
Finding Sums of Powers∗

1 Recursive procedure

Consider:
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This shows that:
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Thus:

• From the formulae in N for
∑N

i=1 i
j , for j ≤ k, one derive a formula for

∑N
i=1 i

k+1, for instance:

1. From
∑N

i=1 i =
1
2N(N + 1) twice,

2. we have: (N +1)
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3. thus with the previous sum again: 3
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4. which is of course:
∑N

i=1 i
2 = 1

3N(N + 1)(N − 1
2 ).

• Proofs by induction, such as:
∑N

i=1 i
k = 1

k+1N
k+1 +O(Nk).

2 Pascal triangle

Develop (j + 1)k+1, for any j, as (j + 1)k+1 =
∑k+1

i=0

(
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)
ji = jk+1 +
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Then we have also

(j + 1)k+1 − jk+1 =
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i

)
ji. (3)
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Summing for j = 1..N the telescoping terms, we get that the first sums are combined by the Pascal
triangle:

N∑
j=1

(j + 1)k+1 − jk+1 = (N + 1)k+1 − 1 =
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(
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) N∑
j=1

ji

 . (4)

Let Sk(N) =
∑N

i=0 i
k. Equation (4) also gives: (N + 1)k+1 = (S0(N) + 1) +

∑k
i=1

(
k+1
i

)
Si(N).

For instance, this is: 
N + 1
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From which we can obtain after transposition:

S4(N) =
[
(N + 1) (N + 1)2 (N + 1)3 (N + 1)4 (N + 1)5

]
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Backsubstituing, we get:
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] [
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More generally, this gives the following backsubstitution algorithm for the computation of a polynomial
formula for the sum of powers:

Sk(N) =
[
(N + 1) (N + 1)2 . . . (N + 1)k+1

]
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Using the Bernoulli numbers Bj (with the convention that B1 = + 1
2 ), one could also get an explicit

formula, the Faulhaber’s formula:

Sk(N) =

N∑
i=1

ik =
1

k + 1

k∑
j=0

(
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j

)
BjN

k−j+1. (9)

For more on Faulhaber’s formula, Pascal’s triangle and sums of powers, see, e.g., [1].
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