectively, and the fi are the distinct non-zero invariant factors (Smith
form diagonal entries) and ni are the multiplicity of the fi . Thus the sum of the ni is the rank of the matrix.

2I SMSmithForm(matrix or file, modulus:HomologyAlgorithm := alg)

returns the same information as SMInvariantFactors, but in expanded form. The format is [r, c, [s 1

.. s min(r,c)]], where again r and c denote the number of rows and columns. The third item is the
diagonal of the Smith form (it includes the zero entries). modulus is an optional parameter specifying the
ring, Z/Zmodulus , over which the Smith form is computed. With no argument the Smith normal Form is over
the Integers.

18 Chapter 7. Matrix Functions

3I SMIntegerRank(matrix or file:HomologyAlgorithm := alg)

returns the rank of the matrix over Z . For large matrices, HomologyAlgorithm := ValenceElimAlgorithm
is likely to be fastest and be significantly faster than computing the entire Smith form and determining the
rank from the result.

4I SMPrimeRank(matrix or file, p:HomologyAlgorithm := alg)

returns the rank of the matrix mod p, i.e. over Z/pZ . For large matrices, HomologyAlgorithm := ValenceE-
limAlgorithm is likely to be fastest and be significantly faster than computing the entire Smith form and
determining the rank from the result.

5I SMPrimePowerRank(matrix or file, n:HomologyAlgorithm := alg)

returns the “rank” of the matrix mod n, for n a power of a prime. This is not the McCoy rank (largest
i such that the determinantal divisor di is nonzero mod n), but is the largest index i such that the i -th
invariant factor (smith form entry), si = di/di−1, is non-zero. For large matrices, HomologyAlgorithm :=
ValenceElimAlgorithm is likely to be fastest.

Currently ValenceBBAlgorithm cannot compute prime power rank, but when the other algorithms fail due
to memory limitations, it may be the only algorithm that can determine which primes occur in the invariant
factors and what the prime ranks are.

7.2 On Uncertainty: Why you should trust our probabilistic algorithms

We remark that the valence algorithms, while probabilistic, compute exact, not approximate, results. Typi-
cally, random choices are made within the algorithm to precondition the input matrix to one for which a fast
method will work, or to transform the problem to a simpler one. With some probability this preconditioning
or transform may not map correctly to the domain on which the fast method is valid. Upper bounds are
known for the worst case probability of error. You may choose a probability of error less than one in a
million, one in a billion, etc. as you wish, [DSV]. The algorithms then perform the randomizations in such
a way as to assure at most this probability of error for your input matrix.

It is our view that the probabilistic results should be accepted as much as the computational results of
deterministic algorithms. By that statement we mean that the correctness of the results is, in all essentials,
as certain as that of results from computer runs of implementations of deterministic algorithms.

Part of this view is the belief that no computational result can be taken prima facie as a mathematically
proven result. This is because the tools are never fully proven. The mathematical algorithm and even its
implementation, say in C, may be proven rigorously, but always relative to assumptions about the compiler
and hardware, unproven for the compiler and hardware actually used.

Given this state of affairs regarding proof and given the fact of life that all code of any complexity has bugs,
it is insignificant whether or not the code has a one in a million chance of wrong result due to the particular
value of a (pseudo)random variable used. More than one of the last million proofs/algorithms you have
examined were wrong, isn’t is so? In fact probabilistic code which is significantly simpler in structure than
a deterministic alternative is likely to have fewer bugs in its implementation and in its correctness proof.
Hence it should be trusted more than that alternative.

In a few cases we do not compute in a sufficiently large domain to be able to apply the known bounds on
the probability of error. In the cases where this occurs, we consider the preconditioning method to be a
heuristic, and the algorithm commentary reports that the probability of correctness is unknown. Experience
shows that such heuristic results are usually correct with the Valence algorithms. However, we suggest that
greater doubt be applied to such heuristically obtained results than to the probabilistic or deterministic
results.

8 Sample Session

In the chapter we demonstrate in a sample session the use of some of the functions of the package described
previously.

8.1 Constructing Simplicial Complexes and Computing their Homology

First, start GAP and load the package.

welker@merak:~> gap

######### ###### ########### ###

############# ###### ############ ####

############## ######## ############# #####

############### ######## ##### ###### #####

######

#######

########

####

####

####

#############

#############

#############

################ ################## ##### ####

############### ##### ##### ##### ####

############# ##### ##### ##### ####

######### ##### ##### ##### ####

Information at: http://www-gap.dcs.st-and.ac.uk/~gap

? for help. Copyright and authors list by ?copyright, ?authors

Loading the library. Please be patient, this may take a while.

GAP4, Version: 4.1 fix 2 of 27-Aug-1999, sparc-sun-solaris2.6-gcc

Components: small, small2, small3, id2, id3, trans, prim, tbl,

tom installed.

gap> RequirePackage("homology");

true

Now the functionality of the package is available to you. Lets reconfirm that the 5-gon has the homology
concentrated in dimension 1 where it is free of rank 1.

20 Chapter 8. Sample Session

gap> complex:=[[1,2],[2,3],[3,4],[4,5],[1,5]];

[[1, 2], [2, 3], [3, 4], [4, 5], [1, 5]]

Now complex is the simplicial complex whose maximal faces are the maximal faces of the 5-gon. We are
ready to calculate the homology of the 5-gon.

gap> SimplicialHomology(complex);

#I:D Simplicial complex of dimension 1 with 5 facets

#I:D homology: Computing homology groups

#I:D faces: Finding faces of dimension 0

#I:D faces: Found 5 faces of dimension 0

#I:D faces: Finding faces of dimension 1

#I:D faces: Found 5 faces of dimension 1

#I:R homology: H_0 = 0.

#I:R homology: H_1 = 1.

#I:D homology: Homology groups computed

[[0], [1]]

Indeed, the the homology is as expected. While computing the package (if in default mode) has told us that
we have constructed a complex of dimension 1 which has 5 faces of dimension 1 and 5 of dimension 0.

Let us turn to a more complicated example. Historically this is actually the first example where predecessors
of the program were applied successfully. Let us calculate the homology of the complex of not 2-connected
graphs on 7 vertices. By [BBL+99] it is known that the homology is concentrated in dimension 2 · 7− 5 = 9
and is free of dimension (7− 2)! = 120. So let us reconfirm the homology in dimension 9 only.

gap> SimplicialHomology(SCNot2ConnectedGraphs(7),9);

#I:D Simplicial complex of dimension 15 with 217 facets

#I:D homology: Computing homology groups

#I:D faces: Finding faces of dimension 8

#I:D faces: Found 247100 faces of dimension 8

#I:D faces: Finding faces of dimension 9

#I:D faces: Found 219135 faces of dimension 9

#I:D homology: Finding rank of boundary map d9

#I:D elimination: Triangulating matrix by modified Gauss elimination

#I:D elimination: current torsion-free rank: 0, current rank: 0, max. rank: 247100

#I:D elimination: current torsion-free rank: 715, current rank: 715, max. rank: 247100

The last line tells us that rows of the matrix of the 9th differential processed so far have a span of rank 715.
Using general implications from the fact that the sequence of differential is a complex (i.e., ∂i−1 ◦ ∂i = 0)
the maximal possible rank this matrix can have is 247100. Let us look at the output a few minutes later.

#I:D elimination: current torsion-free rank: 128311, current rank: 128311, max. rank: 247100

#I:D elimination: current torsion-free rank: 128330, current rank: 128330, max. rank: 247100

#I:D elimination: Matrix triangulated

#I:R homology: Rank d9 = 128330

#I:D faces: Finding faces of dimension 10

#I:D faces: Found 135765 faces of dimension 10

#I:D homology: Finding rank of boundary map d10

#I:D elimination: Triangulating matrix by modified Gauss elimination

#I:D elimination: current torsion-free rank: 0, current rank: 0, max. rank: 90805

The 9th differential has been brought into Smith Normal form. But for calculation of the homology group
in homological dimension 9 the program has already started to analyze the matrix of the 10th differential.
Another few minutes waiting bring us to:

Section 1. Constructing Simplicial Complexes and Computing their Homology 21

#I:D elimination: current torsion-free rank: 90344, current rank: 90344, max. rank: 90805

#I:D elimination: current torsion-free rank: 90685, current rank: 90685, max. rank: 90805

#I:D elimination: Matrix triangulated

#I:R homology: Rank d10 = 90685

#I:R homology: H_9 = 120.

#I:D homology: Homology groups computed

[[120]]

After Smith Normal forms of the 9th and 10th differential are calculated the program determines the
homology group we have asked for and indeed it is as expected. Note that in the process of calculating this
group we have brought within roughly 10 minutes (on a Ultra 10 with 64 MB) two matrixes into Smith
Normal form whose row and column sizes are in the 5 or 6 digit numbers. Even though less than 0, 1 percent
of row entries are different from 0 this is surprising since it is not for granted that in the elimination process
the matrices will not eventually become dense.

Simplicial complexes that are of interest in combinatorics often come up as order complexes of partially
ordered sets. The next part of the session shows how complexes of that kind can be constructed.

gap> Pi4:=NonTrivialPartitionsSet([1..4]);

[[[1], [2], [3, 4]], [[1], [2, 3], [4]], [[1], [2, 3, 4]],

[[1], [2, 4], [3]], [[1, 2], [3], [4]], [[1, 2], [3, 4]],

[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 3], [2], [4]],

[[1, 3], [2, 4]], [[1, 3, 4], [2]], [[1, 4], [2], [3]],

[[1, 4], [2, 3]]]

We have defined a set Pi4 whose elements are the non-trivial partitions of the set {1, . . . , 4}. In order to
impose an order relation on that set we need a function that takes two elements of the set as arguments
and returns true or false as the answer to the questions whether the second argument is smaller or equal to
the first. For set-partitions and the refinement as an order relation this function is implemented and called
IsSetPartitionRefinement . Thus we are in position to convert the set Pi4 into a partially ordered set as
represented in our package.

gap> PosetPi4:=OrderRelationToPoset(Pi4,IsSetPartitionRefinement);

[[2, 3, 5, 6, 10, 13], [4, 7, 12], [4, 8, 14], [15], [4, 9, 11], [7, 8, 9], [15],

[15], [15], [8, 11, 12], [15], [15], [9, 12, 14], [15], []]

gap> OCPi4:=OrderComplex(PosetPi4);

[[2, 4], [2, 7], [2, 12], [3, 4], [3, 8], [3, 14], [5, 4], [5, 9], [5, 11],

[6, 7], [6, 8], [6, 9], [10, 8], [10, 11], [10, 12], [13, 9], [13, 12],

[13, 14]]

After converting the set Pi4 into a poset PosetPi4 the elements are no longer set-partitions but rather
numbers. So far we have not yet implemented functions that convert single numbers into poset elements and
vice versa. Such a function is projected for the next release. After we have the poset in hand the function
OrderComplex constructs the order complex of the poset. Now we can calculate homology.

gap> SimplicialHomology(OCPi4);

#I:D Simplicial complex of dimension 1 with 18 facets

#I:D homology: Computing homology groups

#I:D faces: Finding faces of dimension 0

#I:D faces: Found 13 faces of dimension 0

#I:D faces: Finding faces of dimension 1

#I:D faces: Found 18 faces of dimension 1

#I:D homology: Finding rank of boundary map d1

#I:D elimination: Triangulating matrix by modified Gauss elimination

#I:D elimination: current torsion-free rank: 0, current rank: 0, max. rank: 12

22 Chapter 8. Sample Session

#I:D elimination: current torsion-free rank: 12, current rank: 12, max. rank: 12

#I:D elimination: Matrix triangulated

#I:R homology: Rank d1 = 12

#I:R homology: H_0 = 0.

#I:R homology: H_1 = 6.

#I:D homology: Homology groups computed

[[0], [6]]

For the classes of posets which are implemented in the package and come from group theory the order
relation is clear and the step from the set with order relation to the poset is hard coded. For example this
is done for the poset of p-subgroups of a finite group G .

S2S4:=QuillenPoset(SymmetricGroup(4),2);

[[2, 3, 4, 5, 6, 7, 8, 9, 10], [15, 16], [15, 17], [15, 18], [16], [17], [18],

[17], [18], [16], [30], [30], [30], [30], [30], [30], [30], [30], [30],

[30], [30], [30], [30], [30], [30], [30], [30], [30], [30], []]

gap> OC:=OrderComplex(S2S4);

[[2, 15], [2, 16], [3, 15], [3, 17], [4, 15], [4, 18], [5, 16], [6, 17],

[7, 18], [8, 17], [9, 18], [10, 16]]

We have constructed the order complex of all non-trivial p-subgroups of the symmetric group on 4 letters
for p = 2.

gap> SimplicialHomology(OC);

#I:D Simplicial complex of dimension 1 with 12 facets

#I:D homology: Computing homology groups

#I:D faces: Finding faces of dimension 0

#I:D faces: Found 13 faces of dimension 0

#I:D faces: Finding faces of dimension 1

#I:D faces: Found 12 faces of dimension 1

#I:D homology: Finding rank of boundary map d1

#I:D elimination: Triangulating matrix by modified Gauss elimination

#I:D elimination: current torsion-free rank: 0, current rank: 0, max. rank: 12

#I:D elimination: current torsion-free rank: 12, current rank: 12, max. rank: 12

#I:D elimination: Matrix triangulated

#I:R homology: Rank d1 = 12

#I:R homology: H_0 = 0.

#I:R homology: H_1 = 0.

#I:D homology: Homology groups computed

[[0], [0]]

This is not surprising. By simple arguments one can show that whenever there is a non-trivial normal
p-subgroup then the order complex of the poset of non-trivial p-subgroups is contractible and hence has
trivial homology. Clearly, the Kleinian 4-group contained in the alternating group on 4 letters is a normal
2-subgroup of the symmetric group.

8.2 Using the Valence algorithm

We turn to another example: let us calculate the homology of the complex of matchings of the complete
graph with 11 vertices.

Section 2. Using the Valence algorithm 23

gap> mk11 := SCMatching(11);

[[[1,2],[3,4],[5,6],[7,8],[9,10]],

[[1,2],[3,4],[5,6],[7,8],[9,11]],

[[1,2],[3,4],[5,6],[7,8],[10,11]],

[[1,2],[3,4],[5,6],[7,9],[8,10]],

[[1,2],[3,4],[5,6],[7,9],[8,11]],

[[1,2],[3,4],[5,6],[7,9],[10,11]],

[[1,2],[3,4],[5,6],[7,10],[8,9]],

This is a pretty big complex so we have truncated the output. We have now defined the complex, let us
compute its homology.

gap> SimplicialHomology(mk11);

#I:D Simplicial complex of dimension 4 with 10395 facets

#I:D homology: Computing homology groups

#I:D faces: Finding faces of dimension 0

#I:D faces: Found 55 faces of dimension 0

#I:D faces: Finding faces of dimension 1

#I:D faces: Found 990 faces of dimension 1

#I:D homology: Finding rank of boundary map d1

#I:R homology: Rank d1 = 54

#I:R homology: H_0 = 0.

#I:D faces: Finding faces of dimension 2

#I:D faces: Found 6930 faces of dimension 2

#I:D homology: Finding rank of boundary map d2

#I:R homology: Rank d2 = 936

#I:R homology: H_1 = 0.

#I:D faces: Finding faces of dimension 3

#I:D faces: Found 17325 faces of dimension 3

#I:D homology: Finding rank of boundary map d3

#I:R homology: Rank d3 = 5994

#I:R homology: H_2 = 0.

#I:D faces: Finding faces of dimension 4

#I:D faces: Found 10395 faces of dimension 4

#I:D homology: Finding rank of boundary map d4

#I:D elimination: Triangulating matrix by modified Gauss elimination

#I:D elimination: current torsion-free rank: 0, current rank: 0, max. rank: 11331

#I:D elimination: current torsion-free rank: 2998, current rank: 2998, max. rank: 11331

#I:D elimination: current torsion-free rank: 6983, current rank: 6983, max. rank: 11331

#I:D elimination: current torsion-free rank: 8966, current rank: 8966, max. rank: 11331

#I:E elimination: Coefficient overflow! Please use the GMP algorithm.

fail

After a few seconds the algorithm outputs that it failed. This is due to coefficient growth in the Smith
form computation, we should switch to one of the other algorithms. As we realize now that we may have
some difficulties, we set higher info levels for homology and timings, and try the algorithm using Gnu
MultiPrecision integers (GMP).

gap> SetInfoLevel(InfoTiming,15);

gap> SetInfoLevel(InfoHomology,15);

gap> SimplicialHomology(mk11:HomologyAlgorithm:=EliminateGMPAlgorithm);

#I:D Simplicial complex of dimension 4 with 10395 facets

#I:R homology: Rank d1 = 54

#I:R homology: H_0 = 0.

24 Chapter 8. Sample Session

#I:R homology: Rank d2 = 936

#I:R homology: H_1 = 0.

#I:R homology: Rank d3 = 5994

#I:R homology: H_2 = 0.

#I:D faces: Finding faces of dimension 4

#I:D faces: Found 10395 faces of dimension 4

#I:D homology: Finding rank of boundary map d4

#I:D elimination: Triangulating matrix by modified Gauss elimination

#I:D elimination: current torsion-free rank: 0, current rank: 0, max. rank: 11331

#I:D elimination: current torsion-free rank: 2998, current rank: 2998, max. rank: 11331

#I:S elimination: 7000/10395 rows done; Elapsed:0.958s; 0.194123s to expected completion.

#I:D elimination: current torsion-free rank: 6983, current rank: 6983, max. rank: 11331

#I:S elimination: 9000/10395 rows done; Elapsed:1.562s; 0.0269255s to expected completion.

#I:D elimination: current torsion-free rank: 8966, current rank: 8966, max. rank: 11331

#I:S elimination: 10000/10395 rows done; Elapsed:87.58s; 85.561s to expected completion.

#I:D elimination: current torsion-free rank: 9851, current rank:9926, max. rank: 11331

^C

Then, the output shows that the last rows are indeed quite hard to compute, the algorithm even seems to be
stuck on the last 300 rows, so we stopped the computation (the actual computation would have completed
but in more than an hour an a half); We want to try the Valence algorithm which is designed to deal with
coefficient growth.

gap> SimplicialHomology(mk11:HomologyAlgorithm:=ValenceElimAlgorithm);

#I:D Simplicial complex of dimension 4 with 10395 facets

#I:D homology: Computing homology groups

#I:D faces: Finding faces of dimension 0

#I:D faces: Found 55 faces of dimension 0

#I:D faces: Finding faces of dimension 1

#I:D faces: Found 990 faces of dimension 1

#I:D SNFV: Smith Normal Form of Integer Matrix using Valence algorithm

#I:D SNFV: Loading the matrix ...

#I:D Smith: Smith Form Computation

#I:D Int Vale: Integer Valence

#I:D Gersh: Cassini Ovals method, to create a bound on the coefficients of A^t . A

#I:R Gersh: Cassini Ovals eigen value bound : 72

#I:T Gersh: cpu time : 0.004 seconds

#I:R Int Vale: Min Poly Degree : 2

#I:D Int Vale: Valence is 1540, correct with probability at least 1 - 7.457251e-04

#I:T Int Vale: cpu time : 0.025 seconds

#I:R Smith: rank mod 2 : 54

#I:R Smith: rank mod 5 : 54

#I:R Smith: rank mod 7 : 54

#I:R Smith: rank mod 11 : 54

#I:R Smith: Integer rank (mod 5) : 54, correct with probability at least 1 - 7.457251e-04

#I:R SNFV: Smith form correct with probability at least 1 - 7.457251e-04

#I:T SNFV: cpu time : 0.09 seconds

#I:R homology: H_0 = 0.

#I:D faces: Finding faces of dimension 2

#I:D faces: Found 6930 faces of dimension 2

#I:D SNFV: Smith Normal Form of Integer Matrix using Valence algorithm

#I:D SNFV: Loading the matrix ...

#I:D Smith: Smith Form Computation

Section 2. Using the Valence algorithm 25

#I:D Int Vale: Integer Valence

#I:D Gersh: Cassini Ovals method, to create a bound on the coefficients of A^t . A

#I:R Gersh: Cassini Ovals eigen value bound : 63

#I:R Int Vale: Min Poly Degree : 4

#I:D Int Vale: Valence is 438900, correct with probability at least 1 - 4.027169e-06

#I:R Smith: rank mod 19 : 936

#I:R Smith: rank mod 2 : 936

#I:R Smith: rank mod 3 : 936

#I:R Smith: rank mod 5 : 936

#I:R Smith: rank mod 7 : 936

#I:R Smith: rank mod 11 : 936

#I:R Smith: Integer rank (mod 5) : 936, correct with probability at least 1 - 4.027169e-06

#I:R SNFV: Smith form correct with probability at least 1 - 4.027169e-06

#I:T SNFV: cpu time : 15.936 seconds

#I:R homology: H_1 = 0.

#I:D faces: Found 17325 faces of dimension 3

#I:D SNFV: Smith Normal Form of Integer Matrix using Valence algorithm

#I:D SNFV: Loading the matrix ...

#I:D Smith: Smith Form Computation

#I:D Int Vale: Integer Valence

#I:D Gersh: Cassini Ovals method, to create a bound on the coefficients of A^t . A

#I:R Gersh: Cassini Ovals eigen value bound : 40

#I:R Int Vale: Min Poly Degree : 6

#I:D Int Vale: Valence is 5266800, correct with probability at least 1 - 4.295011e-08

#I:R Smith: rank mod 19 : 5994

#I:R Smith: rank mod 2 : 5994

#I:R Smith: rank mod 3 : 5994

#I:R Smith: rank mod 5 : 5994

#I:R Smith: rank mod 7 : 5994

#I:R Smith: rank mod 11 : 5994

#I:R Smith: Integer rank (mod 5) : 5994, correct with probability at least 1 - 4.295011e-08

#I:R SNFV: Smith form correct with probability at least 1 - 4.295011e-08

#I:T SNFV: cpu time : 415.322 seconds

#I:R homology: H_2 = 0.

#I:D faces: Finding faces of dimension 4

#I:D faces: Found 10395 faces of dimension 4

#I:T faces: cpu time : 0.123 seconds

#I:D SNFV: Smith Normal Form of Integer Matrix using Valence algorithm

#I:D SNFV: Loading the matrix ...

#I:D Smith: Smith Form Computation

#I:D Int Vale: Integer Valence

#I:D Gersh: Cassini Ovals method, to create a bound on the coefficients of A^t . A

#I:R Gersh: Cassini Ovals eigen value bound : 15

#I:R Int Vale: Min Poly Degree : 8

#I:D Int Vale: Valence is 277200, correct with probability at least 1 - 1.806114e-05

#I:D Gauss: Elimination of 10395 rows mod 2.

#I:S Gauss: 1000/10394 rows done;

#I:S Gauss: 2000/10394 rows done;

#I:S Gauss: 3000/10394 rows done; Elapsed:10.708s; 24.733s to expected completion.

#I:S Gauss: 4000/10394 rows done; Elapsed:13.187s; 19.9329s to expected completion.

#I:S Gauss: 5000/10394 rows done; Elapsed:16.086s; 17.0339s to expected completion.

#I:S Gauss: 6000/10394 rows done; Elapsed:19.371s; 13.7489s to expected completion.

26 Chapter 8. Sample Session

#I:S Gauss: 7000/10394 rows done; Elapsed:22.278s; 8.86765s to expected completion.

#I:S Gauss: 8000/10394 rows done; Elapsed:24.922s; 3.89436s to expected completion.

#I:S Gauss: 9000/10394 rows done; Elapsed:27.757s; 3.10843s to expected completion.

#I:S Gauss: 10000/10394 rows done; Elapsed:47.765s; 13.8515s to expected completion.

#I:R Smith: rank mod 2 : 10143

#I:R Smith: rank mod 3 : 10098

#I:R Smith: rank mod 5 : 10143

#I:R Smith: rank mod 7 : 10143

#I:R Smith: rank mod 11 : 10143

#I:R Smith: Integer rank (mod 5) : 10143,

#I:R correct with probability at least 1 - 1.806114e-05

#I:R Smith: rank mod 9 : 10143

#I:R SNFV: Smith form correct with probability at least 1 - 1.806114e-05

#I:T SNFV: cpu time : 639.243 seconds

#I:R homology: H_3 = 1188 + Z_3^45.

#I:R homology: H_4 = 252.

#I:D homology: Homology groups computed

#I:T homology: cpu time : 1073.95 seconds

[[0], [0], [0], [1188, [3, 45]], [252]]

And with this algorithm we were able to succeed after only 18 minutes. On the other hand, the answer is
probabilistic, that is to say it has a chance of being false, but the algorithm tells us that there is less that
one chance in a thousand that this is the case! Anyway, we would like to be more confident about this result,
therefore we set the UncertaintyTolerance to a lower level, and try again.

gap> SetUncertaintyTolerance(10^-20);

gap> SimplicialHomology(mk11:HomologyAlgorithm:=ValenceElimAlgorithm);

#I:D Simplicial complex of dimension 4 with 10395 facets

#I:D faces: Found 55 faces of dimension 0

#I:D faces: Found 990 faces of dimension 1

#I:R SNFV: Smith form correct with probability at least 1 - 1.282482e-22

#I:T SNFV: cpu time : 0.176 seconds

#I:R homology: H_0 = 0.

#I:D faces: Found 6930 faces of dimension 2

#I:R SNFV: Smith form correct with probability at least 1 - 2.630265e-22

#I:T SNFV: cpu time : 16.873 seconds

#I:R homology: H_1 = 0.

#I:D faces: Found 17325 faces of dimension 3

#I:R SNFV: Smith form correct with probability at least 1 - 7.923057e-23

#I:T SNFV: cpu time : 418.794 seconds

#I:R homology: H_2 = 0.

#I:D faces: Found 10395 faces of dimension 4

#I:R SNFV: Smith form correct with probability at least 1 - 4.522239e-22

#I:T SNFV: cpu time : 643.755 seconds

#I:R homology: H_3 = 1188 + Z_3^45.

#I:R homology: H_4 = 252.

#I:T homology: cpu time : 1083.02 seconds

[[0], [0], [0], [1188, [3, 45]], [252]]

Now we are confident that there is less than one chance in a hundred billion billions that this answer is false,
and this took only slightly more time!

Section 3. Using the Sparse Matrix Functions 27

8.3 Using the Sparse Matrix Functions

Let us now use the sparse matrix functions to Smith forms. We first can try on a sample 4× 5 matrix.

gap> a:=[[0,3,-3,0,0],[-1,0,-2,2,1],[3,6,0,-6,3],[0,6,-6,0,6]];

[[0, 3, -3, 0, 0], [-1, 0, -2, 2, 1], [3, 6, 0, -6, 3], [0, 6, -6, 0, 6]]

gap> NormalFormIntMat(a,1);

rec(normal := [[1, 0, 0, 0, 0], [0, 3, 0, 0, 0],

[0, 0, 6, 0, 0], [0, 0, 0, 0, 0]], rank := 3)

gap> SMSmithForm(a);

[4, 5, [1, 3, 6, 0]]

We could also have used the file format possibilities for a and for the matrix example of chapter 7 (supposing
this matrix is in the file “sparse mat 32x3200.ex”)

gap> gap2SM(a,"/tmp/matrix_4x5.sms");

gap> SMSmithForm("/tmp/matrix_4x5.sms");

[4, 5, [1, 3, 6, 0]]

gap> SMSmithForm("sparse_mat_32x3200.ex");

[32, 3200, [1, 1, 253, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

Now we would like to compute the Smith form of the third boundary map of the matching complex with 9
vertices. As this matrix is quite large we can use the sparse format and files to deal with it in the following
way:

gap> SimplicialBoundaryMaps(SCMatching(9),3,"/tmp/mk9.b3.sms");

gap> SMInvariantFactors("/tmp/mk9.b3.sms");

[945, 1260, [1, 867], [3, 8]]

gap> quit;

welker@merak:~>

Done !

A
Simplicial Complexes

and Simplicial
Homology

The introduction to some parts of algebraic topology given in the following sections follows mostly the book
by Munkres [Mun84]. The combinatorial aspects and a very good general survey on topological methods in
combinatorics can be found in the article by Björner [Bjö95].

A.1 Basic Concepts

A (abstract) simplicial complex ∆ over a (finite) ground set Ω is a collection of subsets of Ω such that
whenever A ⊆ B ∈ Ω and B ∈ ∆ then A ∈ ∆. In particular, ∅ ∈ ∆ for all non-empty simplicial complexes
∆. An element A ∈ ∆ is called face of ∆ and its dimension dim(∆) is given by #A − 1. The dimension
dim(∆) of the simplicial complex ∆ is the maximum of the dimension of its faces. The shift by one when
passing from dimension to cardinality of a face A is due to the fact that dimension is the geometric dimension
of the simplex given as the convex hull spanned by #A linearly independent unit vectors in real n=space (for
sufficiently large n). The f-vector of ∆ is the vector f (∆) = (f−1, · · ·, fdim(∆)) where fi denotes the number
of faces of dimension i in ∆. The (reduced) Euler-characteristic χ̃(∆) of ∆ is given by the alternating sum
f−1 + f0 + · · · + (−1)dim(∆)fdim(∆). For each i ≥ 0 we denote by Ci (∆) the free Z-module spanned by the

faces of ∆ of dimension i . In particular, Ci (∆) ∼= Zfi and there is a basis of Ci (∆) given by unit-vectors
eA indexed by the faces A of dimension i . The module Ci (∆) is called the i -th chain group of ∆. For the
subsequent definitions we have to fix a linear ordering on the ground set Ω. For simplicity we will assume that
Ω = {1, ··,n} and the order is given by the usual order on natural numbers. The Z-module homomorphism
∂i : Ci (∆)→ Ci−1(∆) is defined by sending the base vector eA, for A = {j0 < · · · < ji}, to

i∑
l=0

(−1)l eA\{jl}·

It is easily checked that ∂i−1 ◦ ∂i = 0 for all i ≥ 0. This implies that Im∂i+1 ⊆ Ker∂i . Now the i -
th (reduced) simplicial homology group H̃i (∆) is defined as the Z-module Ker(∂i)/Im(∂i+1). It is easily

verified that H̃−1 = 0 unless ∆ = {∅} for which it is Z and that H̃i (∅) = 0 for all i . When dealing with
the empty face, ∆ = ∅ or ∆ = {∅} there are different conventions. For example many algebraic topologists
define abstract simplicial complexes analogous to our definition except that they forbid the empty face,
on the other hand other introductions to algebraic topology forbid the empty complex. Our approach is
motivated by the applications of calculations of f-vectors and homology groups in combinatorics. Also we
do not require – as some texts do – that for all ω ∈ Ω the singleton {ω} is a face of ∆.

Section 2. Constructions 29

A.2 Constructions

If A is a face of ∆ then star∆(A) denotes the star {B ⊆ Ω | A∪B ∈ Ω } of A in ∆. The link link∆(A) of A
in ∆ is the simplicial complex {B ∈ star∆(A) | A ∩ B = ∅}. If A is an arbitrary subset of the ground set Ω
then ∆A denotes the restriction {B ∈ ∆ | B ⊆ A} of ∆ to A.

If ∆ and Γ are two simplicial complexes over disjoint ground sets Ω∆ and ΩΓ then ∆ ∗ Γ denotes the join
{A ∪ B |A ∈ ∆,B ∈ Γ} of ∆ and Γ as a simplicial complex over Ω∆ ∪ ΩΓ. It is easily seen that the join
operation is commutative and associative up to an isomorphism of simplicial complexes (i.e. a bijective map
which preserves inclusion of faces). The homology of the join is given in homological dimension i by the
degree i − 1 part of the graded tensor product of the homology groups of ∆ and Γ.

If ∆ and Γ are two simplicial complexes over not necessarily disjoint ground sets then the deleted join of ∆
and Γ is constructed as follows. We take copies ∆′ and Γ′ of ∆ and Γ over disjoint ground sets. Then the
deleted join of ∆ and Γ is the simplicial complex whose faces are the unions of faces of ∆′ and Γ′ such that
the respective faces of ∆ and Γ have empty intersection.

For two simplicial complex ∆ and Γ over disjoint ground sets Ω∆ and ΩΓ the wedge ∆ ∨ Γ is the simplicial
complex obtained by identifying one singleton in ∆ with another in Γ. Thus we obtain a simplicial complex
on the ground set (Ω∆∪ΩΓ)/ ≡ where ≡ is the equivalence relation whose only non-singleton class identifies
the two elements of the crucial singletons. Note that the wedge is up to homotopy well defined only if
∆ and Γ are connected. Otherwise the homotopy my depend on the point chosen. By a simple Meyer-
Vietoris type argument the homology is in any case independent of the chosen wedge point and given by
H̃i (∆ ∨ Γ) ∼= H̃i (∆)⊕ H̃i (∆).

For a simplicial complex ∆ over Ω its Alexander-dual ∆∗ is the simplicial complex over Ω whose face A
satisfy Ω \A 6∈ ∆. One checks ∆∗∗ = ∆. Since ∆∗ can be geometrically realized as a deformation retract of
the complement of ∆ on the boundary of the (n − 1)-simplex, for n = #Ω, it follows by Alexander-duality
(see [Mun84]) that

H̃i (∆) ∼= H̃ n−i−1(∆∗)·

The minimal non-faces of a simplicial complex ∆ are the subsets of the ground set of ∆ with the property
that every proper subset is already in ∆. It is clear that the complements of the minimal non-faces are the
maximal faces of the Alexander-dual.

B
Remarks on

the Algorithms

The algorithms EliminateAlgorithm and EliminateGMPAlgorithm use the same procedure, differ only in the
integer representation. The strategy used is to triangulate using partial pivoting to find unit pivot elements
whenever possible. Failing that, a gcd step is used. One then knows the smith form entries for the zero rows
and for the rows whose pivot element is a unit.

In a second phase, the classical smith form algorithm is applied to the remaining rows. It involves row and
column operations determined by gcd commutations. It is described for instance in [New72].

The algorithms ValenceElimAlgorithm and ValenceBBAlgorithm, [DSV00], are designed for speed and re-
duced memory usage, particularly for sparse matrices.

The fundamental tool in these methods is a probabilistic algorithm of Wiedemann, [Wie86], for computing
the minimal polynomial of an integer matrix mod a prime. This method requires only O(n) space beyond
that used for storage of the matrix. the matrix is not modified during the computation. The polynomial
returned is certainly a factor of the true minimal polynomial and with high probability it is the minimal
polynomial. We have never known it to give an incorrect result. For an m × n matrix A, m > n, the
Wiedemann algorithm takes time O(nω), and the time is actually proportional to kω, where k is the degree
of the minimal polynomial and where ω is the cost of matrix vector product. Note that ω is O(dn) for the
boundary matrix at dimension d of a simplicial complex.

The term valence refers to the coefficient of the least degree term of the minimal polynomial. Any prime
which occurs in the Smith form necessarily is a divisor of the valence. We use this fact to restrict attention
to only those primes for determining the Smith form entries. Fortunately, we have had the experience that
for some classes of simplicial complex, the minimal polynomials we work with are of very low degree.

For computing the rank of matrices (mod a prime) we use the fact that a matrix can be constructed, [EK97]
which has the same rank as A and with high probability has the property that its characteristic polynomial
is a power of x times its minimal polynomial. In this case the rank may be determined from the minimal
polynomial.

Thus after computing the valence we may compute the integer rank, and hence get Betti numbers, by
computing the rank mod a prime not dividing the valence.

After this point the two algorithms diverge. ValenceElimAlgorithm uses an elimination mod p for each
prime p dividing the valence to find the contribution of p and its powers to the invariant factors. That
elimination is subject to fill-in as is experienced in integer elimination, but not to the growth in entry size.
ValenceBBAlgorithm, to maintain low memory use, restricts itself to computation of the rank mod p for
each prime in the valence. Thus it determines the first index at which p appears in an invariant factor (Smith
form diagonal entry). We do not yet have a low memory use algorithm to determine the exact power of these
primes in the invariant factors.

Bibliography

[AS93] M. Aschbacher and S.D. Smith. On Quillen’s conjecture for the p-subgroup complex. Ann. Math.,
II., 137:473–529, 1993.

[BBL+99] E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker. Complexes of not i-connected
graphs. Topology, 38:271–299, 1999.

[Bjö94] A. Björner. Subspace arrangements. In Proceedings of the First European congress of mathematics,
volume I, invited lectures, pages 321–370. Birkhäuser, 1994.

[Bjö95] A. Björner. Topological methods. In Handbook of Combinatorics, volume II, pages 1819–1872.
North-Holland, 1995.

[BLVŽ94] A. Björner, L. Lovász, S.T. Vrecica, and R.T. Živaljevic. Chessboard complexes and matching
complexes. J. Lond. Math. Soc., II. Ser. 49, No.1, 25-39, 49:25–39, 1994.

[Bro99] K. Brown. The coset poset and probabilistic Zeta-function of a finite group. Preprint, 1999.

[BW97] A. Björner and M. Wachs. Shellable nonpure complexes and posets. Transactions of the American
Mathematical Society, 349:3945–3975, 1997.

[BW99] A. Björner and V. Welker. Complexes of directed graphs. SIAM Journal on Discrete Mathematics,
12(4):413–424, 1999.

[DSV] J-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer matrix Smith normal form
computations. preprint.

[DSV00] J-G. Dumas, B. D. Saunders, and G. Villard. Integer Smith form via the Valence: experience
with large sparse matrices from Homology. In ISSAC’2000: Proceedings of the 2000 International
Symposium on Symbolic and Algebraic Computation, Saint Andrews, Scotland, pages 95–105,
August 2000.

[EK97] W. Eberly and E. Kaltofen. On randomized Lanczos algorithms. In Wolfgang W. Küchlin,
editor, ISSAC ’97. Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, July 21–23, 1997, Maui, Hawaii, pages 176–183, 1997.

[KT85] C. Kratzer and J. Thévenaz. Type d’homotopie des treillis et treillis des sous-groupes d’un groupe
fini. Comment. Math. Helv., 60:85–106, 1985.

[Lut99] F. Lutz. Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions. Shaker
Verlag, Aachen, 1999. Author’s disseration at Technische Universität Berlin.

[Mun84] J.R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.

[New72] M. Newman. Integral Matrices, volume 45 of Pure and Applied Mathematics, a Series of Monographs
and Textbooks. Academic Press, 1972.

[Qui78] D. Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. Math.,
28:101–128, 1978.

[Sta82] R.P. Stanley. Some aspects of groups acting on finite posets. J. Comb. Theory, Ser. A, 32:132–161,
1982.

[SW98] B. Shapiro and V. Welker. Combinatorics & topology of stratifications of the space of monic
polynomials with real coefficients. Result. Math., 33:338–355, 1998.

[Wel92] V. Welker. The poset of conjugacy classes of subgroups in a finite solvable group. J. Algebra,
148:203–218, 1992.

[Wie86] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on
Information Theory, 32(1):54–62, January 1986.

[Zie96] G.M. Ziegler. On the poset of partitions of an integer. J. Comb. Theory, Ser. A, 42:215–222, 1996.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
algorithm choice, 10

B
Basic Concepts, 28

C
certainty control, 11
Compositions , 14
Constructing Simplicial Complexes and Computing

their Homology, 19
Constructions, 29
CyclicPSubgroups, 9

E
EliminateAlgorithm, 10
EliminateGMPAlgorithm, 10
Examples from Combinatorics, 14
Examples from Group Theory, 15

F
filename, 9
Functions and Data Types, 8

G
gap2SM, 17
GapFormat, 10
Graph Complexes, 12
group formats, 9

H
homologyalgorithms, 10
HomologyGroupFormats, 9
HomologyInfo, 9

I
index range, 8
Installation, 7
Invariant Factors and Rank Functions, 17
IsCompositionRefinement , 15
IsElementaryAbelianPGroup , 15
IsNumberPartitionRefinement , 14

IsSetPartitionRefinement , 14
IsSimplicialComplex, 8

L
LatticeOfSubgroups, 15

M
MaximalCyclicSubgroups, 10
Modifying the Representation of a Complex, 16

N
New Complexes from Old, 16
NonTrivialCompositions , 15
NonTrivialPartitionsNumber , 14
NonTrivialPartitionsSet , 14
NonTrivialSubsets , 14

O
On Uncertainty: Why you should trust our

probabilistic algorithms, 18
Options, 9
OrderComplex , 16
order relation, 13
OrderRelationToPoset , 13

P
PartitionsNumber , 14
poset, 13
PosetOfConjugacyClasses , 15
PosetOfCosets , 15
Posets and Complexes, 16

Q
QuillenPoset , 15

S
Sample Triangulations of Basic Spaces, 12
SCAlexanderDual , 16
SCChessboard, 12
SCCompactify , 16
SCCone, 16
SCDeletedJoin , 16

Index 33

SCGeneralizedKleinBottle, 12
SCJoin, 16
SCLink , 16
SCMatching, 12
SCMobiusStrip, SCTorus, SCKleinBottle, 12
SCNot2ConnectedGraphs, 12
SCRestriction , 16
SCSphere, 12
SCStar , 16
SCSuspension, 16
SCWedge, 16
SetHomologyAlgorithm, 10
SetHomologyGroupFormat, 9
SetUncertaintyTolerance, 11
SimplicialBettiNumbers, 8
SimplicialBoundaryMaps, 9
simplicial complex, 8
SimplicialComplexDimension, 9

SimplicialHomology, 8
SimplicialNTorsionRanks, 9
SMIntegerRank, 18
SMInvariantFactors, 17
SMPrimePowerRank, 18
SMPrimeRank, 18
SMSmithForm, 17
Subsets , 14

U
UncertaintyTolerance, 11
Using the Sparse Matrix Functions, 27
Using the Valence algorithm, 22

V
ValenceBBAlgorithm, 10
ValenceElimAlgorithm, 10

W
What can it do ? What for and Why ?, 7

	
	Preface
	About the Package
	Acknowledgment
	Contents
	The Homology Package
	What can it do ? What for and Why ?
	Installation

	Computing Simplicial Homology
	Functions and Data Types
	Options

	Example Complexes
	Sample Triangulations of Basic Spaces
	Graph Complexes

	Constructors for Partially Ordered Sets
	Sample Posets
	Examples from Combinatorics
	Examples from Group Theory

	Operators on Complexes
	New Complexes from Old
	Posets and Complexes
	Modifying the Representation of a Complex

	Matrix Functions
	Invariant Factors and Rank Functions
	On Uncertainty: Why you should trust our probabilistic algorithms

	Sample Session
	Constructing Simplicial Complexes and Computing their Homology
	Using the Valence algorithm
	Using the Sparse Matrix Functions

	Simplicial Complexes and Simplicial Homology
	Basic Concepts
	Constructions
	Remarks on the Algorithms
	Bibliography
	Index
	A
	B
	C
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	S
	U
	V
	W

